TB Genome Annotation Portal

Rv0451c (mmpS4)

Amino Acid Sequence

VLMRTWIPLVILVVVIVGGFTVHRIRGFFGSENRPSYSDTNLENSKPFNPKHLTYEIFGPPGTVADISYFDVNSEPQRVDGAVLPWSLHITTNDAAVMGN
IVAQGNSDSIGCRITVDGKVRAERVSNEVNAYTYCLVKSA
(Nucleotide sequence available on KEGG)

Additional Information



ESSENTIALITY

MtbTnDB - interactive tool for exploring a database of published TnSeq datasets for Mtb

TnSeqCorr - genes with correlated TnSeq profiles across >100 conditions *new*

Classification Condition Strain Method Reference Notes
Non-Essential Sodium Oleate H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 0.000050;
8 non-insertions in a row out of 15 sites
Non-Essential Lignoceric Acid H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 0.000000;
2 non-insertions in a row out of 15 sites
Non-Essential Phosphatidylcholine H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 0.000000;
1 non-insertions in a row out of 15 sites
Non-Essential minimal media + 0.1% glycerol H37RvMA Gumbel Griffin et al. (2011) Probability of Essentiality: 0.000050;
6 non-insertions in a row out of 15 sites
Essential minimal media + 0.01% cholesterol H37RvMA Gumbel Griffin et al. (2011) Probability of Essentiality: 0.999900;
14 non-insertions in a row out of 15 sites
Non-Essential 7H10-glycerol H37RvMA TraSH Sassetti et al. (2003a)
Non-Essential C57BL/6J mice (8 weeks) H37RvMA TraSH Sassetti et al. (2003b) Hybridization Ratio: 0.46
Non-Essential 7H09/7H10 + rich media H37RvMA MotifHMM DeJesus et al. (2017) Fully saturated (14 reps).

TnSeq Data No data currently available.
  • No TnSeq data currently available for this Target.
RNASeq Data No data currently available.
  • No RNA-Seq data currently available for this Target.
Metabolomic Profiles No data currently available.
  • No Metabolomic data currently available for this Target.
Proteomic Data No data currently available.
  • No Proteomic data currently available for this Target.

Regulatory Relationships from Systems Biology
  • BioCyc

    Gene interactions based on ChIPSeq and Transcription Factor Over-Expression (TFOE) (Systems Biology)

    NOTE: Green edges represent the connected genes being classified as differentially essential as a result of the middle gene being knocked out. These interactions are inferred based on RNASeq.

    Interactions based on ChIPSeq data

  • Interactions based on ChIPSeq data (Minch et al. 2014)

    Interactions based on TFOE data (Rustad et al. 2014)

    • Upregulates:

      • Does not upregulate other genes.
    • Upregulated by:

      • Not upregulated by other genes.
    • Downregulates:

      • Does not downregulate other genes.
    • Downregulated by:



    TBCAP

    Tubculosis Community Annotation Project (
    Slayden et al., 2013)

    Rv0451c (mmpS4)

    PropertyValueCreatorEvidencePMIDComment
    CitationComputational prediction and experimental verification of novel IdeR binding sites in the upstream sequences of Mycobacterium tuberculosis open reading frames. P. Prakash, S. Yellaboina et al. Bioinformatics 2005priyadarshinipriyanka2001IEP15746274None
    InteractionRegulatory Rv2711priyadarshinipriyanka2001IEP
    P. Prakash, S. Yellaboina et al. Computational prediction and experimental verification of novel IdeR binding sites in the upstream sequences of Mycobacterium tuberculosis open reading frames. Bioinformatics 2005
    CitationThe Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. B. Gold, GM. Rodriguez et al. Mol. Microbiol. 2001priyadarshinipriyanka2001IEP11722747None
    InteractionRegulatory Rv2711priyadarshinipriyanka2001IEP
    B. Gold, GM. Rodriguez et al. The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol. Microbiol. 2001
    CitationideR, An essential gene in mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. GM. Rodriguez, MI. Voskuil et al. Infect. Immun. 2002priyadarshinipriyanka2001IEP12065475None
    InteractionRegulatory Rv2711priyadarshinipriyanka2001IEP
    GM. Rodriguez, MI. Voskuil et al. ideR, An essential gene in mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect. Immun. 2002
    InteractionRegulatedBy Rv3676yamir.morenoTASLiterature previously reported link (from Balazsi et al. 2008). Traceable author statement to experimental support.
    G. Balzsi, AP. Heath et al. The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol. Syst. Biol. 2008
    InteractionRegulatedBy Rv2711yamir.morenoTASLiterature previously reported link (from Balazsi et al. 2008). Traceable author statement to experimental support.
    G. Balzsi, AP. Heath et al. The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol. Syst. Biol. 2008
    InteractionRegulatedBy Rv2711yamir.morenoIEPMicroarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments..
    GM. Rodriguez, MI. Voskuil et al. ideR, An essential gene in mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect. Immun. 2002

    Comments