TB Genome Annotation Portal

Rv0244c (fadE5)

Amino Acid Sequence

VSHYRSNVRDQVFNLFEVLGVDKALGHGEFSDVDVDTARDMLAEVSRLAEGPVAESFVEGDRNPPVFDPKTHSVMLPESFKKSVNAMLEAGWDKVGIDEA
LGGMPMPKAVVWALHEHILGANPAVWMYAGGAGFAQILYHLGTEEQKKWAVLAAERGWGSTMVLTEPDAGSDVGAARTKAVQQADGSWHIDGVKRFITSG
DSGDLFENIFHLVLARPEGAGPGTKGLSLYFVPKFLFDVETGEPGERNGVFVTNVEHKMGLKVSATCELAFGQHGVPAKGWLVGEVHNGIAQMFEVIEQA
RMMVGTKAIATLSTGYLNALQYAKSRVQGADLTQMTDKTAPRVTITHHPDVRRSLMTQKAYAEGLRALYLYTATFQDAAVAEVVHGVDAKLAVKVNDLML
PVVKGVGSEQAYAKLTESLQTLGGSGFLQDYPIEQYIRDAKIDSLYEGTTAIQAQDFFFRKIVRDKGVALAHVSGQIQEFVDSGAGNGRLKTERALLAKA
LTDVQGMAAALTGYLMAAQQDVTSLYKVGLGSVRFLMSVGDLIIGWLLQRQAAVAVAALDAGATGDERSFYEGKVAVASFFAKNFLPLLTSTREVIETLD
NDIMELDEAAF
(Nucleotide sequence available on KEGG)

Additional Information



ESSENTIALITY

MtbTnDB - interactive tool for exploring a database of published TnSeq datasets for Mtb

TnSeqCorr - genes with correlated TnSeq profiles across >100 conditions *new*

Classification Condition Strain Method Reference Notes
Uncertain Sodium Oleate H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 0.754000;
9 non-insertions in a row out of 23 sites
Non-Essential Lignoceric Acid H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 0.000000;
3 non-insertions in a row out of 23 sites
Non-Essential Phosphatidylcholine H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 0.000000;
2 non-insertions in a row out of 23 sites
Non-Essential minimal media + 0.1% glycerol H37RvMA Gumbel Griffin et al. (2011) Probability of Essentiality: 0.000000;
1 non-insertions in a row out of 23 sites
Uncertain minimal media + 0.01% cholesterol H37RvMA Gumbel Griffin et al. (2011) Probability of Essentiality: 0.771650;
7 non-insertions in a row out of 23 sites
No-Data 7H10-glycerol H37RvMA TraSH Sassetti et al. (2003a)
Too-Short C57BL/6J mice (8 weeks) H37RvMA TraSH Sassetti et al. (2003b) Hybridization Ratio: -1
Non-Essential 7H09/7H10 + rich media H37RvMA MotifHMM DeJesus et al. (2017) Fully saturated (14 reps).

TnSeq Data No data currently available.
  • No TnSeq data currently available for this Target.
RNASeq Data No data currently available.
  • No RNA-Seq data currently available for this Target.
Metabolomic Profiles No data currently available.
  • No Metabolomic data currently available for this Target.
Proteomic Data No data currently available.
  • No Proteomic data currently available for this Target.

Regulatory Relationships from Systems Biology
  • BioCyc

    Gene interactions based on ChIPSeq and Transcription Factor Over-Expression (TFOE) (Systems Biology)

    NOTE: Green edges represent the connected genes being classified as differentially essential as a result of the middle gene being knocked out. These interactions are inferred based on RNASeq.

    Interactions based on ChIPSeq data

  • Interactions based on ChIPSeq data (Minch et al. 2014)

    Interactions based on TFOE data (Rustad et al. 2014)



    TBCAP

    Tubculosis Community Annotation Project (
    Slayden et al., 2013)

    Rv0244c (fadE5)

    PropertyValueCreatorEvidencePMIDComment
    InteractionRegulatedBy Rv0182cyamir.morenoIEPMicroarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments..
    JH. Lee, DE. Geiman et al. Role of stress response sigma factor SigG in Mycobacterium tuberculosis. J. Bacteriol. 2008
    InteractionRegulatedBy Rv3744yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    InteractionRegulatedBy Rv3416yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    InteractionRegulatedBy Rv2034yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    InteractionRegulatedBy Rv0445cyamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009

    Comments