TB Genome Annotation Portal

Rv2669 (-)

Amino Acid Sequence

VTDADELAAVAARTFPLACPPAVAPEHIASFVDANLSSARFAEYLTDPRRAILTARHDGRIVGYAMLIRGDDRDVELSKLYLLPGYHGTGAAAALMHKVL
ATAADWGALRVWLGVNQKNQRAQRFYAKTGFKINGTRTFRLGAHHENDYVMVRELV
(Nucleotide sequence available on KEGG)

Additional Information



ESSENTIALITY

MtbTnDB - interactive tool for exploring a database of published TnSeq datasets for Mtb

TnSeqCorr - genes with correlated TnSeq profiles across >100 conditions *new*

Classification Condition Strain Method Reference Notes
Non-Essential Sodium Oleate H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 0.000000;
4 non-insertions in a row out of 8 sites
Essential Lignoceric Acid H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 0.995750;
7 non-insertions in a row out of 8 sites
Non-Essential Phosphatidylcholine H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 0.002350;
5 non-insertions in a row out of 8 sites
Non-Essential minimal media + 0.1% glycerol H37RvMA Gumbel Griffin et al. (2011) Probability of Essentiality: 0.000000;
2 non-insertions in a row out of 8 sites
Non-Essential minimal media + 0.01% cholesterol H37RvMA Gumbel Griffin et al. (2011) Probability of Essentiality: 0.000000;
3 non-insertions in a row out of 8 sites
Non-Essential 7H10-glycerol H37RvMA TraSH Sassetti et al. (2003a)
Non-Essential C57BL/6J mice (8 weeks) H37RvMA TraSH Sassetti et al. (2003b) Hybridization Ratio: 0.63
Non-Essential 7H09/7H10 + rich media H37RvMA MotifHMM DeJesus et al. (2017) Fully saturated (14 reps).

TnSeq Data No data currently available.
  • No TnSeq data currently available for this Target.
RNASeq Data No data currently available.
  • No RNA-Seq data currently available for this Target.
Metabolomic Profiles No data currently available.
  • No Metabolomic data currently available for this Target.
Proteomic Data No data currently available.
  • No Proteomic data currently available for this Target.

Regulatory Relationships from Systems Biology
  • BioCyc

    Gene interactions based on ChIPSeq and Transcription Factor Over-Expression (TFOE) (Systems Biology)

    NOTE: Green edges represent the connected genes being classified as differentially essential as a result of the middle gene being knocked out. These interactions are inferred based on RNASeq.

    Interactions based on ChIPSeq data

  • Interactions based on ChIPSeq data (Minch et al. 2014)

    • Binds To:

      • No bindings to other targets were found.
    • Bound By:

    Interactions based on TFOE data (Rustad et al. 2014)



    TBCAP

    Tubculosis Community Annotation Project (
    Slayden et al., 2013)

    Rv2669 (-)

    PropertyValueCreatorEvidencePMIDComment
    InteractionRegulatory Rv3574priyadarshinipriyanka2001IEPCo-expression (Functional linkage)
    SL. Kendall,P. Burgess,R. Balhana,M. Withers,A. Ten Bokum,JS. Lott,C. Gao,I. Uhia Castro,NG. Stoker Cholesterol utilisation in mycobacteria is controlled by two TetR-type transcriptional regulators; kstR and kstR2. Microbiology (Reading, England) 2010
    InteractionRegulatory Rv3574priyadarshinipriyanka2001IEPCo-expression (Functional linkage)
    SL. Kendall, M. Withers et al. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol. Microbiol. 2007
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3133cyamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3134cyamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3132cyamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    InteractionRegulatedBy Rv3574yamir.morenoISOM.smegmatis orthology based inference. Orthologous pair regulator-target found in M.smegmatis.
    SL. Kendall, M. Withers et al. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol. Microbiol. 2007
    InteractionRegulatedBy Rv0491yamir.morenoIEPMicroarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments..
    T. Parish, DA. Smith et al. The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology (Reading, Engl.) 2003

    Comments