TB Genome Annotation Portal

Rv2946c (pks1)

Amino Acid Sequence

VISARSAEALTAQAGRLMAHVQANPGLDPIDVGCSLASRSVFEHRAVVVGASREQLIAGLAGLAAGEPGAGVAVGQPGSVGKTVVVFPGQGAQRIGMGRE
LYGELPVFAQAFDAVADELDRHLRLPLRDVIWGADADLLDSTEFAQPALFAVEVASFAVLRDWGVLPDFVMGHSVGELAAAHAAGVLTLADAAMLVVARG
RLMQALPAGGAMVAVAASEDEVEPLLGEGVGIAAINAPESVVISGAQAAANAIADRFAAQGRRVHQLAVSHAFHSPLMEPMLEEFARVAARVQAREPQLG
LVSNVTGELAGPDFGSAQYWVDHVRRPVRFADSARHLQTLGATHFIEAGPGSGLTGSIEQSLAPAEAMVVSMLGKDRPELASALGAAGQVFTTGVPVQWS
AVFAGSGGRRVQLPTYAFQRRRFWETPGADGPADAAGLGLGATEHALLGAVVERPDSDEVVLTGRLSLADQPWLADHVVNGVVLFPGAGFVELVIRAGDE
VGCALIEELVLAAPLVMHPGVGVQVQVVVGAADESGHRAVSVYSRGDQSQGWLLNAEGMLGVAAAETPMDLSVWPPEGAESVDISDGYAQLAERGYAYGP
AFQGLVAIWRRGSELFAEVVAPGEAGVAVDRMGMHPAVLDAVLHALGLAVEKTQASTETRLPFCWRGVSLHAGGAGRVRARFASAGADAISVDVCDATGL
PVLTVRSLVTRPITAEQLRAAVTAAGGASDQGPLEVVWSPISVVSGGANGSAPPAPVSWADFCAGSDGDASVVVWELESAGGQASSVVGSVYAATHTALE
VLQSWLGADRAATLVVLTHGGVGLAGEDISDLAAAAVWGMARSAQAENPGRIVLIDTDAAVDASVLAGVGEPQLLVRGGTVHAPRLSPAPALLALPAAES
AWRLAAGGGGTLEDLVIQPCPEVQAPLQAGQVRVAVAAVGVNFRDVVAALGMYPGQAPPLGAEGAGVVLETGPEVTDLAVGDAVMGFLGGAGPLAVVDQQ
LVTRVPQGWSFAQAAAVPVVFLTAWYGLADLAEIKAGESVLIHAGTGGVGMAAVQLARQWGVEVFVTASRGKWDTLRAMGFDDDHIGDSRTCEFEEKFLA
VTEGRGVDVVLDSLAGEFVDASLRLLVRGGRFLEMGKTDIRDAQEIAANYPGVQYRAFDLSEAGPARMQEMLAEVRELFDTRELHRLPVTTWDVRCAPAA
FRFMSQARHIGKVVLTMPSALADRLADGTVVITGATGAVGGVLARHLVGAYGVRHLVLASRRGDRAEGAAELAADLTEAGAKVQVVACDVADRAAVAGLF
AQLSREYPPVRGVIHAAGVLDDAVITSLTPDRIDTVLRAKVDAAWNLHQATSDLDLSMFALCSSIAATVGSPGQGNYSAANAFLDGLAAHRQAAGLAGIS
LAWGLWEQPGGMTAHLSSRDLARMSRSGLAPMSPAEAVELFDAALAIDHPLAVATLLDRAALDARAQAGALPALFSGLARRPRRRQIDDTGDATSSKSAL
AQRLHGLAADEQLELLVGLVCLQAAAVLGRPSAEDVDPDTEFGDLGFDSLTAVELRNRLKTATGLTLPPTVIFDHPTPTAVAEYVAQQMSGSRPTESGDP
TSQVVEPAAAEVSVHA
(Nucleotide sequence available on KEGG)

Additional Information




Analysis of Positive Selection in Clinical Isolates *new*

Moldova (2,057)global set (5,195)
under significant positive selection?NONO
omega peak height (95%CI lower bound)1.93 (0.45)1.78 (0.98)
codons under selection
omega plots
genetic variants*linklink
statistics at each codonlinklink
* example format for variants: "D27 (GAC): D27H (CAC,11)" means "Asp27 (native codon GAC) mutated to His (codon CAC) in 11 isolates"


ESSENTIALITY

MtbTnDB - interactive tool for exploring a database of published TnSeq datasets for Mtb

TnSeqCorr - genes with correlated TnSeq profiles across ~100 conditions

Rv2946c/pks1, gene len: 4850 bp, num TA sites: 51
conditiondatasetcallmediummethodnotes
in-vitroDeJesus 2017 mBionon-essential7H9HMMfully saturated, 14 TnSeq libraries combined
in-vitroSassetti 2003 Mol Micronon-essential 7H9TRASHessential if hybridization ratio<0.2
in-vivo (mice)Sassetti 2003 PNASnon-essential BL6 miceTRASHessential if hybridization ratio<0.4, min over 4 timepoints (1-8 weeks)
in-vitro (glycerol)Griffin 2011 PPathnon-essentialM9 minimal+glycerolGumbel2 replicates; Padj<0.05
in-vitro (cholesterol)Griffin 2011 PPathnon-essentialM9 minimal+cholesterolGumbel3 replicates; Padj<0.05
differentially essential in cholesterol Griffin 2011 PPathNO (LFC=0.21)cholesterol vs glycerolresampling-SRYES if Padj<0.05, else not significant; LFC<0 means less insertions/more essential in cholesterol
in-vitroSmith 2022 eLifenon-essential7H9HMM6 replicates (raw data in Subramaniam 2017, PMID 31752678)
in-vivo (mice)Smith 2022 eLifenon-essentialBL6 miceHMM6 replicates (raw data in Subramaniam 2017, PMID 31752678)
differentially essential in miceSmith 2022 eLifeYES (LFC=-0.422)in-vivo vs in-vitroZINBYES if Padj<0.05, else not significant; LFC<0 means less insertions/more essential in mice
in-vitro (minimal)Minato 2019 mSysnon-essentialminimal mediumHMM
in-vitro (YM rich medium)Minato 2019 mSysnon-essentialYM rich mediumHMM7H9 supplemented with ~20 metabolites (amino acids, vitamins)
differentially essential in YM rich mediumMinato 2019 mSysNO (LFC=-0.45)YM rich vs minimal mediumresampling

TnSeq Data No data currently available.
  • No TnSeq data currently available for this Target.
RNASeq Data No data currently available.
  • No RNA-Seq data currently available for this Target.
Metabolomic Profiles No data currently available.
  • No Metabolomic data currently available for this Target.
Proteomic Data No data currently available.
  • No Proteomic data currently available for this Target.

Regulatory Relationships from Systems Biology
  • BioCyc

    Gene interactions based on ChIPSeq and Transcription Factor Over-Expression (TFOE) (Systems Biology)

    NOTE: Green edges represent the connected genes being classified as differentially essential as a result of the middle gene being knocked out. These interactions are inferred based on RNASeq.

    Interactions based on ChIPSeq data

  • Interactions based on ChIPSeq data (Minch et al. 2014)

    • Binds To:

      • No bindings to other targets were found.
    • Bound By:

    Interactions based on TFOE data (Rustad et al. 2014)



    TBCAP

    Tubculosis Community Annotation Project (
    Slayden et al., 2013)

    Rv2946c (pks1)

    PropertyValueCreatorEvidencePMIDComment
    NameTogether with Pks15, type I polyketide synthase involved in the elongation of p-hydroxybenzoic acid derivatives with malonyl-CoA to form p-hydroxyphenylalkanoates (precursors of phenolic glycolipids [PGL]); the pks15 and pks1 genes are fused in PGL-producing strains of M. tuberculosis but a frameshift mutation causes this polyketide synthase to be inactive in the H37Rv strainmjacksonIMPPhthiocerol dimycocerosates (PDIM), phenolic glycolipids (PGL) and para-hydroxybenzoic acid derivatives
    CitationRole of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. P. Constant, E. Perez et al. J. Biol. Chem. 2002mjackson12138124Together with Pks15, type I polyketide synthase involved in the elongation of p-hydroxybenzoic acid derivatives with malonyl-CoA to form p-hydroxyphenylalkanoates (precursors of phenolic glycolipids [PGL]); the pks15 and pks1 genes are fused in PGL-producing strains of M. tuberculosis but a frameshift mutation causes this polyketide synthase to be inactive in the H37Rv strain (phenotypic [mycobacterial recombinant strains])
    OtherTBPWY:Phthiocerol dimycocerosates, PGL & pHBADmjacksonTogether with Pks15, type I polyketide synthase involved in the elongation of p-hydroxybenzoic acid derivatives with malonyl-CoA to form p-hydroxyphenylalkanoates (precursors of phenolic glycolipids [PGL]); the pks15 and pks1 genes are fused in PGL-producing strains of M. tuberculosis but a frameshift mutation causes this polyketide synthase to be inactive in the H37Rv strain (phenotypic [mycobacterial recombinant strains])
    P. Constant, E. Perez et al. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J. Biol. Chem. 2002
    CitationRole of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. P. Constant, E. Perez et al. J. Biol. Chem. 2002jjmcfadden12138124Inferred from direct assay
    OtherEC:jjmcfaddenInferred from direct assay
    P. Constant, E. Perez et al. Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex. Evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene. J. Biol. Chem. 2002

    Comments