
Modeling and Verifying Multi-Agent Behaviors Using
Predicate/Transition Nets

Dianxiang Xu, Richard Volz, Thomas Ioerger
Department of Computer Science

301 H. R. Bright Building
Texas A&M University

College Station, TX 77843, USA

{xudian, volz, ioerger}@cs.tamu.edu

John Yen
School of Information Sciences and Technology

004 D Thomas Building
The Pennsylvania State University
University Park, PA 16802, USA

jyen@ist.psu.edu

ABSTRACT
In a multi-agent system, how agents accomplish a goal task is
usually specified by multi-agent plans built from basic actions
(e.g. operators) of which the agents are capable. A critical
problem with such an approach is how can the designer make sure
the plans are reliable. To tackle this problem, this paper presents a
formal approach for modeling and analyzing multi-agent
behaviors using Predicate/Transition (PrT) nets, a high-level
formalism of Petri nets. We construct a multi-agent model by
representing agent capabilities as transitions. To verify a multi-
agent PrT model, we adapt the planning graphs as a compact
structure for the reachability analysis. We also demonstrate that,
based on the PrT model, whether parallel actions specified in
multi-agent plans can be executed in parallel and whether the
plans guarantee the achievement of the goal can be verified by
analyzing the dependency relations among the transitions.

Categories and Subject Descriptors
D.2 [Software Engineering]: Design Tools and Techniques –
Petri nets. Software/Program Verification – Formal methods. I.2
[Artificial Intelligence]: Distributed Artificial Intelligence –
Multiagent systems, Intelligent agents.

General Terms
Design, Verification.

Keywords
Formal methods, predicate/transition nets, multiagent systems,
verification, Petri nets.

1. INTRODUCTION
One of the common approaches for the design and development of
multi-agent systems is to specify multi-agent plans for achieving
the joint goal in terms of agent capabilities or operators [1-4]. A
major motivation of this approach is that for a complex multi-
agent system it is hard for a general-purpose planning algorithm to

generate a plan that is optimal in certain sense. The measurement
of optimum may vary from applications to applications. For
example, the performance of a specific system may not simply
depend on the number of actions, which is often treated as an
important quality factor in planning systems [5]. A plan with
minimum steps does not necessarily have minimum execution
time because different actions usually have different durations of
execution time. In contrast, pre-specified plans may achieve better
performance by taking into consideration specific application
requirements. However, a critical problem is how a plan designer
can make sure the specified plans are reliable? Specifically, are
the multi-agent plans feasible for accomplishing the goal? Can
specified parallel actions in multi-agent plans be executed in
parallel? Is the goal achievable or reachable in terms of agent
capabilities at all? From the formal engineering perspective, the
answers to the above questions are of importance for detecting
design defects.

To address these issues, this paper presents a formal approach for
modeling and analyzing multi-agent behaviors using
Predicate/Transition (PrT) nets [6], a high-level formalism of
Petri nets [7]. We think of the totality of agent capabilities
specified by preconditions and post-conditions as a behavior
model of what the agents as a group can do. We also think of
multi-agent plans as a description of the process for moving from
some start state, through this model, to a goal state. We
demonstrate PrT nets are well suited for modeling multi-agent
systems by representing agent capabilities as transitions. In
particular, the reachability problem of a simplified PrT net model
can be analyzed efficiently using a compact structure called
planning graphs [5]. We also demonstrate that, based on the PrT
model, whether specified parallel actions can be executed in
parallel and whether the parallel plans guarantee the achievement
of the goal can be verified by analyzing the dependency relations
among the transitions.

The rest of this paper is organized as follows. Section 2 briefly
reviews related work. Section 3 introduces PrT nets and shows
how to built multi-agent models using PrT nets. Section 4
describes the reachability analysis of PrT nets using planning
graphs. Section 5 presents how to verify parallel plans. Section 6
contains concluding remarks.

2. RELATED WORK
Historically, the most common and familiar formalisms for multi-
agent systems are logic theories. Temporal or modal logic is
suitable for formally defining the semantics of multi-agent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SEKE ’02, July 15-19, 2002, Ischia, Italy.
Copyright 2002 ACM 1-58113-000-0/00/0000…$5.00.

theories and languages. For example, modal logic has been used
to characterize the joint intention theory [8], shared plans [3],
planned team activity [1], agent-oriented programming [9], etc.
Logic theories are also a major means for system verification
through theorem-proving or model checking [10]. Generally, the
theorem-proving approach is inherently limited due to the well-
known difficulty. Verification by model checking [11] has the
advantage over theorem-proving in complexity. The basic idea is
to model a multi-agent system as a Kripke structure and to check
system properties represented as formulas against the Kripke
model. Since Kripke structures are less expressive with respect to
high-level system specification, a front-end formalism (e.g. modal
logic) instead of a Kripke structure is often expected for the
specification of a multi-agent system.

Petri nets, as a well-known model-oriented formal method, are
more suitable for modeling dynamic system behaviors [12]. The
approach of Agent-Oriented Colored Petri nets [13] redesigns
Shoham’s paradigm of agent-oriented programming [9] by means
of object-oriented colored Petri nets. [14] extends G-net to model
inheritance of agent classes in multi-agent systems, which
provides a clean interface between agents with asynchronous
communication ability and supports formal reasoning. [15]
specifies a multi-agent system for resource allocation problems
using concurrent object-oriented Petri nets. The common issues
with the above approaches are: 1) they suffer from high
complexity of reachability analysis through occurrence graphs (if
supported), and 2) they are not concerned with agent plans.

As another major type of high-level Petri nets, PrT nets have been
employed to model multi-agent planning domains. Murata et al
[16] use a simplified version of PrT nets for multi-agent planning.
Based on the traditional means-end analysis, the planning
algorithm conducts bi-directional search through the state space
(i.e. a combination of forward chaining search from the initial
state and backward chaining search from the goal state). Although
a planning problem is in essence a reachability problem, the
means-end analysis is ineffective for the verification of PrT nets.
It is also worth mentioning the reachability analysis techniques for
general PrT nets. Parameterized reachability trees [17] exploit
parameterized markings as a means for folding reachability trees
of PrT nets so that a number of concrete states can be condensed
into a generic state. This approach has not shown much help in
practical analysis of systems due to the fact that they still suffer
from high complexity. In particular, parameterized reachability
trees may cost extra time to instantiate the parameters for
generating successor states and for comparing states, though it
does save a large amount of space.

3. MULTIAGENT MODELING
This section gives an introduction to the PrT nets to be used, and
shows how to construct multi-agent models using PrT nets.

3.1 Predicate/Transition Nets
A PrT net is a tuple (P, T, F, Σ, L, ϕ, M0), where:
(1) P is a finite set of predicates (first order places), T is a finite

set of transitions (P ∩ T = ∅, P ∪ T ≠ ∅), and F ⊆ (P×T)
∪(T×P) is a set of arcs. (P, T, F) forms a directed net.

(2) ∑ is a structure consisting of some sorts of individuals
(constants) together with some operations and relations.

(3) L is a labeling function on arcs. Given an arc f∈F, the
labeling of f, L(f), is a set of labels, which are tuples of
individuals and variables (variables start with ‘?’). The tuples
in L(f) have the same length, representing the arity of the
predicate connected to the arc. The zero tuple indicating a
no-argument predicate (an ordinary place in Petri nets) is
denoted by the special symbol <¢>.

(4) ϕ is a mapping from a set of inscription formulae to
transitions. The inscription on transition t∈T, ϕ(t), is a
logical formula built from variables and the individuals,
operations, and relations in structure ∑; Variables occurring
free in a formula have to occur at an adjacent input arc of the
transition.

(5) M0 is the initial or current marking. M0 = �
Pp

pM
∈

)(0 , where

M0 (p) is the set of tokens residing in predicate p. Each token
is a tuple of symbolic individuals or structured terms
constructed from individuals and operations in ∑.

The above PrT nets have simplified general PrT nets [6] in two
ways: 1) an arc labeling is a set of tuples (labels) {li} rather than a
formal sum c1l1+c2l2+..+cnln (i.e. coefficient or arc weight ci of arc
label li is 1 for all 1≤i≤n). 2) Accordingly, the marking of a
predicate under a certain state is a set of tokens (i.e. items in [6])
instead of a formal sum of tokens. These nets, similar to those in
[16], are more or less like first-order logic programs. From the
formal verification perspective, the reachability analysis of such
PrT nets is made more efficient for reachable states. Specifically,
the planning graphs will be adapted as a compact structure.

To facilitate our discussion, we introduce some additional
notation. For simplicity, we do not consider bi-directional arcs,
which can be easily handled. Let •t ={p∈P: (p,t) ∈F} and t•
={p∈P: (t, p) ∈F} be the precondition predicates and the
postcondition predicates of transition t, respectively. Let •p
={t∈T: (t, p) ∈F} and p• ={t∈T: (p, t) ∈F} be the sets of input
transitions and output transitions of predicate p, respectively. A
transition t in a PrT net is enabled under marking M0 if there is a
substitution θ such that l/θ ∈ M0 (p) for any label l∈L(p,t) for all
p ∈•t and ϕ(t) evaluates true w.r.t. θ, where l/θ yields a token by
substituting all variables in label l with the corresponding bound
values w.r.t. θ. Under a certain marking, a transition may be
enabled with different substitutions, but cannot be multiply
enabled with the same substitution. The firing of enabled
transition t w.r.t. θ (denoted as tθ) removes all tokens in {l/θ:
l∈L(p,t)} from each input predicate p∈•t, and adds all tokens in
{l/θ: l∈L(t, p)} to each output predicate p∈t•. Let •tθ ={l/θ:
l∈L(p,t) for any p∈•t)} and tθ•={l/θ: l∈L(t, p) for any p∈t•} be the
input (precondition) tokens and output (post-condition) tokens of
firing tθ, respectively. Given a set of enabled firings γ ={t1θ1, t2θ2
…tkθk} (k>0)) under M0, γ is said to be concurrent firings if (•tiθi
∪ tiθi

•) ∩ (•tjθj ∪ tjθj
•) = ∅, and M0 ∩ tiθi

•=∅ for any 1≤i, j ≤k and
i≠j. After the firing of γ (called a step), we reach a new marking
M1 = M0 –{•tiθi: 1≤i ≤k} ∪ {tiθi

•: 1≤i ≤k}. A firing sequence of
steps that reaches marking Mn is denoted as γ1γ2 …γn or
M0γ1M1γ2M2 …γnMn, where Mi is the marking after step γi
(1≤i≤n). A marking M is said to be reachable from M0 if there is
such a sequence of steps that transforms M0 to M.

3.2 Modeling Multi-Agents
For a multi-agent system, the PrT model can be constructed by
focusing on the actions of which the agents are capable. These
actions are represented by transitions with preconditions, post-
conditions and inscriptions.

As a case study, this paper extends the well-known blocks world
problem by introducing multiple agents with different capabilities
and different types of blocks. This extension facilitates the
comparison between two cases: 1) there are multiple agents that
can work in parallel, and 2) there is only one agent who is capable
of moving any type of blocks but has no parallel operations (i.e.
the same as the classical blocks world problem).

In the extended multi-agent blocks world, a block is specified by a
pair, (x1, x2), where x1 ∈ {a, b, c} and x2 ∈ {1, 2, 3,…} are its
type and identification number, respectively. Two agents, r1 and r2
are supposed to cooperatively move stacks of blocks. Their
capabilities are different: r1 alone can move a-type blocks,

whereas r2 alone can only move b-type blocks. As a team, r1 and r2
can jointly move c-type blocks.

The transitions for the extended blocks world problem are
specified in TABEL 1. From Table 1, we can see that transitions
bear much similarity to STRIPS operators for planning problems.
The main differences include: 1) transitions are associated with
logical formulae, and 2) a precondition of a transition becomes
false (like a delete effect) unless it is also a post-condition. 3)
tokens may represent structured date items. As a matter of fact, a
set of STRIPS operators can be converted into a PrT net [16].

It is worth mentioning, although a planning problem is in essence
a reachability problem, planning and verification have different
concerns. A planning algorithm intends to consider the quality
(e.g. number of steps) and optimization of the resulting plan. In
addition to the reachability issue, a verification algorithm may
need to analyze other system properties such as deadlock-
freedom, liveness, etc.

TABLE 1. THE PrT MODEL FOR THE MULTI-AGENT BLOCKS PROBLEM

Transition Precondition predicates & arc labels Post-condition predicates & arc labels Inscription

r1r2pickup ontable <?x1,?x2>, clear<?x1,?x2>,

r1handempty <¢>, r2handempty <¢>

r1holding <?x1,?x2>,

r2holding <?x1, ?x2>

equal(?x1,c)

r1pickup ontable<?x1,?x2>,clear<?x1,?x2>
r1handempty <¢>

r1holding<?x1,?x2> equal(?x1,a)

r2pickup ontable<?x1,?x2>,clear<?x1,?x2>,

r2handempty <¢>

r2holding<?x1,?x2> equal(?x1,b)

r1r2putdown r1holding<?x1,?x2>,

r2holding<?x1,?x2>

ontable<?x1,?x2>, clear<?x1,?x2>,
r1handempty<¢>, r2handempty<¢>

equal(?x1,c)

r1putdown r1holding<?x1,?x2> ontable<?x1,?x2>,clear<?x1,?x2>,
r1handempty<¢>

equal(?x1,a)

r2putdown r2holding<?x1,?x2> ontable<?x1,?x2>,clear<?x1,?x2>,
r2handempty<¢>

equal(?x1,b)

r1r2stack r1holding<?x1,?x2>, r2holding<?x1,?x2>,
clear<?y1,?y2>

r1handempty<¢>, r2handempty<¢>,
on<?x1,?x2,?y1,?y2>, clear<?x1,?x2>

equal(?x1,c)

r1stack r1holding<?x1,?x2>,clear<?y1,?y2> r1handempty<¢>,
on<?x1,?x2,?y1,?y2>,clear<?x1,?x2>

equal(?x1,a)

r2stack r2holding<?x1,?x2>,clear<?y1,?y2> r2handempty<¢>,
on<?x1,?x2,?y1,?y2>,clear<?x1,?x2>

equal(?x1,b)

r1r2unstack r1handempty<¢>, r2handempty<¢>,
clear<?x1,?x2>,on<?x1,?x2,?y1,?y2>

r1holding<?x1,?x2>, r2holding<?x1,?x2>,
clear<?y1,?y2>

equal(?x1,c)

r1unstack r1handempty<¢>,clear<?x1,?x2>,
on<?x1,?x2,?y1,?y2>

r1holding<?x1,?x2>, clear<?y1,?y2> equal(?x1,a)

r2unstack r2handempty<¢>,clear<?x1,?x2>,
on<?x1,?x2,?y1,?y2>

r2holding<?x1,?x2>, clear<?y1,?y2> equal(?x1,b)

4. REACHABILITY ANALYSIS OF
MULTIAGENT MODELS
This section first reviews the planning graph analysis, and then
describes how to adapt it for the reachability analysis of PrT
models.

4.1 Overview of Planning Graph Analysis
Planning graph analysis, originally developed in Graphplan [5],
solves STRIPS planning problems in which operators have
preconditions, add-effects and delete-effects, all represented as
conjuncts of (parameterized) propositions. Empirical studies have
demonstrated its practical value in a dozen of benchmark planning
problems.

The planning graph analysis alternates between two phases: graph
expansion and solution extraction. The graph expansion phase
extends a planning graph until a necessary condition for plan
existence is achieved (i.e. goal propositions all appear at the same
level and no pair of goal propositions is mutually exclusive). The
solution extraction phase then performs a backward-chaining
search for an actual solution. If no solution is found, the cycle
repeats.

A planning graph is a directed graph with alternating levels of
proposition nodes and action nodes. The first level is composed of
the propositions in the initial state. Nodes in an action level
consist of actions, i.e., instances of operators, whose
preconditions occur and no pair of propositions in the
preconditions is determined mutually exclusive at the previous
proposition level. Directed edges connect proposition nodes to
corresponding action nodes whose preconditions reference those
propositions, and connect action nodes to subsequent propositions
created by the action’s effects. Each proposition at a level is also
connected to a no-op or frame action (doing nothing) at the next
action level, which is in turn linked to the same proposition at the
next proposition level.

To analyze a planning graph, the crucial work is reasoning about
certain mutual exclusion relations among nodes, i.e. propositions
or actions. An “actions-that-I-am-exclusive-of” list is created for
each action node. Two actions at a given action level in a
planning graph are marked mutually exclusive: 1) If one action
deletes a precondition or add-effect of the other (interference), or
2) If one action has a precondition that is marked as mutually
exclusive of a precondition of the other action (competing needs).
Two propositions p and q in a proposition level are marked as
exclusive if each action creating p is marked as exclusive of each
action creating q.

4.2 Reachability Analysis of PrT Nets
Planning graph analysis can be easily adapted for the reachability
analysis of PrT nets by including three major aspects:

• Mapping of terminology: each token at a certain
predicate is a proposition, and each transition firing (a
pair of transition and substitution) is an action. Each
precondition of a firing in a PrT net is a delete-effect in
the planning graph unless it is also a post-condition of
the firing. Each post-condition but not a precondition of
a firing is an add-effect in the planning graph. The
reasoning and propagation of mutual exclusion relations
is adjusted accordingly.

• Generation of action level: a firing is defined by the
firing rule described in section 3.1. The inscription
formula must evaluate true with respect to the
substitution. The unification algorithm between arc
labels and token needs to consider the case where
tokens are structured data (like terms in a logic
language).

• The rule of interference needs to be enhanced. We
think two actions are mutually exclusive (i.e. they can
not be concurrent) if they have a common effect
(postcondition).

In the following, we first outline the procedure of graph
expansion, and then the procedure of solution extraction for the
analysis of PrT nets.

Procedure1 (graph expansion)

Step 1: initialization, e.g. token level i (=0) is the initial state;
Step 2: WHILE (solution extraction fails and level i (if >0) and

level i-1 are not identical) DO
 // create graph level i+1
Step 2.1: For any token in token level i, create a no-op firing

in firing level i+1, and the same token in token level
i+1. The precondition and post-condition of the no-op
are the token in level i and level i+1, respectively.

Step 2.2: Add firing tθ to firing level i+1 for any transition t
and any substitution θ of t such that:
• l/θ in contained in token level i for any label

l∈L(p,t) for all p ∈•t;
• ϕ(t) evaluates true w.r.t. θ; and
• there does not exist p1, p2, l1 and l2 such that

l1∈L(p1,t), l2∈L(p2,t), (l1≠ l2 if p1 = p2), and l1/θ
and l2/θ are mutually exclusive at token level i.

Step 2.3: For any firing tθ created in step 2, add token l/θ to
level i+1 for any label l∈L(t, p) for all p ∈t•. Connect
each precondition token in level i to the firing, and
connect the firing to each of its post-condition token in
level i+1.

Step 2.4: For any pair of firings t1θ1 and t2θ2 (including no-
op firings) in level i+1, they are marked as competing
needs if there exists p1, p2 l1∈L(p1,t1), l2∈L(p2,t2) such
that l1/θ1 and l2/θ2 are mutually exclusive of each other.

Step 2.5: For any pair of tokens τ1 and τ2 in token level i+1,
they are marked as mutually exclusive if for any firing
t1θ1 creating τ1 and any firing t2θ2 creating τ2 in firing
level i+1, t1θ1 and t2θ2 either have competing needs or
interfere (the precondition/postcondition of one firing
contains a token in the precondition/postcondition of
the other, i.e. (•t1θ1∪t1θ1

•) ∩ (•t2θ2∪t2θ2
•) = ∅)

Step 3: the goal is not reachable (the solution extraction fails and
the current firing/token level and mutual exclusion relations
are identical to the previous firing/token level and mutual
exclusion relations).

Procedure 2 (solution extraction)

Step 1: If there is a token in the given goal is not contained in the
token level newly created or there are two tokens in the goal
are mutually exclusive in the token level, solution extraction
fails (the goal is not reachable at this level).

Step 2: Initialization for solution extraction. Let current goal
(variable) be the given system goal, and current level
(variable) be the level newly generated

Step 3: WHILE the first token level (initial state) is not reached
DO
Step 3.1. IF current goal is already proven unsolvable in

current level, THEN:
 IF current level is the newly created level, THEN

solution extraction fails ELSE backtrack to the previous
level (i.e. current level++, reset the goal, and continue);

Step 3.2: Starting from the initial point of firing selection for
the first time of current goal in current level or from the

backtrack point of firing selection, select a minimum set
of non-mutually-exclusive firings in current firing level
such that these firings lead to current goal in current
level;

Step 3.3: IF there exists such a set of firings, THEN set the
backtrack point, and deduce current goal to a new set of
goals in the next token level according to the
preconditions of the selected firings; ELSE current goal
is not solvable in current level (put it into the hashtable)
and IF current level is the newly created level, THEN
solution extraction fails and return to the graph
expansion, ELSE backtrack to the previous level (i.e.
current level++, reset the goal, and continue);

Step 3.4: Set current level to the next one (i.e. current level--
);

Step 3.5: IF current token level is the first token level THEN
output solution for the reached goal.

The above algorithm follows the major features of Graphplan. For
example, planning graphs have polynomial size and can be
constructed in polynomial time (refer to [5] for more details). As a
limitation, though not clearly stated in [5], planning graph
analysis is only applicable (sound and compete) for the problems
where mutual exclusion relations can be fully determined by the
rules (Finding all mutual exclusion relations for general problems
is as hard as planning itself [5] or as hard as the reachability issue.
This reflects the inherent complexity of high-level Petri nets). In
particular, two parallel actions under a certain state are supposed
not to produce an identical output, which in turn becomes a
common precondition of multiple parallel actions (in many cases,
this can be avoided by distinguishing identical tokens with an
extra parameter). In this paper, the limitation is indicated by the
safeness assumption of PrT nets. Note that for simplicity safeness
is just assumed other than specified by the definition of fireability.
To make sure a PrT is safe, we may explicitly impose M0 ∩ tθ•=∅
as an additional necessary condition on the enabledness (i.e.
postconditions as inhibitor conditions). However, it is not trivial
to extend the rules for the reasoning and propagation of mutual
exclusion relations. We would like to address this issue in a
subsequent paper. In conclusion, the practical value of planning
graph analysis is that for a large class of parallel tasks the solution
can often be found quickly if a goal is reachable. It does not
change the hard nature of reachability problems, though.

If a goal is reachable in the PrT model, the solution found by the
algorithm consists of a number of steps, and each step may
contain more than one firing. Suppose the initial marking of the
PrT model for the multi-agent blocks world problem is:

{ontable: <a,n3>, ontable: <b,n6>, clear:<b,n1>,
 clear:<(a,n4>, on: <c,n2,a,n3>, on: <b,n1,c,n2>,
 on: <c,n5,b,n6>, on:<a,n4,c,n5>,
 r1handempty: <¢>, r2handempty: <¢>
}

and the goal marking is

{ontable: <b,n1>, ontable: <a,n4>,
 clear: <a,n3>, clear:<b,n6>,
 on: <a,n3,b,n1>, on: <c,n5,a,n4>,
 on(c,n2,c,n5), on(b,n6,c,n2)
}

The solution found by the algorithm we have implemented in Java
is as follows:

S1: r2unstack(?x1/b,?x2/n1,?y1/c,?y2/n2)
 r1unstack(?x1/a,?x2/n4,?y1/c,?y2/n5)
S2: r2putdown(?x1/b,?x2/n1)
 r1putdown(?x1/a,?x2/n4)
S3: r1r2unstack(?x1/c,?x2/n5,?y1/b,?y2/n6)
S4: r1r2stack(?x1/c,?x2/n5,?y1/a,?y2/n4)
S5: r1r2unstack(?x1/c,?x2/n2,?y1/a,?y2/n3)
S6: r1r2stack(?x1/c,?x2/n2,?y1/c,?y2/n5)
S7: r1pickup(?x1/a,?x2/n3)
 r2pickup(?x1/b,?x2/n6)
S8: r1stack(?x1/a,?x2/n3,?y1/b,?y2/n1)
 r2stack(?x1/b,?x2/n6,?y1/c,?y2/n2)

Note that the firings within step S1 (S2, S7, S8) can be performed
in arbitrary order. To illustrate the algorithm’s efficiency for
parallel systems, we briefly compare the above example with the
classical case with a single agent (the model can be obtained by
only using four transitions for agent r1 and removing all transition
inscriptions in Table 1). The two cases share the same state space.
For the multi-agent case with the given initial state and goal state
described above, it takes 0.297 seconds for our algorithm to find
the above solution (Environment: Windows 2000, 800MHZ,
256MB). For the single-agent case with the same initial state and
goal state, it takes 0.766 seconds to find the 12-step solution. This
indicates that, although the size of action space is increased, the
introduction of parallel actions accelerates the reachability
analysis.

To support the verification of other system properties like
deadlock freedom, we may specify a goal as a more general
formula instead of a marking (or a set of facts in planning
domains) so that some system properties can be formalized as
reachability problems. This can be achieved by enhancing the first
step in the procedure of solution extraction.

5. VERIFYING MULTIAGENT PLANS
Multi-agent systems often exhibit rich parallelism among agents,
which requires implicit or explicit representation of parallel
actions in multi-agent plans. This section describes the
verification of parallel plans, regarding whether specified parallel
actions can be actually executed in parallel, and whether they
achieve the given goal.

5.1 Plan Specification
Multi-agent plans are in essence the specification of the process
for moving from some initial state, through the system model (e.g.
PrT model), to a goal state. The most simplistic form of multi-
agent plans is a sequence of actions, i.e. transition firings. For
convenience, we associate each transition with an ordered list of
variables as formal parameters that appear in the labels of the arcs
connected with its precondition predicates. For example,
r2unstack is associated with formal parameters (?x1, ?x2, ?y1,
?y2), thus firing r2unstack (?x1/b, ?x2/n1, ?y1/c, ?y2/n2) can be
simply represented by r2unstack(b, n1, c, n2), which is like a
procedure call. Verifying a given sequence of actions against the
goal is check to see if it is an occurrence sequence that transforms
the initial state to the goal state in the PrT model. Nevertheless, a
plan specification language usually provides complex constructs,

such as parallel, plan invocation (to form a plan hierarchy),
condition, loops etc. In this paper, we focus on parallel actions in
plan hierarchy. Other control structures like condition and loop
can be easily incorporated. In the following, we formally define
multi-agent plans.

Definition 1. A plan is a structure <name, arguments, process>,
where name, arguments and process are the plan identifier, the
formal parameters and the process. A process is either an action
(transition and substitution) or a plan invocation, or a finite
sequence (denoted as ‘,’) of processes, or a parallel (denoted as
‘|’) composition of a finite number of processes. Formally, the
BNF-style notation of process is as follows:

<process> ::= <transition>[(<arguments>)]
| <plan-name>[(<arguments>)]
| <process>{,<process>}
| (<process> {| <process>})

where arguments are actual parameters of an action or plan
invocation.

For example, we may specify the following plan with two
sequential actions for the extended blocks world problem.

plan r1move1(?x1, ?x2, ?y1, ?y2) {

r1unstack(?x1, ?x2, ?y1, ?y2), r1putdown(?x1, ?x2)

 }

5.2 Plan Verification
Although agent plans look like procedural programs, plan
verification is made possible and tractable due to the complete
specification of preconditions and post-conditions of actions. The
crucial issue is how to determine if specified parallel actions in
plan hierarchy can be executed in parallel.

The work on parallelizing execution of machine instructions has
identified three types of dependency: procedural, operational and
data [18]. Knoblock has adapted these dependency types for
generating parallel execution plans with a partial order planner
[19]. A procedural dependency occurs when one action is
explicitly ordered after another. A data dependency occurs when
the precondition of an operation depends on the effects of another
actions. An operational dependency may occur when there are
limited resources associated with an action. In our context, these
dependencies are implied by the interplay between a PrT model
and its initial state.

Given two actions or firings t1θ1 and t2θ2 under marking M, they
can be executed in parallel if: 1) t1 and t2 are firable w.r.t. θ1 and
θ2 under marking M, respectively, and 2) the firing of either t1θ1
or t2θ2 will not disable the other, i.e. •t1θ1 ∩ •t2θ2 = ∅. Since
duplicate tokens are not allowed for the PrT nets defined in this
paper, it also requires the unions of preconditions and post-
conditions of t1θ1 and t2θ2 should not share any token, i.e.
(•t1θ1∪t1θ1

•) ∩ (•t2θ2∪t2θ2
•) = ∅. In other words, two firings can

be executed in parallel only if they are independent. In the
following definitions, we generalize this requirement.

Definition 2. Given two actions t1θ1 and t2θ2. If (•t1θ1∪t1θ1
•) ∩

(•t2θ2∪t2θ2
•) = ∅, then t1θ1 and t2θ2 are said to be independent.

Definition 3. Given marking M, and two sequences of actions δ1=
t11θ11 t12θ12… t1mθ1m and δ2=t21θ21 t22θ22… t2nθ2n. If t1iθ1i and t2jθ2j

are independent for any i and j (1≤i≤m, 1≤j≤n), and both δ1 and δ2
are occurrence sequences starting from M. Then δ1 and δ2 are said
to be independent and executable in parallel starting from M.

Given a sequence of actions δ=t1θ1 t2θ2… tmθm, let •δ= �
m

i 1=

•tiθi

and δ•= �
m

i 1=
tiθi

• denote the unions of all precondition tokens and

postcondition tokens of actions in δ. The following theorem
shows the complexity of determining the dependency relation
between δ1 and δ2 can be reduced from O(m×n) to O(m+n). The
proof is omitted due to the limit of paper length.

Theorem 1 Given marking M, and two sequences of actions δ1 and
δ2. δ1 and δ2 are independent if and only if (•δ1∪δ1

•) ∩ (•δ2∪δ2
•)=

∅.

In order to deal with parallel actions in plan hierarchy, we present
another theorem.

Theorem 2. Suppose two sequences of actions δ1 and δ2 are
independent. Action sequence δ3 is independent of both δ1 and δ2
if and only if δ3 is independent of δ1+δ2, the sequential
concatenation of δ1 and δ2.

Theorem 2 shows whenever a parallel plan or structure has been
proven correct, it can be flattened into a sequence for the
verification of outer level plans/structures in which it is invoked
or nested. For instance, the verification of plan (δ4, (δ1|δ2)) | δ3 can
be reduced to the verification of (δ4, δ1, δ2) | δ3 if δ1 and δ2 are
already proven independent.

In the following, we outline the recursive algorithm for checking
parallel actions in plan hierarchy.

Procedure 3 (checking parallelism in plan hierarchy)
Input: starting state M0 for plan invocation ρ(θ), where ρ and θ

are plan name and actual parameters, respectively.
Output: a) σ(M0, ρ, θ) = the sequence of actions implied by plan

invocation ρ(θ) or σ(M0, ρ, θ) = empty if some specified
parallel actions/sub-plan invocations inside ρ(θ) cannot be
executed in parallel, and b) M’(M0, ρ, θ): the ending state of
executing ρ(θ).

Step1: If the process is a sequence structure of the form ρ1(ν1),
ρ2(ν2),…, ρm(νm), Then For i=1 TO m DO
Case 1: ρi(νi) is an action, i.e. ρi is a transition.

If ρi(νi/θ) is not firable under M
Then plan ρ is not feasible
Else Mi= Mi-1 –

•ρi(νi/θ) ∪ ρi(νi/θ) •
Case 2: ρi(νi) is a plan invocation.

Recursive call with input (Mi-1, ρi, νi).
If σ(Mi-1, ρi, νi) is empty
Then return σ(M0, ρ, θ) = empty
Else Mi= M’(Mi-1, ρi, νi).

Step2: If the process is a parallel structure of the form ρ1(ν1) |
ρ2(ν2)| …|ρm(νm)
Step2.1: For i=1 TO m DO
 Recursive call with input (M0, ρi, νi/θ);

1) Let σ i = σ(M0, ρi, νi/θ);

2) If σ i is empty
 Then return σ(M0, ρ, θ) = empty
3) If i=1
 Then let M1=M’(M0, ρi, νi/θ),

Step 2.2: If there exist i,j (1≤i, j≤m and i≠j) such that
(•σi∪σi

•) ∩ (•σj∪σj
•) ≠∅ Then ρI(νi/θ) and ρI(νi/θ)

cannot be executed in parallel, and return σ(M0, ρ, θ) =
empty;

Step2.3: For i=2 TO m DO
Let σ i = t1θ1, t2θ2,…, tkθk
For j=1 to k DO
Let M1= M1–

•tjθj ∪ tjθj
•

Step2.4: Let σ(M0, ρ, θ) = σ 1 + σ 2 +…+σ m, let M’(M0, ρ, θ)
=M1, and then return.

Whether a given goal G is reachable through the invocation of
plan ρ with actual parameters θ from some initial state M0 can be
simply verified by checking whether marking G is included in
M’(M0, ρ, θ) or formula G evaluates true with respect to M’(M0,
ρ, θ).

In summary, the plan verification can report following three types
of feedback to the designer: 1) A specific action cannot be
performed if its preconditions are not satisfied; 2) A finite number
of plan invocations or actions cannot be executed in parallel as
specified because of the dependencies among them; 3) a given
goal is not reachable through the execution of a certain plan. Such
feedback may indicate design defects on plan specifications as
well as definitions of agent capabilities.

If a given goal is unreachable by specified plans, the designer may
check the PrT model presented in last section to see if the goal is
reachable at all. Note that, if reachable, the solution found by the
planning graph analysis is not necessarily the plan the designer
intends to use for the system, although such a solution has a
minimum number of steps for achieving the goal [5].

5.3 An Example
Given the initial marking and the goal marking described in last
section for the extended blocks problem, the goal can be reached
by invoking plan move-blocks defined below:

plan move-blocks {
r1r2parallelmove1(a, 4, c, 5, b, 1, c, 2),
r1r2move(c, 5, a, 4),
r1r2move(c, 2, c, 5),
r1r2parallelmove2(a, 3, b, 1,b, 6, c, 2)

}

The plans invoked in move-blocks are specified as follows:

plan r1move1(?x1, ?x2, ?y1, ?y2) {
r1unstack(?x1, ?x2, ?y1, ?y2), r1putdown(?x1, ?x2)

}
plan r2move1(?x1, ?x2, ?y1, ?y2){

r2unstack(?x1, ?x2, ?y1, ?y2), r2putdown(?x1, ?x2)
}
plan r1move2(?x1, ?x2, ?y1, ?y2){

r1pickup (?x1, ?x2), r1stack(?x1, ?x2, ?y1, ?y2)
}
plan r2move2(?x1, ?x2, ?y1, ?y2) {

r2pickup (?x1, ?x2), r2stack(?x1, ?x2, ?y1, ?y2)
}
plan r1r2move (?x1, ?x2, ?y1, ?y2){

r1r2unstack(?x1, ?x2), r1r2stack(?x1, ?x2, ?y1, ?y2)
}
plan r1r2parallelmove1(?x1,?x2,?y1,?y2, ?x3,?x4,?y3,?y4){

r1move1 (?x1,?x2,?y1,?y2) |
r2move1 (?x3,?x4,?y3,?y4)

}
plan r1r2parallelmove2(?x1,?x2,?y1,?y2,?x3,?x4,?y3,?y4){

r1move2(?x1, ?x2, ?y1, ?y2) |
r2move2(?x3, ?x4, ?y3, ?y4)

}

In above plans, r1r2parallelmove1 consists of parallel plan
invocations r1move1 (?x1,?x2,?y1,?y2) and r2move1 (?x3,?x4,
?y3,?y4), whereas r1r2parallelmove2 consists of parallel plan
invocations r1move2 (?x1,?x2,?y1,?y2) and r2move2 (?x3,?x4,
?y3,?y4). It is easy to verify that parallel actions in this example are
feasible.

6. CONCLUSIONS
To summarize, the main contributions of this paper are: 1) the
demonstration that PrT nets are an effective formalism for the
formal modeling of multi-agent behaviors, 2) the planning graph
based reachability analysis of PrT models, which allows for
concurrent firings, and 3) formal verification of hierarchical
multi-agent plans with explicit parallel actions.

One of the major criticisms about predefined agent plans is that
they are less flexible, e.g. for dealing with unexpected events in
dynamic, uncertain environments. In the future work, we will
embed dynamic planning in plan specification and investigate the
interplay between dynamic planning and plan verification.

7. ACKNOWLEDGMENTS
The work in this paper was supported in part by AFOSR (MURI)
grant #F49620-00-1-0326.

8. REFERENCES
[1] D. Kinny, M. Ljungberg, A. S. Rao, E. A. Sonenberg, G.

Tidhar, and E. Werner, "Planned Team Activity,"
Proceedings of the fourth European Workshop on Modeling
Autonomous Agents in a Multi-Agent World
(MAAMAW'92), 1992.

[2] J. Yen, J. Yin, T. R. Ioerger, M. S. Miller, D. Xu, and R. A.
Volz, "CAST: Collaborative Agents for Simulating
Teamwork," Proceedings of the Seventeenth International
Joint Conference on Artificial Intelligence (IJCAI'2001),
Seattle, WA, 2001.

[3] B. Grosz and S. Kraus, "Collaborative Plans for Complex
Group Actions," Artificial Intelligence, vol. 86, pp. 269-357,
1996.

[4] M. J. Katz and J. S. Rosenschein, "Plans for Multiple
Agents," in Distributed Artificial Intelligence, vol. II, L.
Gasser and M. N. Huhns, Eds. London: Pitman/Morgan
Kaufmann Publishers, 1989, pp. 197-228.

[5] Blum and M. L. Furst, "Fast Planning through Planning
Graph Analysis," Artificial Intelligence, vol. 90, pp. 281-
300, 1997.

[6] H. J. Genrich, "Predicate/Transitions Nets," in In Petri Nets:
Central Models and Their Properties: Advances in Petri
Nets, vol. 254, Lecture Notes in Computer Science: Springer-
Verlag, 1987, pp. 207-247.

[7] T. Murata, "Petri Nets: Properties, Analysis and
Applications," Proceedings of the Institute of Electrical and
Electronics Engineers, vol. 77, pp. 541-580, 1989.

[8] P. R. Cohen and H. J. Levesque, "Intention Is Choice With
Commitment," Artificial Intelligence, vol. 42, pp. 213-261,
1990.

[9] Y. Shoham, "Agent-Oriented Programming," Artificial
Intelligence, vol. 60, pp. 51-92, 1993.

[10] M. Wooldridge and P. Ciancarini, "Agent-Oriented Software
Engineering: The State of the Art," in Handbook of Software
Engineering and Knowledge Engineering: World Scientific
Publishing Co., 2001.

[11] J. Y. Halpern and M. Y. Vardi, "Modeling Checking vs.
Theorem Proving: A Manifesto," Proceedings of KR-91.
Also in Lifshitz V. Artificial Intelligence and Mathematical
Theory of Computation, Papers in Honor of John McCarthy,
San Diego, 1991.

[12] J. Wing, "A Specifier’s Introduction to Formal Methods,"
Computer, pp. 8-24, 1990.

[13] D. Moldt and F. Wienberg, "Multi-Agent-Systems Based on
Colored Petri Nets," Proceedings of the18th International
Conference ICATPN’97, Toulouse, France, 1997.

[14] H. Xu and S. M. Shatz, "A Framework for Modeling Agent-
Oriented Software," Proceedings of the 21st International
Conference on Distributed Computing Systems (ICDCS),
Phoenix, Arizona, 2001.

[15] D. Friha, D. Buchs, and P. Berry, "Multi-Agent System
Specification using CO-OPN," University of Geneva,
Technical Report CUI No. TR-93/80 Oct. 1991 1991.

[16] T. Murata, P. C. Nelson, and J. Yim, "Predicate-Transition
Net Model for Multiple Agent Planning," Information
Science, vol. 57/58, pp. 361-384, 1991.

[17] M. Lindqvist, "Parameterized Reachability Trees for
Predicate/Transition Nets," Proceedings of the 11th
International Conference on Applications and Theory of
Petri Nets, Paris, 1990.

[18] G. S. T. a. M. J. Flynn, "Detection and Parallel Execution of
Independent Instructions," IEEE Transactions Software
Engineering, vol. C-19, pp. 889-895, 1970.

[19] C. Knoblock, "Generating Parallel Exectuion Plans with a
Partial-Order Planner," Proceedings of Artificial Intelligence
Planning and Scheduling 1994, Chicago, 1994.

