Property | Value | Creator | Evidence | PMID | Comment |
Citation | A family of acr-coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires Rv3133c (dosR or devR) for expression. MA. Florczyk, LA. McCue et al. Infect. Immun. 2003 | priyadarshinipriyanka2001 | IEP | 12933881 | Co-expression (Functional linkage) |
Interaction | Regulatory Rv3133c | priyadarshinipriyanka2001 | IEP | | Co-expression (Functional linkage) MA. Florczyk, LA. McCue et al. A family of acr-coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires Rv3133c (dosR or devR) for expression. Infect. Immun. 2003 |
Interaction | Regulatory Rv2031c | priyadarshinipriyanka2001 | IEP | | Co-expression (Functional linkage) MA. Florczyk, LA. McCue et al. A family of acr-coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires Rv3133c (dosR or devR) for expression. Infect. Immun. 2003 |
Citation | Individual Mycobacterium tuberculosis universal stress protein homologues are dispensable in vitro. authors,SM. Hingley-Wilson,KE. Lougheed,K. Ferguson,S. Leiva,HD. Williams Tuberculosis (Edinb) 2010 | priyadarshinipriyanka2001 | IEP | 20541977 | Co-expression (Functional linkage) |
Interaction | Regulatory Rv3133c | priyadarshinipriyanka2001 | IEP | | Co-expression (Functional linkage) authors,SM. Hingley-Wilson,KE. Lougheed,K. Ferguson,S. Leiva,HD. Williams Individual Mycobacterium tuberculosis universal stress protein homologues are dispensable in vitro. Tuberculosis (Edinb) 2010 |
Interaction | Regulatory Rv2031c | priyadarshinipriyanka2001 | IEP | | Co-expression (Functional linkage) authors,SM. Hingley-Wilson,KE. Lougheed,K. Ferguson,S. Leiva,HD. Williams Individual Mycobacterium tuberculosis universal stress protein homologues are dispensable in vitro. Tuberculosis (Edinb) 2010 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) ML. Chesne-Seck, N. Barilone et al. A point mutation in the two-component regulator PhoP-PhoR accounts for the absence of polyketide-derived acyltrehaloses but not that of phthiocerol dimycocerosates in Mycobacterium tuberculosis H37Ra. J. Bacteriol. 2008 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) authors,A. Sola-Landa,RS. Moura,JF. Martn The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc. Natl. Acad. Sci. U.S.A. 2003 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) J. Gonzalo Asensio, C. Maia et al. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J. Biol. Chem. 2006 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) J. Gonzalo-Asensio, CY. Soto et al. The Mycobacterium tuberculosis phoPR operon is positively autoregulated in the virulent strain H37Rv. J. Bacteriol. 2008 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) A. Sinha, S. Gupta et al. PhoP-PhoP interaction at adjacent PhoP binding sites is influenced by protein phosphorylation. J. Bacteriol. 2008 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) J. Gonzalo Asensio, C. Maia et al. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J. Biol. Chem. 2006 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) M. Ryndak, S. Wang et al. PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol. 2008 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) JA. Asensio, A. Arbus et al. Live tuberculosis vaccines based on phoP mutants: a step towards clinical trials. Expert opinion on biological therapy 2008 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) SB. Walters, E. Dubnau et al. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol. Microbiol. 2006 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) J. Gonzalo-Asensio, S. Mostowy et al. PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS ONE 2008 |
Interaction | RegulatedBy Rv0348 | yamir.moreno | IEP | | Microarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments.. qRT-PCR. mRNA expression levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using qRT-PCR technique. B. Abomoelak, EA. Hoye et al. mosR, a novel transcriptional regulator of hypoxia and virulence in Mycobacterium tuberculosis. J. Bacteriol. 2009 |
Interaction | RegulatedBy Rv0348 | yamir.moreno | IEP | | Microarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments.. qRT-PCR. mRNA expression levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using qRT-PCR technique. B. Abomoelak, EA. Hoye et al. mosR, a novel transcriptional regulator of hypoxia and virulence in Mycobacterium tuberculosis. J. Bacteriol. 2009 |
Interaction | RegulatedBy Rv0757 | yamir.moreno | IEP | | Microarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments.. J. Gonzalo Asensio, C. Maia et al. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J. Biol. Chem. 2006 |
Interaction | RegulatedBy Rv3133c | yamir.moreno | TAS | | Literature previously reported link (from Balazsi et al. 2008). Traceable author statement to experimental support. G. Balzsi, AP. Heath et al. The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol. Syst. Biol. 2008 |
Interaction | RegulatedBy Rv2711 | yamir.moreno | IEP | | Microarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments.. GM. Rodriguez, MI. Voskuil et al. ideR, An essential gene in mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect. Immun. 2002 |
Interaction | RegulatedBy Rv0491 | yamir.moreno | IEP | | Microarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments.. T. Parish, DA. Smith et al. The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology (Reading, Engl.) 2003 |