
Modeling and Verifying Multi-Agent Behaviors Using 
Predicate/Transition Nets 

Dianxiang Xu, Richard Volz, Thomas Ioerger 
Department of Computer Science 

301 H. R. Bright Building 
Texas A&M University 

College Station, TX 77843, USA 

{xudian, volz, ioerger}@cs.tamu.edu 

John Yen 
School of Information Sciences and Technology  

004 D Thomas Building  
The Pennsylvania State University  
University Park, PA 16802, USA  

jyen@ist.psu.edu 
 

ABSTRACT 
In a multi-agent system, how agents accomplish a goal task is 
usually specified by multi-agent plans built from basic actions 
(e.g. operators) of which the agents are capable. A critical 
problem with such an approach is how can the designer make sure 
the plans are reliable. To tackle this problem, this paper presents a 
formal approach for modeling and analyzing multi-agent 
behaviors using Predicate/Transition (PrT) nets, a high-level 
formalism of Petri nets. We construct a multi-agent model by 
representing agent capabilities as transitions. To verify a multi-
agent PrT model, we adapt the planning graphs as a compact 
structure for the reachability analysis. We also demonstrate that, 
based on the PrT model, whether parallel actions specified in 
multi-agent plans can be executed in parallel and whether the 
plans guarantee the achievement of the goal can be verified by 
analyzing the dependency relations among the transitions.   

Categories and Subject Descriptors 
D.2 [Software Engineering]: Design Tools and Techniques – 
Petri nets. Software/Program Verification – Formal methods. I.2 
[Artificial Intelligence]: Distributed Artificial Intelligence – 
Multiagent systems, Intelligent agents.  

General Terms 
Design, Verification. 

Keywords 
Formal methods, predicate/transition nets, multiagent systems, 
verification, Petri nets. 

1. INTRODUCTION 
One of the common approaches for the design and development of 
multi-agent systems is to specify multi-agent plans for achieving 
the joint goal in terms of agent capabilities or operators [1-4]. A 
major motivation of this approach is that for a complex multi-
agent system it is hard for a general-purpose planning algorithm to 

generate a plan that is optimal in certain sense. The measurement 
of optimum may vary from applications to applications. For 
example, the performance of a specific system may not simply 
depend on the number of actions, which is often treated as an 
important quality factor in planning systems [5]. A plan with 
minimum steps does not necessarily have minimum execution 
time because different actions usually have different durations of 
execution time. In contrast, pre-specified plans may achieve better 
performance by taking into consideration specific application 
requirements. However, a critical problem is how a plan designer 
can make sure the specified plans are reliable? Specifically, are 
the multi-agent plans feasible for accomplishing the goal? Can 
specified parallel actions in multi-agent plans be executed in 
parallel? Is the goal achievable or reachable in terms of agent 
capabilities at all? From the formal engineering perspective, the 
answers to the above questions are of importance for detecting 
design defects.  

To address these issues, this paper presents a formal approach for 
modeling and analyzing multi-agent behaviors using 
Predicate/Transition (PrT) nets [6], a high-level formalism of 
Petri nets [7]. We think of the totality of agent capabilities 
specified by preconditions and post-conditions as a behavior 
model of what the agents as a group can do. We also think of 
multi-agent plans as a description of the process for moving from 
some start state, through this model, to a goal state. We 
demonstrate PrT nets are well suited for modeling multi-agent 
systems by representing agent capabilities as transitions. In 
particular, the reachability problem of a simplified PrT net model 
can be analyzed efficiently using a compact structure called 
planning graphs [5]. We also demonstrate that, based on the PrT 
model, whether specified parallel actions can be executed in 
parallel and whether the parallel plans guarantee the achievement 
of the goal can be verified by analyzing the dependency relations 
among the transitions. 

The rest of this paper is organized as follows. Section 2 briefly 
reviews related work. Section 3 introduces PrT nets and shows 
how to built multi-agent models using PrT nets. Section 4 
describes the reachability analysis of PrT nets using planning 
graphs. Section 5 presents how to verify parallel plans. Section 6 
contains concluding remarks. 

2. RELATED WORK 
Historically, the most common and familiar formalisms for multi-
agent systems are logic theories. Temporal or modal logic is 
suitable for formally defining the semantics of multi-agent 
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theories and languages. For example, modal logic has been used 
to characterize the joint intention theory [8], shared plans [3], 
planned team activity [1], agent-oriented programming [9], etc. 
Logic theories are also a major means for system verification 
through theorem-proving or model checking [10]. Generally, the 
theorem-proving approach is inherently limited due to the well-
known difficulty. Verification by model checking [11] has the 
advantage over theorem-proving in complexity. The basic idea is 
to model a multi-agent system as a Kripke structure and to check 
system properties represented as formulas against the Kripke 
model. Since Kripke structures are less expressive with respect to 
high-level system specification, a front-end formalism (e.g. modal 
logic) instead of a Kripke structure is often expected for the 
specification of a multi-agent system.  

Petri nets, as a well-known model-oriented formal method, are 
more suitable for modeling dynamic system behaviors [12]. The 
approach of Agent-Oriented Colored Petri nets [13] redesigns 
Shoham’s paradigm of agent-oriented programming [9] by means 
of object-oriented colored Petri nets. [14] extends G-net to model 
inheritance of agent classes in multi-agent systems, which 
provides a clean interface between agents with asynchronous 
communication ability and supports formal reasoning. [15] 
specifies a multi-agent system for resource allocation problems 
using concurrent object-oriented Petri nets. The common issues 
with the above approaches are: 1) they suffer from high 
complexity of reachability analysis through occurrence graphs (if 
supported), and 2) they are not concerned with agent plans. 

As another major type of high-level Petri nets, PrT nets have been 
employed to model multi-agent planning domains. Murata et al 
[16] use a simplified version of PrT nets for multi-agent planning. 
Based on the traditional means-end analysis, the planning 
algorithm conducts bi-directional search through the state space 
(i.e. a combination of forward chaining search from the initial 
state and backward chaining search from the goal state). Although 
a planning problem is in essence a reachability problem, the 
means-end analysis is ineffective for the verification of PrT nets. 
It is also worth mentioning the reachability analysis techniques for 
general PrT nets. Parameterized reachability trees [17] exploit 
parameterized markings as a means for folding reachability trees 
of PrT nets so that a number of concrete states can be condensed 
into a generic state. This approach has not shown much help in 
practical analysis of systems due to the fact that they still suffer 
from high complexity. In particular, parameterized reachability 
trees may cost extra time to instantiate the parameters for 
generating successor states and for comparing states, though it 
does save a large amount of space.  

3. MULTIAGENT MODELING 
This section gives an introduction to the PrT nets to be used, and 
shows how to construct multi-agent models using PrT nets. 

3.1 Predicate/Transition Nets 
A PrT net is a tuple (P, T, F, Σ, L, ϕ, M0), where: 
(1) P is a finite set of predicates (first order places), T is a finite 

set of transitions (P ∩ T = ∅, P ∪ T ≠ ∅), and F ⊆ (P×T) 
∪(T×P) is a set of arcs. (P, T, F) forms a directed net.  

(2) ∑ is a structure consisting of some sorts of individuals 
(constants) together with some operations  and relations. 

(3) L is a labeling function on arcs. Given an arc f∈F, the 
labeling of f, L(f), is a set of labels, which are tuples of 
individuals and variables (variables start with ‘?’). The tuples 
in L(f) have the same length, representing the arity of the 
predicate connected to the arc. The zero tuple indicating a 
no-argument predicate (an ordinary place in Petri nets) is 
denoted by the special symbol <¢>. 

(4) ϕ is a mapping from a set of inscription formulae to 
transitions. The inscription on transition t∈T, ϕ(t), is a 
logical formula built from variables and the individuals, 
operations, and relations in structure ∑; Variables occurring 
free in a formula have to occur at an adjacent input arc of the 
transition. 

(5) M0 is the initial or current marking. M0 = �
Pp

pM
∈

)(0 , where 

M0 (p) is the set of tokens residing in predicate p. Each token 
is a tuple of symbolic individuals or structured terms 
constructed from individuals and operations in ∑.  

The above PrT nets have simplified general PrT nets [6] in two 
ways: 1) an arc labeling is a set of tuples (labels) {li} rather than a 
formal sum c1l1+c2l2+..+cnln (i.e. coefficient or arc weight ci of arc 
label li is 1 for all 1≤i≤n). 2) Accordingly, the marking of a 
predicate under a certain state is a set of tokens (i.e. items in [6]) 
instead of a formal sum of tokens. These nets, similar to those in 
[16], are more or less like first-order logic programs. From the 
formal verification perspective, the reachability analysis of such 
PrT nets is made more efficient for reachable states. Specifically, 
the planning graphs will be adapted as a compact structure.  

To facilitate our discussion, we introduce some additional 
notation. For simplicity, we do not consider bi-directional arcs, 
which can be easily handled. Let •t ={p∈P: (p,t) ∈F} and t• 
={p∈P: (t, p) ∈F} be the precondition predicates and the 
postcondition predicates of transition t, respectively. Let •p 
={t∈T: (t, p) ∈F} and p• ={t∈T: (p, t) ∈F} be the sets of input 
transitions and output transitions of predicate p, respectively. A 
transition t in a PrT net is enabled under marking M0 if there is a 
substitution θ such that l/θ ∈ M0 (p) for any label l∈L(p,t) for all 
p ∈•t and ϕ(t) evaluates true w.r.t. θ, where l/θ yields a token by 
substituting all variables in label l with the corresponding bound 
values w.r.t. θ. Under a certain marking, a transition may be 
enabled with different substitutions, but cannot be multiply 
enabled with the same substitution. The firing of enabled 
transition t w.r.t. θ (denoted as tθ) removes all tokens in {l/θ: 
l∈L(p,t)} from each input predicate p∈•t, and adds all tokens in 
{l/θ: l∈L(t, p)} to each output predicate p∈t•. Let •tθ ={l/θ: 
l∈L(p,t) for any p∈•t)} and tθ•={l/θ: l∈L(t, p) for any p∈t•} be the 
input (precondition) tokens and output (post-condition) tokens of 
firing tθ, respectively. Given a set of enabled firings γ ={t1θ1, t2θ2 
…tkθk} (k>0)) under M0, γ is said to be concurrent firings if (•tiθi 
∪ tiθi

•) ∩ (•tjθj ∪ tjθj
•) = ∅, and M0 ∩ tiθi

•=∅ for any 1≤i, j ≤k and 
i≠j. After the firing of γ (called a step), we reach a new marking 
M1 = M0 –{•tiθi: 1≤i ≤k} ∪ {tiθi

•: 1≤i ≤k}. A firing sequence of 
steps that reaches marking Mn is denoted as γ1γ2 …γn or 
M0γ1M1γ2M2 …γnMn, where Mi is the marking after step γi 
(1≤i≤n). A marking M is said to be reachable from M0 if there is 
such a sequence of steps that transforms M0 to M. 



3.2 Modeling Multi-Agents 
For a multi-agent system, the PrT model can be constructed by 
focusing on the actions of which the agents are capable. These 
actions are represented by transitions with preconditions, post-
conditions and inscriptions.  

As a case study, this paper extends the well-known blocks world 
problem by introducing multiple agents with different capabilities 
and different types of blocks. This extension facilitates the 
comparison between two cases: 1) there are multiple agents that 
can work in parallel, and 2) there is only one agent who is capable 
of moving any type of blocks but has no parallel operations (i.e. 
the same as the classical blocks world problem).  

In the extended multi-agent blocks world, a block is specified by a 
pair, (x1, x2), where x1 ∈ {a, b, c} and x2 ∈ {1, 2, 3,…} are its 
type and identification number, respectively. Two agents, r1 and r2 
are supposed to cooperatively move stacks of blocks. Their 
capabilities are different: r1 alone can move a-type blocks, 

whereas r2 alone can only move b-type blocks. As a team, r1 and r2 
can jointly move c-type blocks.  

The transitions for the extended blocks world problem are 
specified in TABEL 1. From Table 1, we can see that transitions 
bear much similarity to STRIPS operators for planning problems. 
The main differences include: 1) transitions are associated with 
logical formulae, and 2) a precondition of a transition becomes 
false (like a delete effect) unless it is also a post-condition. 3) 
tokens may represent structured date items. As a matter of fact, a 
set of STRIPS operators can be converted into a PrT net [16].  

It is worth mentioning, although a planning problem is in essence 
a reachability problem, planning and verification have different 
concerns. A planning algorithm intends to consider the quality 
(e.g. number of steps) and optimization of the resulting plan. In 
addition to the reachability issue, a verification algorithm may 
need to analyze other system properties such as deadlock-
freedom, liveness, etc. 

TABLE 1. THE PrT MODEL FOR THE MULTI-AGENT BLOCKS PROBLEM 

Transition Precondition predicates & arc labels Post-condition predicates & arc labels Inscription 

r1r2pickup ontable <?x1,?x2>, clear<?x1,?x2>,   

r1handempty <¢>, r2handempty <¢> 

r1holding <?x1,?x2>, 

r2holding <?x1, ?x2> 

equal(?x1,c) 

r1pickup ontable<?x1,?x2>,clear<?x1,?x2> 
r1handempty <¢> 

r1holding<?x1,?x2> equal(?x1,a) 

r2pickup ontable<?x1,?x2>,clear<?x1,?x2>, 

r2handempty <¢> 

r2holding<?x1,?x2> equal(?x1,b) 

r1r2putdown r1holding<?x1,?x2>, 

r2holding<?x1,?x2> 

ontable<?x1,?x2>, clear<?x1,?x2>, 
r1handempty<¢>, r2handempty<¢> 

equal(?x1,c) 

 

r1putdown r1holding<?x1,?x2> ontable<?x1,?x2>,clear<?x1,?x2>, 
r1handempty<¢> 

equal(?x1,a) 

r2putdown r2holding<?x1,?x2> ontable<?x1,?x2>,clear<?x1,?x2>, 
r2handempty<¢> 

equal(?x1,b) 

r1r2stack r1holding<?x1,?x2>, r2holding<?x1,?x2>, 
clear<?y1,?y2> 

r1handempty<¢>, r2handempty<¢>, 
on<?x1,?x2,?y1,?y2>, clear<?x1,?x2> 

equal(?x1,c) 

r1stack r1holding<?x1,?x2>,clear<?y1,?y2>  r1handempty<¢>, 
on<?x1,?x2,?y1,?y2>,clear<?x1,?x2> 

equal(?x1,a) 

r2stack r2holding<?x1,?x2>,clear<?y1,?y2> r2handempty<¢>, 
on<?x1,?x2,?y1,?y2>,clear<?x1,?x2> 

equal(?x1,b) 

r1r2unstack r1handempty<¢>, r2handempty<¢>, 
clear<?x1,?x2>,on<?x1,?x2,?y1,?y2> 

r1holding<?x1,?x2>, r2holding<?x1,?x2>, 
clear<?y1,?y2> 

equal(?x1,c) 

r1unstack r1handempty<¢>,clear<?x1,?x2>, 
on<?x1,?x2,?y1,?y2> 

r1holding<?x1,?x2>, clear<?y1,?y2> equal(?x1,a) 

r2unstack r2handempty<¢>,clear<?x1,?x2>, 
on<?x1,?x2,?y1,?y2> 

r2holding<?x1,?x2>, clear<?y1,?y2> equal(?x1,b) 

    

4. REACHABILITY ANALYSIS OF 
MULTIAGENT MODELS 
This section first reviews the planning graph analysis, and then 
describes how to adapt it for the reachability analysis of PrT 
models. 

4.1 Overview of Planning Graph Analysis 
Planning graph analysis, originally developed in Graphplan [5], 
solves STRIPS planning problems in which operators have 
preconditions, add-effects and delete-effects, all represented as 
conjuncts of (parameterized) propositions. Empirical studies have 
demonstrated its practical value in a dozen of benchmark planning 
problems.  



The planning graph analysis alternates between two phases: graph 
expansion and solution extraction. The graph expansion phase 
extends a planning graph until a necessary condition for plan 
existence is achieved (i.e. goal propositions all appear at the same 
level and no pair of goal propositions is mutually exclusive). The 
solution extraction phase then performs a backward-chaining 
search for an actual solution. If no solution is found, the cycle 
repeats. 

A planning graph is a directed graph with alternating levels of 
proposition nodes and action nodes. The first level is composed of 
the propositions in the initial state. Nodes in an action level 
consist of actions, i.e., instances of operators, whose 
preconditions occur and no pair of propositions in the 
preconditions is determined mutually exclusive at the previous 
proposition level. Directed edges connect proposition nodes to 
corresponding action nodes whose preconditions reference those 
propositions, and connect action nodes to subsequent propositions 
created by the action’s effects. Each proposition at a level is also 
connected to a no-op or frame action (doing nothing) at the next 
action level, which is in turn linked to the same proposition at the 
next proposition level. 

To analyze a planning graph, the crucial work is reasoning about 
certain mutual exclusion relations among nodes, i.e. propositions 
or actions. An “actions-that-I-am-exclusive-of” list is created for 
each action node. Two actions at a given action level in a 
planning graph are marked mutually exclusive: 1) If one action 
deletes a precondition or add-effect of the other (interference), or 
2) If one action has a precondition that is marked as mutually 
exclusive of a precondition of the other action  (competing needs). 
Two propositions p and q in a proposition level are marked as 
exclusive if each action creating p is marked as exclusive of each 
action creating q. 

4.2 Reachability Analysis of PrT Nets 
Planning graph analysis can be easily adapted for the reachability 
analysis of PrT nets by including three major aspects: 

• Mapping of terminology: each token at a certain 
predicate is a proposition, and each transition firing (a 
pair of transition and substitution) is an action. Each 
precondition of a firing in a PrT net is a delete-effect in 
the planning graph unless it is also a post-condition of 
the firing. Each post-condition but not a precondition of 
a firing is an add-effect in the planning graph. The 
reasoning and propagation of mutual exclusion relations 
is adjusted accordingly. 

• Generation of action level: a firing is defined by the 
firing rule described in section 3.1. The inscription 
formula must evaluate true with respect to the 
substitution. The unification algorithm between arc 
labels and token needs to consider the case where 
tokens are structured data (like terms in a logic 
language).  

• The rule of interference needs to be enhanced.  We 
think two actions are mutually exclusive (i.e. they can 
not be concurrent) if they have a common effect 
(postcondition). 

In the following, we first outline the procedure of graph 
expansion, and then the procedure of solution extraction for the 
analysis of PrT nets.  

Procedure1 (graph expansion) 

Step 1: initialization, e.g. token level i (=0) is the initial state; 
Step 2: WHILE (solution extraction fails and level i (if >0) and 

level i-1 are not identical) DO 
 // create graph level i+1 
Step 2.1: For any token in token level i, create a no-op firing 

in firing level i+1, and the same token in token level 
i+1. The precondition and post-condition of the no-op 
are the token in level i and level i+1, respectively.  

Step 2.2: Add firing tθ to firing level i+1 for any transition t 
and any substitution θ of t such that:  
• l/θ in contained in token level i for any label 

l∈L(p,t) for all p ∈•t;  
• ϕ(t) evaluates true w.r.t. θ; and  
• there does not exist p1, p2, l1 and l2 such that 

l1∈L(p1,t), l2∈L(p2,t), (l1≠ l2 if p1 = p2), and l1/θ 
and l2/θ are mutually exclusive at token level i. 

Step 2.3: For any firing tθ created in step 2, add token l/θ to 
level i+1 for any label l∈L(t, p) for all p ∈t•. Connect 
each precondition token in level i to the firing, and 
connect the firing to each of its post-condition token in 
level i+1. 

Step 2.4: For any pair of firings t1θ1 and t2θ2 (including no-
op firings) in level i+1, they are marked as competing 
needs if there exists p1, p2 l1∈L(p1,t1), l2∈L(p2,t2) such 
that l1/θ1 and l2/θ2 are mutually exclusive of each other. 

Step 2.5: For any pair of tokens τ1 and τ2 in token level i+1, 
they are marked as mutually exclusive if for any firing 
t1θ1 creating τ1 and any firing t2θ2 creating τ2 in firing 
level i+1, t1θ1 and t2θ2 either have competing needs or 
interfere (the precondition/postcondition of one firing 
contains a token in the precondition/postcondition of 
the other, i.e. (•t1θ1∪t1θ1

•) ∩ (•t2θ2∪t2θ2
•) = ∅) 

Step 3: the goal is not reachable (the solution extraction fails and 
the current firing/token level and mutual exclusion relations 
are identical to the previous firing/token level and mutual 
exclusion relations). 

Procedure 2 (solution extraction) 

Step 1: If there is a token in the given goal is not contained in the 
token level newly created or there are two tokens in the goal 
are mutually exclusive in the token level, solution extraction 
fails (the goal is not reachable at this level). 

Step 2: Initialization for solution extraction. Let current goal 
(variable) be the given system goal, and current level 
(variable) be the level newly generated 

Step 3:  WHILE the first token level (initial state) is not reached 
DO 
Step 3.1. IF current goal is already proven unsolvable in 

current level, THEN: 
        IF current level is the newly created level, THEN 

solution extraction fails ELSE backtrack to the previous 
level (i.e. current level++, reset the goal, and continue); 

Step 3.2: Starting from the initial point of firing selection for 
the first time of current goal in current level or from the 



backtrack point of firing selection, select a minimum set 
of non-mutually-exclusive firings in current firing level 
such that these firings lead to current goal in current 
level; 

Step 3.3: IF there exists such a set of firings, THEN set the 
backtrack point, and deduce current goal to a new set of 
goals in the next token level according to the 
preconditions of the selected firings; ELSE current goal 
is not solvable in current level (put it into the hashtable) 
and IF current level is the newly created level, THEN 
solution extraction fails and return to the graph 
expansion, ELSE backtrack to the previous level (i.e. 
current level++, reset the goal, and continue); 

Step 3.4: Set current level to the next one (i.e. current level--
); 

Step 3.5: IF current token level is the first token level THEN 
output solution for the reached goal. 

The above algorithm follows the major features of Graphplan. For 
example, planning graphs have polynomial size and can be 
constructed in polynomial time (refer to [5] for more details). As a 
limitation, though not clearly stated in [5], planning graph 
analysis is only applicable (sound and compete) for the problems 
where mutual exclusion relations can be fully determined by the 
rules (Finding all mutual exclusion relations for general problems 
is as hard as planning itself [5] or as hard as the reachability issue. 
This reflects the inherent complexity of high-level Petri nets). In 
particular, two parallel actions under a certain state are supposed 
not to produce an identical output, which in turn becomes a 
common precondition of multiple parallel actions (in many cases, 
this can be avoided by distinguishing identical tokens with an 
extra parameter). In this paper, the limitation is indicated by the 
safeness assumption of PrT nets. Note that for simplicity safeness 
is just assumed other than specified by the definition of fireability. 
To make sure a PrT is safe, we may explicitly impose M0 ∩ tθ•=∅ 
as an additional necessary condition on the enabledness (i.e. 
postconditions as inhibitor conditions). However, it is not trivial 
to extend the rules for the reasoning and propagation of mutual 
exclusion relations. We would like to address this issue in a 
subsequent paper. In conclusion, the practical value of planning 
graph analysis is that for a large class of parallel tasks the solution 
can often be found quickly if a goal is reachable. It does not 
change the hard nature of reachability problems, though. 

If a goal is reachable in the PrT model, the solution found by the 
algorithm consists of a number of steps, and each step may 
contain more than one firing. Suppose the initial marking of the 
PrT model for the multi-agent blocks world problem is:   
 

{ontable: <a,n3>, ontable: <b,n6>,  clear:<b,n1>, 
  clear:<(a,n4>, on: <c,n2,a,n3>, on: <b,n1,c,n2>,  
  on: <c,n5,b,n6>, on:<a,n4,c,n5>,  
  r1handempty: <¢>, r2handempty: <¢>  
} 
 

and the goal marking is 
 

{ontable: <b,n1>, ontable: <a,n4>,  
  clear: <a,n3>, clear:<b,n6>, 
  on: <a,n3,b,n1>,  on: <c,n5,a,n4>,  
  on(c,n2,c,n5), on(b,n6,c,n2)  
} 

The solution found by the algorithm we have implemented in Java 
is as follows: 
 

S1:  r2unstack(?x1/b,?x2/n1,?y1/c,?y2/n2) 
        r1unstack(?x1/a,?x2/n4,?y1/c,?y2/n5) 
S2:  r2putdown(?x1/b,?x2/n1) 
        r1putdown(?x1/a,?x2/n4) 
S3:  r1r2unstack(?x1/c,?x2/n5,?y1/b,?y2/n6) 
S4:  r1r2stack(?x1/c,?x2/n5,?y1/a,?y2/n4) 
S5:  r1r2unstack(?x1/c,?x2/n2,?y1/a,?y2/n3) 
S6:  r1r2stack(?x1/c,?x2/n2,?y1/c,?y2/n5) 
S7:  r1pickup(?x1/a,?x2/n3) 
       r2pickup(?x1/b,?x2/n6) 
S8:  r1stack(?x1/a,?x2/n3,?y1/b,?y2/n1) 
       r2stack(?x1/b,?x2/n6,?y1/c,?y2/n2) 

Note that the firings within step S1 (S2, S7, S8) can be performed 
in arbitrary order. To illustrate the algorithm’s efficiency for 
parallel systems, we briefly compare the above example with the 
classical case with a single agent (the model can be obtained by 
only using four transitions for agent r1 and removing all transition 
inscriptions in Table 1). The two cases share the same state space. 
For the multi-agent case with the given initial state and goal state 
described above, it takes 0.297 seconds for our algorithm to find 
the above solution (Environment: Windows 2000, 800MHZ, 
256MB). For the single-agent case with the same initial state and 
goal state, it takes 0.766 seconds to find the 12-step solution. This 
indicates that, although the size of action space is increased, the 
introduction of parallel actions accelerates the reachability 
analysis. 

To support the verification of other system properties like 
deadlock freedom, we may specify a goal as a more general 
formula instead of a marking (or a set of facts in planning 
domains) so that some system properties can be formalized as 
reachability problems. This can be achieved by enhancing the first 
step in the procedure of solution extraction. 

5. VERIFYING MULTIAGENT PLANS 
Multi-agent systems often exhibit rich parallelism among agents, 
which requires implicit or explicit representation of parallel 
actions in multi-agent plans. This section describes the 
verification of parallel plans, regarding whether specified parallel 
actions can be actually executed in parallel, and whether they 
achieve the given goal. 

5.1 Plan Specification 
Multi-agent plans are in essence the specification of the process 
for moving from some initial state, through the system model (e.g. 
PrT model), to a goal state. The most simplistic form of multi-
agent plans is a sequence of actions, i.e. transition firings. For 
convenience, we associate each transition with an ordered list of 
variables as formal parameters that appear in the labels of the arcs 
connected with its precondition predicates. For example, 
r2unstack is associated with formal parameters (?x1, ?x2, ?y1, 
?y2), thus firing r2unstack (?x1/b, ?x2/n1, ?y1/c, ?y2/n2) can be 
simply represented by r2unstack(b, n1, c, n2), which is like a 
procedure call. Verifying a given sequence of actions against the 
goal is check to see if it is an occurrence sequence that transforms 
the initial state to the goal state in the PrT model. Nevertheless, a 
plan specification language usually provides complex constructs, 



such as parallel, plan invocation (to form a plan hierarchy), 
condition, loops etc. In this paper, we focus on parallel actions in 
plan hierarchy. Other control structures like condition and loop 
can be easily incorporated. In the following, we formally define 
multi-agent plans. 

Definition 1. A plan is a structure <name, arguments, process>, 
where name, arguments and process are the plan identifier, the 
formal parameters and the process. A process is either an action 
(transition and substitution) or a plan invocation, or a finite 
sequence (denoted as ‘,’) of processes, or a parallel (denoted as 
‘|’) composition of a finite number of processes. Formally, the 
BNF-style notation of process is as follows:   

<process> ::=   <transition>[(<arguments>)]  
| <plan-name>[(<arguments>)]   
| <process>{,<process>} 
| (<process> {| <process>}) 

where arguments are actual parameters of an action or plan 
invocation. 

For example, we may specify the following plan with two 
sequential actions for the extended blocks world problem.  

plan  r1move1(?x1, ?x2, ?y1, ?y2) { 

r1unstack(?x1, ?x2, ?y1, ?y2), r1putdown(?x1, ?x2) 

          } 

5.2 Plan Verification 
Although agent plans look like procedural programs, plan 
verification is made possible and tractable due to the complete 
specification of preconditions and post-conditions of actions. The 
crucial issue is how to determine if specified parallel actions in 
plan hierarchy can be executed in parallel.  

The work on parallelizing execution of machine instructions has 
identified three types of dependency: procedural, operational and 
data [18]. Knoblock has adapted these dependency types for 
generating parallel execution plans with a partial order planner 
[19]. A procedural dependency occurs when one action is 
explicitly ordered after another. A data dependency occurs when 
the precondition of an operation depends on the effects of another 
actions. An operational dependency may occur when there are 
limited resources associated with an action. In our context, these 
dependencies are implied by the interplay between a PrT model 
and its initial state.  

Given two actions or firings t1θ1 and t2θ2 under marking M, they 
can be executed in parallel if: 1) t1 and t2 are firable w.r.t. θ1 and 
θ2 under marking M, respectively, and 2) the firing of either t1θ1 
or t2θ2 will not disable the other, i.e. •t1θ1 ∩ •t2θ2 = ∅. Since 
duplicate tokens are not allowed for the PrT nets defined in this 
paper, it also requires the unions of preconditions and post-
conditions of t1θ1 and t2θ2 should not share any token, i.e. 
(•t1θ1∪t1θ1

•) ∩ (•t2θ2∪t2θ2
•) = ∅. In other words, two firings can 

be executed in parallel only if they are independent. In the 
following definitions, we generalize this requirement. 

Definition 2. Given two actions t1θ1 and t2θ2. If (•t1θ1∪t1θ1
•) ∩ 

(•t2θ2∪t2θ2
•) = ∅, then t1θ1 and t2θ2 are said to be independent. 

Definition 3. Given marking M, and two sequences of actions δ1= 
t11θ11 t12θ12… t1mθ1m and δ2=t21θ21 t22θ22… t2nθ2n. If t1iθ1i and t2jθ2j 

are independent for any i and j (1≤i≤m, 1≤j≤n), and both δ1 and δ2 
are occurrence sequences starting from M. Then δ1 and δ2 are said 
to be independent and executable in parallel starting from M.  

Given a sequence of actions δ=t1θ1 t2θ2… tmθm, let •δ= �
m

i 1=

•tiθi 

and δ•= �
m

i 1=
tiθi

• denote the unions of all precondition tokens and 

postcondition tokens of actions in δ. The following theorem 
shows the complexity of determining the dependency relation 
between δ1 and δ2 can be reduced from O(m×n) to O(m+n).  The 
proof is omitted due to the limit of paper length.  

Theorem 1 Given marking M, and two sequences of actions δ1 and 
δ2. δ1 and δ2 are independent if and only if  (•δ1∪δ1

•) ∩ (•δ2∪δ2
•)= 

∅. 

In order to deal with parallel actions in plan hierarchy, we present 
another theorem. 

Theorem 2. Suppose two sequences of actions δ1 and δ2 are 
independent. Action sequence δ3 is independent of both δ1 and δ2 
if and only if δ3 is independent of δ1+δ2, the sequential 
concatenation of δ1 and δ2. 

Theorem 2 shows whenever a parallel plan or structure has been 
proven correct, it can be flattened into a sequence for the 
verification of outer level plans/structures in which it is invoked 
or nested. For instance, the verification of plan (δ4, (δ1|δ2)) | δ3 can 
be reduced to the verification of (δ4, δ1, δ2) | δ3 if δ1 and δ2 are 
already proven independent. 

In the following, we outline the recursive algorithm for checking 
parallel actions in plan hierarchy.  

Procedure 3 ( checking parallelism in plan hierarchy)  
Input: starting state M0 for plan invocation ρ(θ), where ρ and θ 

are plan name and actual parameters, respectively. 
Output: a) σ(M0, ρ, θ) = the sequence of actions implied by plan 

invocation ρ(θ) or σ(M0, ρ, θ) = empty if some specified 
parallel actions/sub-plan invocations inside ρ(θ) cannot be 
executed in parallel, and b) M’(M0, ρ, θ): the ending state of 
executing ρ(θ).  

Step1: If the process is a sequence structure of the form ρ1(ν1), 
ρ2(ν2),…, ρm(νm), Then For i=1 TO m DO 
Case 1: ρi(νi) is an action, i.e. ρi is a transition. 

If ρi(νi/θ) is not firable under M  
Then plan ρ is not feasible 
Else Mi= Mi-1  –

•ρi(νi/θ)  ∪ ρi(νi/θ) • 
Case 2: ρi(νi) is a plan invocation. 

Recursive call with input (Mi-1, ρi, νi).   
If  σ(Mi-1, ρi, νi) is empty  
Then return σ(M0, ρ, θ) = empty  
Else Mi= M’(Mi-1, ρi, νi). 

Step2:  If the process is a parallel structure of the form ρ1(ν1) | 
ρ2(ν2)| …|ρm(νm) 
Step2.1: For i=1 TO m DO 
 Recursive call with input (M0, ρi, νi/θ); 

1) Let σ i = σ(M0, ρi, νi/θ); 



2) If σ i is empty 
    Then return σ(M0, ρ, θ) = empty  
3) If i=1 
    Then let M1=M’(M0, ρi, νi/θ), 

Step 2.2: If there exist i,j (1≤i, j≤m and i≠j) such that 
(•σi∪σi

•) ∩ (•σj∪σj
•) ≠∅ Then ρI(νi/θ) and ρI(νi/θ) 

cannot be executed in parallel, and return σ(M0, ρ, θ) = 
empty; 

Step2.3: For i=2 TO m DO 
Let σ i = t1θ1, t2θ2,…, tkθk 
For j=1 to k DO 
Let M1= M1–

•tjθj ∪ tjθj
• 

Step2.4: Let σ(M0, ρ, θ) = σ 1 + σ 2 +…+σ m, let M’(M0, ρ, θ) 
=M1, and then return.   

Whether a given goal G is reachable through the invocation of 
plan ρ with actual parameters θ from some initial state M0 can be 
simply verified by checking whether marking G is included in 
M’(M0, ρ, θ) or formula G evaluates true with respect to M’(M0, 
ρ, θ).  

In summary, the plan verification can report following three types 
of feedback to the designer: 1) A specific action cannot be 
performed if its preconditions are not satisfied; 2) A finite number 
of plan invocations or actions cannot be executed in parallel as 
specified because of the dependencies among them; 3) a given 
goal is not reachable through the execution of a certain plan. Such 
feedback may indicate design defects on plan specifications as 
well as definitions of agent capabilities.  

If a given goal is unreachable by specified plans, the designer may 
check the PrT model presented in last section to see if the goal is 
reachable at all. Note that, if reachable, the solution found by the 
planning graph analysis is not necessarily the plan the designer 
intends to use for the system, although such a solution has a 
minimum number of steps for achieving the goal [5]. 

5.3 An Example 
Given the initial marking and the goal marking described in last 
section for the extended blocks problem, the goal can be reached 
by invoking plan move-blocks defined below: 

plan move-blocks { 
r1r2parallelmove1(a, 4, c, 5, b, 1, c, 2),  
r1r2move(c, 5, a, 4),  
r1r2move(c, 2, c, 5),  
r1r2parallelmove2(a, 3, b, 1,b, 6, c, 2) 

} 
 

The plans invoked in move-blocks are specified as follows: 
 

plan  r1move1(?x1, ?x2, ?y1, ?y2) { 
r1unstack(?x1, ?x2, ?y1, ?y2), r1putdown(?x1, ?x2) 

} 
plan  r2move1(?x1, ?x2, ?y1, ?y2){ 

r2unstack(?x1, ?x2, ?y1, ?y2), r2putdown(?x1, ?x2) 
} 
plan r1move2(?x1, ?x2, ?y1, ?y2){ 

r1pickup (?x1, ?x2), r1stack(?x1, ?x2, ?y1, ?y2)  
} 
plan r2move2(?x1, ?x2, ?y1, ?y2) { 

r2pickup (?x1, ?x2), r2stack(?x1, ?x2, ?y1, ?y2)  
} 
plan r1r2move (?x1, ?x2, ?y1, ?y2){ 

r1r2unstack(?x1, ?x2), r1r2stack(?x1, ?x2, ?y1, ?y2) 
} 
plan r1r2parallelmove1(?x1,?x2,?y1,?y2, ?x3,?x4,?y3,?y4){ 

r1move1 (?x1,?x2,?y1,?y2)   | 
r2move1 (?x3,?x4,?y3,?y4) 

} 
plan r1r2parallelmove2(?x1,?x2,?y1,?y2,?x3,?x4,?y3,?y4){ 

r1move2(?x1, ?x2, ?y1, ?y2)  |  
r2move2(?x3, ?x4, ?y3, ?y4) 

} 
 

In above plans, r1r2parallelmove1 consists of parallel plan 
invocations r1move1 (?x1,?x2,?y1,?y2)  and r2move1 (?x3,?x4, 
?y3,?y4), whereas r1r2parallelmove2 consists of parallel plan 
invocations r1move2 (?x1,?x2,?y1,?y2)  and r2move2 (?x3,?x4, 
?y3,?y4). It is easy to verify that parallel actions in this example are 
feasible. 

6. CONCLUSIONS 
To summarize, the main contributions of this paper are: 1) the 
demonstration that PrT nets are an effective formalism for the 
formal modeling of multi-agent behaviors, 2) the planning graph 
based reachability analysis of PrT models, which allows for 
concurrent firings, and 3) formal verification of hierarchical 
multi-agent plans with explicit parallel actions. 

One of the major criticisms about predefined agent plans is that 
they are less flexible, e.g. for dealing with unexpected events in 
dynamic, uncertain environments. In the future work, we will 
embed dynamic planning in plan specification and investigate the 
interplay between dynamic planning and plan verification.   
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