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Large-scale chemical–genetics yields 
new M. tuberculosis inhibitor classes
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Jessica T. Pinkham4, Paula A. Pino5, Megan K. Proulx6, Nadine Ruecker5, Naomi Song5, Matthew Thompson1,16,  
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New antibiotics are needed to combat rising levels of resistance, with new Mycobacterium tuberculosis (Mtb) drugs having 
the highest priority. However, conventional whole-cell and biochemical antibiotic screens have failed. Here we develop 
a strategy termed PROSPECT (primary screening of strains to prioritize expanded chemistry and targets), in which 
we screen compounds against pools of strains depleted of essential bacterial targets. We engineered strains that target  
474 essential Mtb genes and screened pools of 100–150 strains against activity-enriched and unbiased compound 
libraries, probing more than 8.5 million chemical–genetic interactions. Primary screens identified over tenfold more hits  
than screening wild-type Mtb alone, with chemical–genetic interactions providing immediate, direct target insights.  
We identified over 40 compounds that target DNA gyrase, the cell wall, tryptophan, folate biosynthesis and RNA 
polymerase, as well as inhibitors that target EfpA. Chemical optimization yielded EfpA inhibitors with potent wild-
type activity, thus demonstrating the ability of PROSPECT to yield inhibitors against targets that would have eluded 
conventional drug discovery.

The WHO (World Health Organization)1 has declared antibiotic resist-
ance one of the greatest threats to health, with tuberculosis in particular 
causing more than 1.6 million deaths every year2. Despite the recent 
approval of two new drugs3,4, tuberculosis drug discovery has not kept 
pace with increasing levels of drug resistance5.

A fundamental challenge in antibiotic discovery is finding new  
compound classes that kill the causative pathogen, especially by inhib-
iting essential targets without host toxicity. Primary chemical screen-
ing approaches using biochemical, target-based assays have yielded 
compounds that lack whole-cell activity, and hit compounds derived 
from conventional whole-cell assays using wild-type bacteria make it 
difficult to determine the mechanism of action (MOA), thus delaying 
compound prioritization and progression. The all-too-few successful 
cases for Mtb, the causative agent of tuberculosis, underscore this chal-
lenge, with hit compounds repeatedly targeting two proteins (MmpL3 
and DprE1), leaving most of the approximately 625 essential proteins 
of Mtb unexploited6–8.

We aimed to develop an antimicrobial discovery paradigm that 
simultaneously identifies whole-cell active compounds and predicts 
their MOA from the primary screening data, thereby incorporat-
ing putative target information into hit prioritization. This strategy 
enables the exploration of broader target space and the discovery of 
new chemical scaffolds that could not be identified by conventional 

whole-cell screening. We performed primary chemical screening with 
hundreds of mutant strains that were depleted in essential targets 
(known as hypomorphs), and exploit their hypersensitivity to generate 
large-scale chemical–genetic interaction profiles (CGIPs). Although 
such drug hypersensitivity is well established in yeast9–11, depletion 
of essential targets of haploid bacteria is challenging. Consequently, 
chemical screening of bacterial hypomorphs has been limited to a sin-
gle hypomorph of Staphylococcus aureus12 and Mtb13,14, or to deter-
mining the MOA of a single compound against small collections of S. 
aureus hypomorphs15,16 or a genome-wide non-essential gene-deletion 
library in Escherichia coli17. By contrast, generating CGIPs by screening 
large hypomorph pools (100–150 hypomorphs) against large chemi-
cal libraries (50,000 compounds)—an approach we term PROSPECT 
(primary screening of strains to prioritize expanded chemistry and 
targets)—markedly increases the detection of active compounds and 
allows immediate target annotation, informing hit prioritization.

PROSPECT yielded tenfold more hit compounds, each associated 
with CGIPs, than conventional whole-cell screening approaches. 
Using primary CGIPs, we rapidly identified and validated more than 
40 new scaffolds against established targets including DNA gyrase, 
RNA polymerase (RNAP), and the biosynthesis of the cell wall, folate  
and tryptophan. We also discovered an inhibitor of a new target—the 
essential efflux pump EfpA. Because hits may have limited activity 
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against wild-type bacteria, we demonstrated the ability to optimize the 
EfpA inhibitor to drug-like potency against wild-type Mtb. PROSPECT 
thus uncovers molecules against new targets with potent wild-type 
activity that could not have been found by conventional screening.

Large-scale CGIPs from primary screening
We genetically engineered hypomorphs by controlling target levels 
using conditional proteolysis18,19 or transcriptional control. For pro-
teolytic control, essential genes were fused to a C-terminal tag, which 
targets the protein for degradation (Extended Data Fig. 1a). We recog-
nized that some proteins may not be amenable to this strategy because 
the tag disrupts function or is destabilizing enough to prohibit viabil-
ity. To control the level of target depletion, we attempted to construct 
for each gene up to five hypomorphs, with varying degrees of knock-
down (Extended Data Fig. 1b, c). At the time of publication, we have  
constructed 2,014 strains representing the first 474 of approximately 
625 essential genes defined in Mtb20 (Supplementary Data 1), each 
carrying a 20-nucleotide barcode with conserved flanking regions.

We established a multiplexed assay to measure the abundance of 
each strain in a pool by amplifying and sequencing strain barcodes21–24 
(Extended Data Fig. 1d, e). By creating strain mixtures with abundances 
that span three orders of magnitude, we confirmed that sequencing 
read counts of the barcodes were an accurate and reproducible proxy 
for abundance (Fig. 1a). Using this assay to determine the fitness of 
each strain in a pool containing 100–150 strains, including barcoded 
wild-type strain in 384-well plates over two weeks, we selected a single 
mutant for each gene that corresponds to the greatest degradation of 
the essential target while maintaining similar growth to the wild-type 
strain (Extended Data Fig. 2a) for inclusion in the final screening pool; 
this balanced the need for reliable strain behaviour and increased the 
likelihood of finding hypersensitized strain inhibitors. We anticipated 
that we would not discover inhibitors for some hypomorphs in which 
the achieved degree of target depletion does not confer strain hyper-
sensitivity, or because their slower growth resulted in lower statistical 
power. Nevertheless, using our defined screening pool and rifampin as 
a positive control, we observed excellent assay performance across the 
dynamic range for all strains (Zʹ factors > 0.5; Extended Data Fig. 2b).

Finally, we developed a barcode counting (ConCensusMap) and 
inference (ConCensusGLM) computational pipeline that calculated 

the fold change (that is, log2(abundance relative to control)) of strain 
abundance after compound exposure compared with dimethylsulfoxide 
(DMSO) control and the associated P value. The fold change vector 
across all strains for a compound is termed the CGIP.

Genetic interactions of Mtb-bioactive compounds
We assembled a library of 3,226 bioactive small molecules, enriched 
for compounds with activity against wild-type Mtb based on literature 
reports (Extended Data Fig. 2c; see Methods), confirmed their activity 
by testing for inhibition of green fluorescent protein (GFP)-expressing 
wild-type Mtb, and found that 1,312 (45%) had an MIC90 value (the 
minimum inhibitory concentration required to inhibit growth by 
90% of its maximal rate) of less than 64 µM (Extended Data Fig. 2d).  
We then screened this chemical library at 1.1, 3.3, 10 and 30 µM against 
a pool of the first 100 successfully created Mtb hypomorphs in duplicate 
(Pearson’s r = 0.93), generating 1,290,400 potential chemical–genetic 
interactions.

Most interactions (927,025, 71%) were inhibitory (fold change < 1) 
(Extended Data Fig. 2e); of these, 55,508 interactions (6%) representing 
940 compounds (29%) were strong (P < 10−10). In a minority, protein 
depletion conferred resistance to inhibitors of wild-type Mtb; for exam-
ple, the mycothiol cysteine ligase (MshC) hypomorph was resistant to 
tuberculosis drugs isoniazid (INH) and ethionamide (ETH), known 
inhibitors of enoyl-[acyl-carrier-protein] reductase (InhA)25.

Using an orthogonal simplex growth assay, we retested 112 identi-
fied hits that displayed some specificity (activity against less than 10 
strains) for a subset of mutants (P < 10−10) against their corresponding 
hypomorph interactor, wild-type Mtb, and several other hypomorphs 
as negative controls. Using a receiver operating characteristic (ROC) 
curve to assess the ability of the multiplexed assay to predict activity in 
the orthogonal assay, the area under the ROC curve (AUROC; 0.74) 
indicated a high true-positive rate in the primary assay with a well- 
controlled false-positive rate (Fig. 1b). Given the complexity of the pri-
mary screen, reassuringly 1,375 (52%) of the 2,664 strong interactions 
were confirmed in the secondary assay.

We recovered interactions between well-characterized inhibitors 
and hypomorphs of established targets (Fig. 1c), including between 
the fluoroquinolones and the DNA gyrase α-subunit (GyrA), rifampin 
and the RNAP β-subunit (RpoB), and BRD-4592 and the tryptophan 
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Fig. 1 | Generating large-scale chemical–genetic interaction profiles 
from primary screening. a, Defined mixtures of barcoded wild-type 
Mtb strains were subjected to census enumeration by sequencing-
based barcode counting. The method is accurate across several orders 
of magnitude (left, n = 768 biologically independent samples), and 
reproducible between replicates (right). b, ROC curve showing that 
primary data were predictive of activity in a confirmatory secondary 
growth assay (n = 4 biologically independent experiments). We retested 
112 compounds predicted to have activity in the primary screen in 
an orthogonal resazurin-based colorimetric growth assay, which 
demonstrated the primary assay as predictive of real activity that could 

be detected by more conventional growth methods. c, CGIPs showed 
expected hypersensitivity for compounds of known MOA (n = 2 
biologically independent experiments). Profiles show the mean fold 
change (that is, log2(abundance relative to DMSO negative control)) of 
each strain at each concentration tested, with wild-type Mtb in dark grey, 
and mutants of interest highlighted. Error bars of highlighted strains 
show 95% confidence interval of the maximum likelihood estimate of the 
mean. Examples shown are the compound–hypomorph pairs of BRD-4592 
with TrpA, rifampin with RpoB, trimethoprim with TrpG, DHFR and 
ThyA, and the fluoroquinolone nadifloxacin with GyrA and GyrB. KD, 
knockdown.
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synthase α-subunit (TrpA)26. Notably, trimethoprim (TMP)—a folate 
biosynthesis inhibitor that targets dihydrofolate reductase (DHFR)—
demonstrated a strong interaction with the folate pathway enzyme 
glutamine amidotransferase (TrpG) rather than DHFR. Although the 
DHFR hypomorph demonstrated hypersensitization to TMP when 
tested in isolation (Extended Data Fig. 1f), its slow growth provided 
low statistical power in primary screening. By contrast, the ThyA hypo-
morph was resistant to TMP, consistent with the previous observation 
that DHFR is non-essential on ThyA loss-of-function27. Projecting 
the 400-dimensional CGIPs (100 strains × 4 concentrations) for each 
compound onto two dimensions, we found that compounds with the 
same MOA clustered together, independent of their chemical structures 
(Fig. 2).

New inhibitor classes of validated targets
We sought new compound scaffolds that inhibited well-validated, 
clinical targets based solely on primary screening data by training on 
a reference ground-truth set of 107 CGIPs of known antimicrobials 
(Supplementary Data 2). Using Lasso classification models28—a super-
vised machine learning method—we identified 39 new inhibitors of 
DNA gyrase (training set n = 14) and of the biosynthesis of mycolic 
acid (n = 6), folate (n = 12) and tryptophan.

DNA gyrase inhibitors
Training on CGIPs of the fluoroquinolones, our model identified 
hypersensitivity of the GyrA hypomorph as the most discriminatory 
feature of gyrase inhibition, which we term a sentinel strain (Extended 
Data Fig. 3a). The model predicted 55 non-quinolone DNA gyrase 
inhibitors (Fig. 3a), including the structurally distinct inhibitor novo-
biocin.

Using a Mtb DNA gyrase in vitro assay, we confirmed 27 (52%) out 
of 52 predicted new DNA gyrase inhibitors (Extended Data Fig. 4a), 
whereas 25 randomly selected compounds showed no activity (classi-
fier enrichment P = 2 × 10−7, Fisher’s exact test; AUROC = 0.89). Of 
the validated compounds, tryptanthrin (Extended Data Fig. 4b) is an 
anti-infective with a target that has eluded extensive antibacterial and 
antitrypanosomal research, with current results suggesting that it may 

be a gyrase inhibitor29,30. Furthermore, the acridine scaffold of ethacri-
dine (Fig. 3c) has been previously reported to inhibit DNA gyrase31. All 
remaining scaffolds were previously undiscovered.

Inhibitors of mycolic acid biosynthesis
The cornerstone clinical antitubercular prodrugs INH and ETH both 
inhibit InhA32—a key enzyme in the biosynthesis of mycolic acid. 
We sought new inhibitors of mycolic acid biosynthesis by training on 
CGIPs of these drugs. Although the strain pool did not include an 
InhA hypomorph, our model successfully used increased relative fit-
ness of the MshC sentinel strain (Fig. 3c, Extended Data Fig. 3b). MshC 
catalyses the incorporation of cysteine into mycothiol—an antioxidant 
unrelated to biosynthesis of mycolic acid—and has been shown to con-
fer resistance to INH and ETH when depleted25.

The model predicted six hydrazone derivatives of INH that are inac-
tive against a loss-of-function mutant of the catalase KatG, indicating 
that they require KatG activation in the same way as the INH prod-
rug33. Notably, the model also predicted one completely new scaffold, 
the indenedione BRD-9942 (Fig. 3d) that was active against the KatG 
mutant. Taking advantage of their wild-type activity, we found that in 
wild-type Mtb, like INH and ETH, the INH hydrazones and BRD-9942 
inhibited the incorporation of 14C-acetate into mycolic acids (Extended 
Data Fig. 5).

Inhibitors of folate and tryptophan biosynthesis
Folate biosynthesis has been an effective antimicrobial target, although 
not for Mtb. We sought new folate inhibitor classes by training on the 
CGIPs of the sulfonamides, which target dihydropteroate synthase. The 
most discriminatory feature was inhibition of the TrpG sentinel strain 
(Extended Data Fig. 3c). TrpG supports the biosynthesis of both folate 
and tryptophan (Extended Data Fig. 6a), catalysing the formation of 
the folate precursor 4-amino-4-deoxychorismate and the tryptophan 
precursor 2-amino-2-deoxyisochorismate.

We tested whether supplementation with tryptophan, folate or 
the folate pathway intermediate para-amino benzoic acid (PABA) 
suppressed the activity of 7 of the 43 predicted compounds that had 
wild-type Mtb activity and spanned several chemotypes (Fig. 3e, f). 
The effects of the nitrothiophene compounds BRD-2550, BRD-3387, 
BRD-5592 and BRD-9737 (Fig. 3f, Extended Data Fig. 6d), and a 
para-aminosalicylic acid (PAS) derivative BRD-9819, were abolished 
by supplementation with both PABA and folate; this pattern is the same 
for the known DHFR inhibitors methotrexate and PAS (Extended Data 
Fig. 6b). By contrast, BRD-8884 had effects that could only be rescued 
by folate and not by PABA (Extended Data Fig. 6c), suggesting a new 
folate target. Thus, PROSPECT uncovered inhibitors that target several 
different steps in the folate pathway.

Finally, the effects of BRD-7721—a 3-indolepropionic acid (3-IPA) 
ester—were only abrogated by supplementation with tryptophan 
(Extended Data Fig. 6c), suggesting that tryptophan biosynthesis is its 
target. 3-Indolepropionic acid was recently identified as having anti-
mycobacterial activity in a fragment-based screen34,35 and its activity 
was also abolished by supplementation with tryptophan (Extended 
Data Fig. 6b).

Empirical validation of new folate and tryptophan inhibitors allowed 
retraining of updated models for each pathway. The refined classifier 
learned to weigh FolB hypomorph behaviour in conjunction with TrpG 
in its discrimination of folate inhibitors (Extended Data Fig. 3d, e).

Screening a larger, unbiased compound library
We applied the PROSPECT approach to a large, unbiased library of 
approximately 50,000 compounds at 50 µM and an expanded pool of 
152 strains available at the initiation of this screen, to demonstrate the 
scalability of the model and its ability to identify compounds with 
potential activity against wild-type Mtb that could be revealed by 
hypersensitive hypomorphs and to discover inhibitors of new tar-
gets, which, after chemical optimization, could have potent wild-type  
activity.
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and mutants of interest highlighted.

N A t U r e | www.nature.com/nature



ArticleRESEARCH

Of the 7,245,009 potential chemical–genetic interactions tested, 
95,685 (1.3%) were strongly inhibitory. By selecting 1,331 compounds 
for retesting, we confirmed 78% of the inhibitory chemical–genetic 
interactions (fold change < 1), resulting in an AUROC of 0.74, similar 
to that observed for the bioactive screen. In an orthogonal assay, the 
AUROC was 0.69 using 75% inhibition as the ground-truth assumption 
of true activity (Extended Data Fig. 7a).

The hit rate against wild-type Mtb alone was 0.9% (436 compounds), 
which is typical for an unbiased whole-cell compound screen; by con-
trast, tenfold more compounds (4,403; 9%) were active against at least 
one of the 152 hypomorph strains (Extended Data Fig. 7b). In addition, 
92 of the 152 hypomorphs had the lowest abundance relative to DMSO 
control for at least three compounds, suggesting latent diversity in the 
MOA that is inaccessible by conventional screening. Of the 4,403 active 
compounds, 3,967 had no activity against wild-type Mtb. However, 73% 
were highly specific against the hypomorphs (1–10 strains hit) and 16% 
were relatively non-specific (more than 50 strains hit; these latter com-
pounds will be retested at lower concentrations to delineate their MOAs 
because wild-type activity is advantageous as a chemical optimization 
starting point); compounds showed greater strain specificity than the 
compounds in the bioactive library (35% and 34%), probably because 
the smaller library is enriched for compounds with wild-type Mtb 
activity (Extended Data Fig. 7c). The larger library yielded a greater 
diversity of CGIPs, suggesting greater target diversity. Clustering of 
the CGIPs produced 1,864 distinct clusters in the unbiased library 

compared to 235 in the bioactive library36; unbiased library clusters 
were meaningful as more than 10% of them were enriched for struc-
turally similar compounds (Extended Data Fig. 7d, e).

We applied the folate biosynthesis inhibitor classifier derived 
from training on the bioactive library to data from the unbiased 
library. Despite being trained on a dataset generated from several 
concentrations of each compound and a smaller hypomorph set, the 
folate model showed excellent transferability, predicting 60 com-
pounds from this larger screen (Fig. 4a), including 12 sulfonamides,  
1 PAS derivative, and 2 nitrothiophenes that are now shown to inhibit 
the folate pathway (Fig. 3f). Three novel scaffolds (Fig. 4b) had activity 
that could be suppressed by supplementation with PABA or folate 
(Extended Data Fig. 7f). These results demonstrate the scalability and 
generalizability of the PROSPECT model, and suggest that revealing 
latent target diversity could allow the discovery of inhibitors of new 
targets.

Inhibitor discovery without reference data
Having rapidly identified new chemotypes against established targets 
using reference data, we turned to the discovery of inhibitors with 
completely new MOAs in the absence of reference data. We developed 
an approach to identify inhibitors of a target of interest from specific 
inhibition of the corresponding hypomorph.

Initially, we sought inhibitors of RNAP—a target of the chemotherapy- 
anchoring rifamycins—for which there is increasing resistance.  
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new DNA gyrase inhibitor chemotypes predicted by the Lasso classifier 
and confirmed in vitro. c, As in a, but for the mycolic acid biosynthesis 
inhibitor classifier applied to the mean fold change (n = 2) values from 
the bioactive screen. White points were known inhibitors of mycolic acid 

biosynthesis in the training set, with green points indicating compounds 
confirmed to inhibit the incorporation of 14C-acetic acid into mycolic 
acid; loss-of-function KatG mutant or InhA overexpressor were resistant 
to compounds in blue. d, New mycolic acid biosynthesis inhibitor 
chemotypes predicted by the Lasso classifier and confirmed in vitro.  
e, As in a, but for the folate biosynthesis inhibitor classifier applied to the 
mean fold change (n = 2) values from the bioactive screen. White points 
are known inhibitors of sulfonamide folate biosynthesis in the training 
set; green points indicate compounds in which growth inhibitory activity 
was abolished by supplementation with PABA or folic acid. Compounds 
in which growth inhibitory activity was not abolished by PABA or folic 
acid supplementation are shown in orange. f, Examples of new inhibitor 
chemotypes of folate and tryptophan biosynthesis predicted by the Lasso 
classifier and confirmed by metabolite supplementation.
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Because concentrations of rifamycin in our screen inhibited all growth, 
their CGIPs from the primary screen were uninformative.

Taking an alternative approach, we prioritized 20 compounds  
that showed strong chemical–genetic interactions with the RpoB 
hypomorph (P < 10−10), which corresponds to RNAP, and requiring 
it to be among the two most inhibited strains for at least one com-
pound concentration. Testing these compounds in an in vitro RNAP 

assay37,38, three compounds—including the antineoplastic human 
RNAP inhibitor actinomycin D—showed direct inhibition of the E. coli 
RNAP (Fig. 5a, Extended Data Fig. 8). Although the positive predictive 
value was lower than that using machine learning, PROSPECT readily  
identified new scaffolds against this important target, which has proved 
recalcitrant to whole-cell inhibitor discovery39.

Discovering inhibitors of a new target
Finally, we demonstrated that PROSPECT can identify inhibitors of a 
new target that is inaccessible to conventional strategies. Specifically, 
we identified a compound that inhibits the target EfpA, and optimized 
it to achieve potent wild-type activity.

We prioritized compounds that did not strongly inhibit wild-type 
Mtb, but were strongly active against at least one hypomorph at all 
screening concentrations. Chemically attractive scaffolds were ranked 
by how few hypomorphs were significantly inhibited, which was used 
as a proxy for specificity. The highest-ranked interaction was between 
BRD-8000 and the hypomorph of EfpA—an uncharacterized essential 
efflux pump. A broth microdilution assay confirmed that BRD-8000 
was active against the EfpA hypomorph with little wild-type activity 
(Extended Data Fig. 9a).

We optimized BRD-8000, first resolving the stereoisomer mixture 
(see Supplementary Note 7) to yield the pure active (S,S)-trans stereoi-
somer (BRD-8000.1; Fig. 5b). Migration of the pyridyl bromine from 
the 6 to the 5 position furnished BRD-8000.2, maintaining hypomorph 
hypersensitivity while improving wild-type potency. Further chemi-
cal optimization yielded BRD-8000.3, a methyl-pyrazole derivative of 
BRD-8000.1 with an at least 60-fold overall improvement in activity 
from the original hit (MIC90 = 800 nM).

BRD-8000.3 showed good mouse plasma exposure by oral dosing, 
and low risk for drug–drug interactions, prolongation of the QT inter-
val, or hepatotoxicity based on minimal inhibition of cytochrome P450 
enzyme activity, hERG channel binding, and cellular viability of HepG2 
cells (Extended Data Fig. 9c). Thus, BRD-8000.3 represents a good 
lead optimization candidate, because liabilities that typically require 
extensive optimization are currently absent.

The BRD-8000 series is bactericidal (Extended Data Fig. 9b), kills 
non-replicating phenotypically drug-tolerant Mtb40 (BRD-8000.3 
MBC50 < 390 nM), and is narrow-spectrum, inactive against Gram-
positive S. aureus, Gram-negative Klebsiella pneumoniae, and wild-type 
or efflux-deficient strains of E. coli and Pseudomonas aeruginosa; it 
has activity against M. marinum (Mmar) but not M. smegmatis (Msm) 
(Extended Data Table 1).
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We explored two alternative explanations for the sensitivity of the 
EfpA hypomorph to BRD-8000: (i) the compound directly targets and 
inhibits EfpA, which is essential in Mtb, and (ii) the compound has a 
different target, but is pumped out of cells by EfpA, affording higher 
intracellular concentrations in the EfpA hypomorph. Several lines of 
evidence strongly support the first hypothesis.

First, we showed that BRD-8000 inhibits efflux by EfpA uncom-
petitively rather than competitively—the latter being the expectation 
if it were a substrate being effluxed by EfpA. Specifically, we studied 
efflux of the known EfpA substrate ethidium bromide41 (EtBr) in Msm, 
in which the pump is non-essential and thus impervious to the bac-
tericidal effects of BRD-800041 (Extended Data Fig. 9e, f). Although 
another known EfpA substrate, bisbenzimide-H, showed competitive 
inhibition of EtBr efflux in wild-type Msm, the analogues BRD-8000.2 
and BRD-8000.3 showed uncompetitive inhibition (free enzyme inhib-
itor constant (Ki)/enzyme–substrate inhibitor constant (Kiʹ) ≥ 3.3), 
with the trend in potency matching their corresponding MIC90 val-
ues in Mtb (BRD-8000.2 Kiʹ = 15.9, BRD-8000.3 Kiʹ = 6.33; Table 1).  
In an efpA deletion strain of Msm (MsmΔefpA), BRD-8000.2 shows 
competitive inhibition (Table 1), presumably of the low-level efflux of 
other, background efflux pumps.

Second, genetic evidence showed that Mtb mutants resistant to 
the compound all have the same amino acid substitution in EfpA. 
Specifically, more than 30 independent resistant Mtb mutants raised 
against BRD-8000.2 (resistance frequency of approximately 10−8) all 
contained a C955A mutation in efpA, resulting in a Val319Phe substi-
tution and conferring a more than 30-fold increase in MIC90 (Fig. 5b). 
Consistent with this mutation disrupting the compound binding  
site, expression of the resistant Mtb efpAV319F allele in MsmΔefpA 
abolished the uncompetitive inhibition by BRD-8000.2 of EtBr efflux 
(Table 1).

Third, we excluded the possibility that the resistance conferred by 
the EfpA(V319F) mutant is due to hyperactivation of the EfpA efflux 
pump. There was no difference in EtBr efflux in Mtb between strains 
expressing wild-type EfpA and mutant EfpA(V319F), but, as expected, 
there was increased efflux in a Mtb strain overexpressing wild-type 
EfpA (Extended Data Fig. 9g). We also measured the sensitivity of 
Mtb to INH, because INH resistance is known to be mediated by EfpA 
efflux42,43; we found no difference between Mtb strains expressing wild-
type EfpA and mutant EfpA(V319F) (Extended Data Fig. 9h). Finally, 
intracellular accumulation of the fluorescent analogue BRD-8000.3 was 
no higher in the MsmΔefpA strain expressing EfpA(V319F) versus 
wild-type EfpA (Extended Data Fig. 9i).

Having confirmed that the BRD-8000 series inhibits the target EfpA, 
we returned to the primary screening data to identify additional EfpA 
inhibitors based on CGIP similarity. We tested 11 prioritized com-
pounds for their ability to inhibit EtBr efflux and identified 3 new scaf-
folds, encompassing 6 molecules that inhibited EtBr efflux (Extended 
Data Fig. 9j–l). Although not as specific for the EfpA efflux pump as 
BRD-8000, the whole-cell activity of these compounds is probably due 
to their activity on EfpA, because EfpA is the only essential efflux pump 

in Mtb20. Thus, the PROSPECT method can be applied iteratively to 
expand the chemical diversity of small-molecule candidates against a 
novel target quickly, even ones with unknown function.

Discussion
By enabling the discovery of many compounds against previously 
unexploited targets for Mtb drug development, PROSPECT is a 
powerful and rapid CGIP strategy. Immediate integration of poten-
tial target information empowers hit selection and prioritization 
by moving beyond simply compound potency. Interpreting multi- 
dimensional data guided either by the CGIPs of known compounds or 
by hypomorph specificity, we identified MOA for 45 new molecules. 
Importantly, these hits include new scaffolds against known targets—a 
valuable strategy to overcome antimicrobial resistance44—and the first 
inhibitors against a new target, exploiting the enormous underexplored 
target space in Mtb. Identifying approximately tenfold more hits than 
by screening wild-type Mtb alone, PROSPECT greatly expands the 
chemical and target space of identified compounds with the potential 
to reveal synergistic genetic interactions that inform the development 
of Mtb combination therapy.

With the discovery and optimization of an EfpA inhibitor with 
potent wild-type activity, we demonstrated that PROSPECT uncovers 
inhibitors of targets that would not have resulted from conventional 
approaches. Furthermore, iterative mining of the entire CGIP data-
set enables the discovery of additional inhibitors of the same target. 
Although these large datasets have only been superficially analysed 
so far, we have provided examples of how integrating insight about 
the MOA into primary whole-cell screening can transform the targets 
and molecules that emerge and are prioritized, even without a clear 
understanding of a target’s function. To accelerate the community’s 
discovery of new inhibitor classes and their respective targets, we have 
made primary data publicly available (https://broad.io/cgtb). Finally, we 
propose that PROSPECT is widely applicable to important pathogens 
beyond Mtb.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
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Methods
Data reporting. No statistical methods were used to predetermine sample size. The 
experiments were not randomized, and investigators were not blinded to allocation 
during experiments and outcome assessment.
Strain selection and construction. The bacterial strains we used and designated 
as wild-type were Mtb H37Rv, Msm mc215546, Mmar M, E. coli K-12, and P. aerug-
inosa PAO1.

To create Mtb hypomorphs, we used a protein degradation system that has 
been previously described18. In brief, a DAS+4 tag (abbreviated as DAS-tag) was 
recombineered into the chromosome of Mtb H37Rv, at the 3′ end of the target 
gene, before transformation with an ATC-inducible sspB plasmid. SspB delivers  
DAS-tagged protein to the native ClpXP protease. We developed plasmids that 
produced graded SspB induction (Extended Data Fig. 1a) by varying the strengths 
of both the promoter driving transcription of sspB and the translational initiation 
signal required to produce SspB protein. Regulation was achieved by repression 
of the sspB promoter by a reverse tetracycline repressor (revTetR); we thus refer to 
these mutants as TetON mutants (because the presence of ATC represses degra-
dation of the DAS-tagged target protein).

To facilitate the large scale, a sequence-design program was developed (http://
orca2.tamu.edu/tom/U19/seqtool.html). Every cassette comprises 500-base-
pair (bp) flanking sequences around the stop codon of the target, the DAS-tag  
(inserted at the 3′ end of the target gene), a loxP site, a unique nucleotide sequence 
(‘molecular barcode’), and a hygromycin-selectable marker. If the target gene was 
located less than 21 bp upstream of the 5′ end of an adjacent open reading frame 
(ORF), a new ribosomal-binding site was inserted. Designed DNA fragments were 
synthesized (Gen9 or GenScript) in plasmid pUC57 with flanking PmeI sites. PmeI 
excision yielded double-stranded recombineering substrates47.

Molecular barcodes enabled the identification and quantification of each strain 
among a pool of strains. Each barcode region was 74 nucleotides long, with com-
mon flanking regions on each end that include a PacI site (underlined) and primers 
for PCR amplification (capitalized), and a unique barcode sequence of 20 nucle-
otides (<20N>): ttaattaATCTTGTGGAAAGGACGA<20N>ACGCTATGTG 
GATACGCTGCTTTAattaa. Each barcode is unique to each target, thus only one 
SspB version strain of any target can be included in a given pool.

Strains were validated at several steps. DAS-tagged recombinants were selected 
by hygromycin resistance and screened for target specificity by PCR for the  
presence of both junctions. To confirm the presence of inserted sequence, PCR 
confirmation amplified the 3′ region of the targeted gene across the insert, showing 
increased length of the amplicon (approximately 2,500 bp), and absence of a wild-
type amplicon (1,100 bp). After curing by plating recombinants on 3% sucrose, loss 
of the recombinase plasmid was validated by kanamycin sensitivity and by PCR 
screens for plasmid absence. The final step was introduction of the sspB plasmid 
by selection for streptomycin resistance; strains were validated by a PCR screen 
for the presence of the sspB plasmid.

The MsmΔefpA strain was constructed as previously described48. Episomal 
expression constructs for Mtb efpA and efpAV319F were assembled in the pUV15
tetOrm plasmid49, with GFP and kanamycin resistance under control of a strong, 
leaky ATC-inducible Psmyc promoter. PCR primers were designed to linearize the 
pUV15 backbone, excluding the GFP-coding region, and PCR-amplified efpA 
from Mtb genomic DNA was inserted using the InFusion molecular cloning 
kit (Clontech). The Val315Phe mutation was introduced using primer-directed 
mutagenesis50. Constructs confirmed by Sanger sequencing (Eton or Genewiz) 
were transformed into Msm by electroporation as previously described51.
Multiplexed screening of compound libraries. Bioactive compounds were iden-
tified from screening efforts in our laboratory26,40,52 and previously reported in the 
literature53–56, whereas the 50,000-compound library comprised Broad Institute 
and external collections56; see also Supplementary Note 1.

We optimized screening assay parameters in 384-well format, including com-
pound exposure time (14 days), genomic DNA extraction (10% DMSO and 95 °C 
for 15 min), and PCR conditions (20 cycles, annealing at 65 °C) that maximized 
the robust Zʹ-score of log-transformed counts for a rifampin dilution series and 
minimized random noise as determined by strain-wise coefficient of variance. 
Optimal sequencing depth is discussed in Supplementary Note 2.

Final screening pool strains were grown separately in Middlebrook 7H9 
(Difco) supplemented with oleic albumin dextrose catalase (OADC, from Becton 
Dickinson) and 10 mM sodium acetate, appropriate antibiotics, and 1 µg ml−1 
ATC. At mid-exponential growth phase, bacteria were combined equally into a 
single pooled culture, which was then diluted in Middlebrook 7H9-OADC-acetate 
to an approximate OD600 of 0.005. After washing in Middlebrook 7H9-OADC-
acetate, 40 µl dilute culture was distributed into clear polystyrene 384-well plates 
(Corning), containing 120–200 nl of screening compound solution per well as 
prepared by Broad Institute Compound Management. On every plate, rows A, B, 
O and P and columns 1 and 24 were left empty. Columns 2 and 23 were occupied 
by alternating DMSO (negative) and rifampin (positive) on-board controls. Each 

batch included eight control plates containing 12-point twofold serial dilutions of 
rifampin and trimethoprim, and for the larger screen BRD-4592 and methotrexate.

Plates were incubated for 14 days in humidified containers at 37 °C. Then, 40 µl 
of 10% (v/v) aqueous DMSO was added to each well, heating at 80 °C for 2 h. PCR 
(20 cycles) was performed in 384-well PCR plates (Eppendorf) using Q5 Master Mix 
(NEB) and 1 µl heat-inactivated culture in 10 µl. Primer 5′ overhangs added plate and 
well identification barcodes and sequences for Illumina NGS (Extended Data Fig. 1c).

PCR products were combined and cleaned-up using AMPure XP beads 
(Beckmann) at twice the volume, eluting in 200 µl MilliQ water.

Sequencing was carried out at the Broad Institute Genomics Platform using 
Illumina HiSeq 2500 at an average sequencing depth of at least 500 reads per  
strain per well. Clarification of statistical analysis (http://www.R-project.org/)57,58, 
unsupervised machine learning (https://github.com/jkrijthe/Rtsne)36,59,60, 
compound annotation61, and supervised machine learning62 are provided in 
Supplementary Notes 3–6.
Bactericidal compound kill kinetics. Mtb cultures at OD600 of 0.6–1.0 were 
diluted to OD600 of 0.4 and split into three 10-ml cultures. Then, 100 µl of 2.4 mM  
BRD-8000.2 in DMSO or 100 µl DMSO (negative control) was added to each 
culture, and incubated with shaking at 37 °C. At 0, 1, 2, 3, 6 and 13 days, 500-µl 
samples were taken from each culture, diluted 104-fold, 105-fold and 106-fold in 
Middlebrook 7H9 in series and plated on Middlebrook 7H10 agar.

Agar plates were incubated at 37 °C for 21 days, before colony-forming units 
were counted.
Broth microdilution assays. The minimum inhibitory concentration of  
compounds was determined in a 96-well plate (Corning), filled with 49 µl of appro-
priate medium (Middlebrook 7H9-OADC-acetate for Mycobacteria or Lysogeny 
Broth (LB) for E. coli or P. aeruginosa), and 1 µl 100× compound DMSO stock. 
Then, 50 µl exponential-phase bacterial culture diluted to an OD600 of 0.005 was 
added. Final concentration was 0.1–50.0 µM. Plates were incubated at 37 °C in a 
humidified container for 24 h for non-mycobacteria, 3 days for Msm, 7 days for 
Mmar, and 14 days for Mtb. OD600 was measured using a SpectraMax M5 plate 
reader (Molecular Dimensions). Normalized percentage outgrowth (NPO) was 
reported using NPO = (xi − µn)/(µp − µn), in which µp is the mean positive control 
value, µn is the mean negative control value, and xi is the value of compound i.

To determine the MBC50 of BRD-8000.3, Mtb bacteria at OD600 of 0.6–1.0 were 
washed twice with PBS containing 0.05% (w/v) tyloxapol and resuspended at a final 
OD600 of 0.2 in starvation media (Middlebrook 7H9 with 0.05% (w/v) tyloxapol 
and no other supplementation). The carbon-starved, non-replicating drug-tolerant 
state was induced by incubation at 37 °C for 5 weeks40.

Starved cultures were treated with test compounds as above, and viability was 
determined by plating for colony-forming units as above.
DNA gyrase assays. All compounds were tested at 160 μM in duplicate in a 96-well 
PCR plate (Axygen). A linear pBR322 control was made via digestion of pBR322 
by EcoRI-HF (NEB) for 1 h at 37 °C. Mtb DNA gyrase (Inspiralis) was diluted 
in 50 mM Tris-HCl at pH 7.9, 5 mM dithiothreitol (DTT), and 30% (w/v) glyc-
erol and 2.5 U diluted DNA gyrase were added to each reaction mixture; pBR322 
supercoiling and kDNA decatenation assays were carried out as recommended by 
the manufacturer, additionally digesting with 50 μg ml−1 proteinase K (Qiagen) 
before 1% (w/v) agarose gel electrophoresis. Pixel density of EtBr-stained bands 
was measured using ImageJ, fold change was determined by a Gamma-family gen-
eralized linear model (GLM) with a log link, using DMSO untreated control as the 
intercept and the relaxed band density as an offset to normalize for sample loading.
Mycolic acid assay. Thin-layer chromatography detection of the incorporation of 
14C-acetic acid into mycolic acids by Mtb was carried out as previously described63, 
using 10 ml exponential-phase culture treated with 100 µl of a 100× compound 
stock in DMSO to give a final concentration of 10 × MIC90 as measured by broth 
microdilution. Pixel density of bands was measured as above, using DMSO 
untreated control as the GLM intercept and the FAMEs band density as an offset 
to normalize for sample loading.
Metabolite supplementation assay. Broth microdilution was performed as above, 
but each dose response series of a compound of interest was repeated three times, 
each time with a different metabolite in the growth medium: PABA at 200 µM from 
a 20 mM stock in ethanol; folic acid at 200 µM from a 20 mM stock in DMSO; 
and l-tryptophan at 1 mM from a 100 mM stock in 500 mM hydrochloric acid.
RNA polymerase assay. Inhibition of in vitro RNA synthesis by E. coli RNAP 
was carried out as previously described38, using 2 pmol of 5′-phosphorylated,  
45-nucleotide single-stranded DNA (ssDNA) oligomer (5′-GGAGCCCTTATTTA 
GACTTAAATAAGTTCCTCAACATCCTTCGAT-3′; Integrated DNA 
Technologies), which had been circularized using CircLigase ssDNA Ligase 
(Lucigen), E. coli RNA polymerase (NEB), 10 μM rifampin (positive control) or 
100 μM test compound. All compounds were tested in quadruplicate. RNA was 
quantified using RiboGreen fluorescent dye (Thermo Fisher). Fold change was 
determined by a GLM with a log link, using DMSO untreated control wells as the 
intercept and modelling plate-to-plate variation.

http://orca2.tamu.edu/tom/U19/seqtool.html
http://orca2.tamu.edu/tom/U19/seqtool.html
http://www.R-project.org/
https://github.com/jkrijthe/Rtsne
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Evolution of resistant mutants. Mid-exponential growth phase bacterial cultures 
were pelleted and resuspended as a slurry in 1 ml Middlebrook 7H9-OADC. Then, 
50 µl was plated on 6 ml agar containing 2 ×, 4 × or 8 × MIC90 of compound. 
Plates were incubated at 37 °C in a humidified container for more than 21 days.

Colonies were picked and cultured in 1 ml Middlebrook 7H9-OADC-acetate 
in a 96-well 2 ml well volume culture block and incubated at 37 °C for 7 days in a 
humidified container.
Whole-genome sequencing of mycobacteria. In brief, 10 µl of culture was com-
bined with 10 µl 10% (v/v) DMSO in a 96-well clear round-bottom plate (Corning). 
Plates were heat-inactivated at 80 °C for 2 h. Genomic DNA (gDNA) was sepa-
rated from intact cells and cell debris using AMPure XP (Beckman), eluting in 
40 µl MilliQ water. gDNA (1.5 µl) was amplified using 6 µM random primers 
(Invitrogen) and ϕ29 DNA Polymerase (NEB) in a 10 µl reaction volume at 30 °C 
for 24 h.

Amplified gDNA was purified using AMPure XP and subjected to NextEra 
XT NGS library construction (Illumina) before 150-cycle paired-end sequencing 
on the Illumina MiSeq platform. Reads were aligned to the AL123456 reference 
sequence64 using the BWA-mem algorithm and mutations were called using the 
deepSNV package65 for R.
Kinetic solubility. In brief, 10 µl of a 10 mM stock solution of test compound was 
added to 490 µl 50 mM phosphate buffer, pH 7.4. The solution was shaken at room 
temperature for 24 h, before filtering and detecting filtrate concentration using 
ultraviolet spectroscopy and comparing to 1, 20 and 200 µM standards.
Mouse pharmacokinetics. Experiments were performed in accordance with rel-
evant guidelines and regulations. Oral dosing of 12-h fasted female 7–9-week-old 
C57BL/6 mice (n = 12) was performed, using up to 150 mg kg−1 test compound 
in 5% (v/v) corn oil, 10% (v/v) labrasol, 5% (v/v) solutol in water. The plasma con-
centration of test compounds was measured at nine time points up to 8 h. Internal 
standard (120 µl of 100 ng ml−1 labetalol, 100 ng ml−1 dexamethasone, 100 ng ml−1  
tolbutamide, 100 ng ml−1 verapamil, 100 ng ml−1 glyburide, 100 ng ml−1 cel-
ecoxib in acetonitrile) was added to 6 µl plasma samples. Protein precipitate was 
centrifuged out; 4 µl supernatant was subjected to liquid chromatography–tandem 
mass spectrometry (LC–MS/MS) analysis, on a UPLC protein BEH C4 1.7 μm 
2.1 × 50 mm column (Acquity) with gradient of 22–95% acetonitrile in water, 
and detecting using a positive-mode Triple Quad 6500+ mass spectrometer (AB 
SCIEX Instruments).
HepG2 toxicity. HepG2 cells (50 µl) were seeded at a density of 1,000 cells per well. 
Test compounds dissolved in DMSO were threefold serially diluted for ten doses 
(n = 1). Compound stocks (125 nl) were transferred into a 384-well plate, which 
was incubated for 72 h at 37 °C. The plate was allowed to reach room temperature 
for 30 min, after which 25 µl CellTiterGlo reagent (Promega) was added. After  
10 min, luminescence was detected using an EnVision platereader (PerkinElmer). 
Normalized percentage inhibition was calculated using DMSO vehicle control 
values, and 1 µM paclitaxel. The half-maximum inhibitory concentration (IC50) 
values were calculated using the four-parameter logistic model in Prism statistical 
analysis software (GraphPad).
Microsomal stability. Test compound (1 µM) was incubated with pooled micro-
somes in 100 mM potassium phosphate buffer, pH 7.4, supplemented with 2 mM 
NADPH and 3 mM magnesium chloride at 37 °C. At 0, 5, 15, 30 and 45 min, 
samples were taken (n = 1), and stopped by adding an equal volume ice-cold 
methanol, and incubating on ice for 10 min. After removing precipitated protein 
by centrifugation, remaining compound was measured using LC–MS/MS as above. 
Half-life was determined by fitting a first-order decay model to the time course.
Isoform-specific cytochrome P450 (CYP) inhibition. Seven concentrations 
(n = 1) of test compound, of which the DMSO stock solution was diluted tenfold in 
acetonitrile, were added to pooled human liver microsomes in 100 mM potassium 
phosphate buffer, pH 7.4, supplemented with 2 mM NADPH and 3 mM magne-
sium chloride at 37 °C. Conversion of isoform-specific substrate probes to their 
products (tacrine to hydroxytacrine for CYP1A2; bupropion to hydroxybupropion 
for CYP2B6; amodiaquine to desethylamodiaquine for CYP2C8; tolbutamide to 
α-hydroxytolbutamide for CYP2C9; mephenyltoin to 4-hydroxymephenyltoin 
for CYP2C19; and dextromethorphan to dextrorphan for CYP2D6) was stopped 
after 10 min incubation (15 min for CYP2C9; 60 min for CYP2C19) by adding 
an equal volume of methanol, and incubating on ice for 10 min. After removing 
precipitated protein by centrifugation, products were measured using LC–MS/
MS. Reduction in substrate conversion was normalized to the maximal effects 
of isoform-specific positive controls (α-naphthoflavone for CYP1A2; ticlopidine 
for CYP2B6; quercetin for CYP2C8; sulfaphenazole for CYP2C9; ticlopidine for 
CYP2C19;, and quinidine for CYP2D6).
Mouse plasma protein binding. Protein-free and plasma protein-containing 
compartments were separated with a semi-permeable membrane, and allowed to 
equilibrate with 5 µM test compound at 37 °C (n = 3). Compound concentration on 
both sides of the membrane was measured using LC–MS/MS, and the bound frac-
tion was calculated as 1 − Fc/Tc, in which Fc is the free compound concentration 

in the dialysate, and Tc is the compound concentration in the retentate. Warfarin 
was used as a positive control.
hERG inhibition. hERG inhibition (n = 2) was assayed using the Predictor  
hERG Fluorescence Polarization Kit (Thermo) according to the manufacturer’s 
instructions.
Efflux assay. Efflux rates were measured as previously described66–68. Msm or Mtb 
strains were grown in Middlebrook 7H9 medium to an OD600 of 0.4–0.6. Cultures 
were then centrifuged for 5 min at 3,500 r.p.m. The pellet was washed once with 
PBS at 37 °C and resuspended in PBS to give a final OD600 of 0.4. Cultures were 
split into eight and EtBr (or bisbenzimide-H) was added at a final concentration 
of 0.2–1.95 µg ml−1 (or for bisbenzimide-H, 0.6–6.3 µg ml−1), and bacteria were 
incubated for 30 min (Msm) or 2 h (Mtb) at 37 °C. After EtBr treatment, cells 
were centrifuged for 5 min at 3,500 r.p.m. and resuspended in 37 °C PBS to give 
a final OD600 of 0.8. A white 96-well plate (Corning) was prepared with serially 
diluted compound and 50 µl PBS containing 0.8% (w/v) glucose. Dye-loaded bac-
teria (50 µl) were added to each well of the plate. Fluorescence was read at 37 °C 
in a SpectraMax M5 plate reader using 530 nm excitation and 585 nm emission  
wavelengths for EtBr (or 346 nm and 460 nm for bisbenzimide-H) and was 
recorded every 30 s for 2 h (Msm) or 4 h (Mtb).

To infer kinetic parameters, we modelled the rate of fluorescence decay as a 
modified Michaelis–Menten67 equation, which included a term for Fick diffusion69 
between the cytoplasm and extracellular milieu. This approach is discussed in 
Supplementary Note 8.
Compound accumulation assay. Accumulation of BRD-8000.3 inside Msm  
bacteria was assayed in triplicate as previously described70, using the intrin-
sic fluorescence of the compound in PBS containing 0.4% (w/v) glucose, and 
1.5 µl of 5 mM BRD-8000.3 in DMSO. Bacteria were then incubated for 3 h at 
37 °C. Suspensions were centrifuged for 10 min at 3,500 r.p.m. Cell pellets were 
resuspended in 60 µl PBS containing 5% (v/v) DMSO then frozen at −80 °C for  
20 min, heated to 98 °C for 15 min, before centrifugation at 10,000 r.p.m. for 10 min.

Lysate (60 µl) was added to wells of a black 384-well plate. Excitation and emis-
sion wavelengths of BRD-8000.3 were 355 nm and 419 nm. Change in compound 
accumulation in lysate was determined by subtracting mean untreated control 
fluorescence from the treated sample fluorescence.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
Source Data for Figs. 1a, b, 2, 3a, c, e, 4a, 5b and Extended Data Figs. 1b, 2a, c, d, 
4a, 5, 7e, 8, 9a, b, c, f, i, l are provided with the online version of the paper. The 
raw primary screen data, calculated fold changes and P values, and compound 
annotations, are available online at https://broad.io/cgtb.

Code availability
ConcensusGLM is available at https://doi.org/10.5281/zenodo.3235787 and on 
GitHub at http://github.com/broadinstitute/concensusGLM. Other computer code 
is available from the corresponding author upon request.
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Extended Data Fig. 1 | Mtb hypomorph strain creation. a, Hypomorph 
strains were constructed by introducing a DAS tag at the 3ʹ end of the gene 
of interest, with concomitant introduction of a 20-nucleotide barcode 
and an episomally encoded, regulated SspB gene to control the level of 
protein depletion. b, Degradation of a DAS-tagged target gene product 
was mediated by SspB, the expression of which was driven by an ATC-
inducible TetON promoter. To allow individualized degrees of knockdown 
for each gene product, a series of TetON promoters with varying strengths 
was generated. Regulated promoter strength was quantified by fusion to a 
luciferase gene and measuring luminescence in the presence and absence 
of the ATC inducer. In the screen, strains containing the TetON-1, -2, 
-6, -10 and -18 promoters were used for subsequent strain construction. 
Independent biological replicates (n = 8) are shown as open circles; means 
are shown as horizontal bars; error bars denote 95% confidence intervals. 

c, A range of up to five different knockdown levels was attempted using 
five different promoters for each target gene, allowing the generation of 
2,014 hypomorphs. d, Barcoded hypomorph strains were pooled and 
distributed into 384-well plates containing the compound library and 
incubated for 14 days. e, Chromosomal strain barcodes were inserted 
into each engineered hypomorph, thus allowing PCR amplification by 
an array of primers containing 5′ overhangs encoding screen location 
(well and plate) barcodes. For census enumeration of pooled strains, PCR 
products were combined and subjected to Illumina NGS. f, Dose response 
of trimethoprim, a DHFR inhibitor, against wild-type Mtb and the DHFR 
hypomorph, showing the hypersensitivity of the hypomorph. Growth 
was calculated as OD600 normalized to untreated controls. Independent 
biological replicates (n = 4) are shown as open circles; means are shown as 
filled circles; error bars denote 95% confidence intervals.
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Extended Data Fig. 2 | Strain and compound collection 
characterization. a, Histogram of growth of the individual hypomorphs 
in the screening pool over the 14-day duration of the screen. Most 
hypomorphs were within a tenfold window of growth rates. b, Histogram 
of hypomorph Zʹ factors between the untreated wells and rifampin control 
wells of the screening assay for the hypomorphs. All Zʹ factors were greater 
than 0.5, indicating an excellent screening assay. c, The composition of the 
bioactive compound library. The right bar shows the broad classes within 
the segment of known drugs. d, The bioactive compound library was 
tested up to 50 µM against a GFP-expressing Mtb strain. Most compounds 
had detectable activity for at least one concentration tested. e, Volcano 
plot (maximum likelihood mean fold change from n = 2 biologically 
independent samples against the unadjusted two-sided Wald test P value) 
of chemical–genetic interactions from the bioactive library. Each point 
represents a single strain–compound interaction at a single concentration. 
Some interactions of interest are highlighted: compounds are designated 
by colour, with wild-type Mtb interactions shown as open circles 
and hypomorphs interactions of interest shown as solid circles. Most 
interactions were inhibitory, because the compound library was confirmed 
to be enriched for antitubercular activity.
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Extended Data Fig. 3 | Feature weights of Lasso classifiers. a, Feature 
weights of the hypomorphs used by the Lasso binary classifier to predict 
DNA gyrase inhibitors. We trained on the fluoroquinolones, with the 
GyrA hypomorph being the most predictive strain. Features are denoted 
as the target gene of the hypomorph and compound concentration 
separated by an underscore. b, As in a for the Lasso binary classifier to 
predict inhibitors of mycolic acid biosynthesis. We trained on known InhA 
inhibitors, with the MshC hypomorph being a prominent discriminator. 

c, As in a for the Lasso binary classifier to predict inhibitors of folate 
biosynthesis. We trained on the sulfonamides, with the TrpG hypomorph 
being a prominent discriminator. d, As in a but trained on chemical–
genetic interaction profiles from the sulfonamides and confirmed new 
folate biosynthesis inhibitors. e, As in a but trained on chemical–genetic 
interaction profiles of the newly identified inhibitors of tryptophan 
biosynthesis.
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Extended Data Fig. 4 | Validation of predicted DNA gyrase inhibitors. 
a, Actual compound performance of predicted DNA gyrase inhibitors in 
an agarose gel-based in vitro assay of DNA gyrase supercoiling inhibition. 
The ratio of imaged pixel intensities (Supplementary Fig. 1a–l) for 
supercoiled and relaxed bands was indicative of inhibition, shown by the 
ciprofloxacin control. Eight of the twenty-seven compounds with the 
greatest effect sizes that showed statistically significant (P < 0.05, two-
sided Wald test) inhibition are shown. Open circles show the independent 

samples (n = 23 for ciprofloxacin and novobiocin, n = 2 for all other 
conditions); filled circles indicate the mean pixel intensity ratio; error bars 
denote the 95% confidence interval of the mean. b, Agarose gel showing 
increasing inhibition of Mtb DNA gyrase supercoiling activity with 
increasing tryptanthrin concentration. DNA gyrase catalyses supercoiling 
of pBR322; inhibitors prevent the accumulation of supercoiled gel bands. 
This experiment was repeated independently once with similar results. 
The uncropped version is shown in Supplementary Fig. 1m.
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Extended Data Fig. 5 | Validation of predicted inhibitors of mycolic acid 
biosynthesis. Actual performance of predicted inhibitors of mycolic acid 
biosynthesis in an in vitro assay of inhibition of incorporation of14C-acetic 
acid into mycolic acid. The ratio of imaged pixel intensities for fatty acid 
methyl ester (FAME) and mycolic acid methyl ester (MAME) bands was 
indicative of inhibition activity, as shown by the isoniazid and ethionamide 
controls. Open circles show the independent biological replicates (n = 5 
for vehicle control, n = 4 for BRD-1728 and BRD-7564, n = 3 for BRD-
4384 and BRD-9942, n = 1 for ethionamide control, and n = 2 for all other 
conditions); filled circles indicate the mean pixel intensity ratio; error bars 
denote the 95% confidence interval of the mean (statistical significance 
determined by P < 0.05, two-sided Wald test).
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Extended Data Fig. 6 | New classes of inhibitors of folate and 
tryptophan biosynthesis. a, Schematic of the folate and tryptophan 
biosynthesis pathways. TrpG is an amphibolic enzyme, upstream of 
both PABA and tryptophan. Biosynthetic enzymes mentioned in the 
text are indicated in their metabolic context. 3-IGP, 3-indoleglycerol 
phosphate; ADC, 4-amino-4-deoxychorismate; DHF, dihydrofolate; 
DHFR, dihydrofolate reductase; DHFS, dihydrofolate synthase; 
DHP, dihydropteroate; DHP-PAS: adduct of DHP and PAS; DHPS, 
dihydropteroate synthase; HMDP-P2, 6-hydroxymethyl-7,8-dihydropterin 
diphosphate; MTX: methotrexate; PABA, para-amino-benzoic acid;  
PAS, para-aminosalicylic acid; Sulfa drugs, sulfonamide antibiotics.  
b, Dose–response curves of known inhibitors of folate biosynthesis and the 
validated tryptophan biosynthesis inhibitor scaffold, 3-indole propionic 
acid, supplemented with PABA, folic acid or tryptophan. Chemical 
structures of the known inhibitors are shown. Independent biological 

replicates (n = 4) are shown as open circles; means are shown as filled 
circles; error bars show 95% confidence intervals. c, Actual performance 
of predicted inhibitors of folate biosynthesis in a metabolite rescue assay. 
Mtb was treated with predicted inhibitors in the presence or absence of 
tryptophan, folate or PABA. The effect of BRD-7721, a 3-indole propionic 
acid ester, is abolished by supplementation with tryptophan, indicating 
it is an inhibitor of tryptophan biosynthesis. By contrast, the effect of the 
nitrothiophene BRD-2550 is abolished by folate and PABA, and that of 
BRD-8884 is abolished by folate alone, showing that they are inhibitors 
of folate biosynthesis with distinct mechanisms. Independent biological 
replicates (n = 4) are shown as open circles; means are shown as filled 
circles; error bars denote the 95% confidence intervals. d, Chemical 
structures of predicted and subsequently validated inhibitors of folate 
biosynthesis, including the nitrothiophenes and para-aminosalicylic acid 
derivative BRD-9819.
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Extended Data Fig. 7 | Performance of a large, unbiased compound 
library. a, ROC curve showing that primary data were predictive of 
activity in a confirmatory secondary growth assay (n = 4 biologically 
independent experiments). We retested 454 compound–strain interactions 
using a resazurin, growth-based colorimetric assay. Taking 75% inhibition 
in the secondary assay as the ground truth, we demonstrated the primary 
assay as predictive of real activity that could be detected by conventional 
methods. Using 50% and 90% inhibition as the ground-truth assumption, 
the ROC AUC values were 0.61 and 0.69. b, Volcano plot (maximum 
likelihood mean fold change from n = 2 biologically independent samples 
against the unadjusted two-sided Wald test P value) of chemical–genetic 
interactions from the larger unbiased chemical library. Each point 
represents a single strain–compound interaction at a single concentration. 
c, Compounds in the library of bioactive compounds generally hit more 
strains than compounds in the unbiased library. Empirical cumulative 
distribution functions of number of hypomorphs hit by compounds in the 
two screens is plotted. Shown by the dotted lines, 36% of compounds in the 
bioactive library and 75% of compounds in the larger library hit 10 strains 
or fewer, suggesting that activity detected in the larger screen was generally 
more hypomorph-specific. d, Clustering of chemical–genetic interaction 
profiles. The number of chemical–genetic interaction profile clusters in 

the two libraries was determined by finding the minimum Gap statistic, 
a measure of within-cluster similarity compared to clustering at random. 
The minimum, denoted by the dotted lines, shows the estimate of the 
true number of clusters in the unbiased and bioactive libraries, with the 
unbiased library containing many more unique chemical-genetic clusters. 
e, Chemical–genetic clusters (n = 1,864) are enriched for chemically 
similar compounds in the unbiased library. The y axis shows the frequency 
of chemical–genetic clusters with a particular Tanimoto WSS Z score  
(x axis), which is an indicator of in-cluster chemical similarity. A 
total of 221 (12%) of the clusters have meaningful structure–activity 
relationships—that is, compounds within a cluster have significantly 
greater chemical similarities than by chance—as indicated by a one-sided 
permutation test (unadjusted P < 0.05, 10,000 permutations). f, Actual 
compound performance of predicted inhibitors of folate biosynthesis in a 
metabolite rescue assay. Mtb was treated with predicted inhibitors in the 
presence or absence of folate or PABA. The effect of BRD-1242 is abolished 
by PABA alone, and the effects of BRD-4308 and BRD-9309 are abolished 
by folate alone, suggesting that they are inhibitors of folate biosynthesis 
with distinct mechanisms. Independent biological replicates (n = 3) are 
shown as open circles; means are shown as filled circles; error bars denote 
95% confidence intervals.
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Extended Data Fig. 8 | Validation of predicted RNAP inhibitors. 
Actual compound performance of predicted RNAP inhibitors in an 
in vitro assay for inhibition of RNA synthesis by E. coli RNAP. Three 
compounds that showed statistically significant inhibition are shown with 
a rifampin control (P < 0.05, two-tailed Wald test). Open circles show the 
independent replicates (n = 36 for vehicle control, n = 4 for BRD-6652, 
n = 8 for BRD-8565 and rifampin, n = 12 for actinomycin D), filled circles 
indicate the mean ratio of treatment-to-vehicle fluorescence, and error 
bars show the 95% confidence interval of the mean. Act. D, actinomycin D.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | Inhibitors of EfpA, in M. tuberculosis. a, Dose–
response analysis of BRD-8000 on the growth of wild-type Mtb, the 
EfpA hypomorph, and a mutant overexpressing EfpA (pUV15::efpA), 
demonstrating hypersensitivity of the hypomorph. Independent biological 
replicates (n = 4) are shown as open circles; means are shown as filled 
circles; error bars denote 95% confidence intervals. b, BRD-8000.2 is 
bactericidal as demonstrated by reducing colony-forming units over time. 
Independent biological replicates (n = 8) are shown as open circles; means 
are shown as filled circles; error bars denote 95% confidence intervals. 
c, Toxicity and bioavailability measurements of BRD-8000.2 and BRD-
8000.3. hERG, human ether a-go-go related gene. d, Cytochrome P450 
(CYP) inhibition measurements of BRD-8000.2 and BRD-8000.3. e, 
Schematic of the EtBr efflux assay. Bacteria were loaded with EtBr  
and its efflux was monitored by change in fluorescence. f, Example  
kinetic time courses of EtBr fluorescence decay for Msm with BRD- 
8000.3. The concentration of EtBr used for pre-incubation is indicated  
in colour, with two different inhibitor concentrations shown. Numerically 
integrated Michaelis–Menten best-fit time courses are shown in red. 
Experiments were repeated independently once with similar results.  
g, Kinetic time course of EtBr fluorescence decay for Mtb. Numerically 
integrated Michaelis–Menten best-fit time courses are shown in red. The 
table shows best-fit Michaelis–Menten parameters and Fick’s diffusion 
constant for wild-type Mtb, an EfpA-overexpressor (pUV15::efpA), and 
the BRD-8000 resistant mutant (efpAV319F). Although the in vivo apparent 
maximal efflux rate (Vmax) of the EfpA overexpressor is higher than the 
wild-type Mtb, that of the BRD-8000 resistant mutant is not, indicating 
that the resistant mutant is not hyperactive for efflux. Experiments were 

repeated independently once with similar results. h, Dose–response 
analysis of isoniazid against wild-type Mtb and the BRD-8000 resistant 
mutant (efpAV319F). Because isoniazid is a substrate of EfpA, no shift 
in the MIC90 value for isoniazid with the BRD-8000 resistant mutant 
indicates that EfpA(V319F) is not hyperactive for efflux. Mean growth 
(n = 4 biologically independent replicates) is shown, with error bars 
indicating 95% confidence intervals. i, Results of an assay for intracellular 
accumulation of BRD-8000.3 in MsmΔefpA complemented with either 
Mtb wild-type efpA or efpAV319F. Fluorescence of BRD-8000.3 in bacterial 
lysates was measured, and lysate background fluorescence was subtracted. 
Although verapamil, a general efflux pump inhibitor, caused statistically 
significant intracellular accumulation of BRD-8000.3, there was no 
significant difference in accumulation between the different strains in 
the absence of verapamil, indicating that EfpA(V319F) is not hyperactive 
for efflux, and that BRD-8000.3 is not a substrate of EfpA. Independent 
biological replicates (n = 9 for wild-type control without verapamil; n = 3 
for other conditions) are shown as open circles; means are shown as filled 
circles; error bars denote s.e.m. j, Additional compounds predicted and 
validated to be efflux inhibitors. k, Dose–response analysis of kinetic 
time courses of EtBr fluorescence decay for compounds in h. Increasing 
inhibitor concentration is denoted by colour. Experiments were repeated 
independently once with similar results. l, Example kinetic time courses 
of EtBr fluorescence decay for Msm at one concentration (6 µM) of BRD-
9327. Numerically integrated Michaelis–Menten best-fit time courses are 
shown in red. The table shows global best-fit kinetic inhibition parameters 
across ten concentrations for this inhibitor. Experiments were repeated 
independently once with similar results.
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Extended Data Table 1 | Minimum inhibitory concentrations of BRD-8000 series compounds against non-tubercular strains

Concentrations shown are micromolar. Acb, Acinetobacter baumanii; Eco, Escherichia coli; Kpn, Klebsiella pneumoniae; N.D., not determined; Psa, Pseudomonas aeruginosa; SA, Staphylococcus aureus.



1

nature research  |  reporting sum
m

ary
April 2018

Corresponding author(s): Deborah Hung

Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection For processing raw sequence data from Illumina, PicardTools and Samtools. Fluorescence and absorbance plate reader data was 
collected using Molecular Dimensions SoftMax Pro.

Data analysis GraphPad Prism versions 7.03, 8.1.1 
Microsoft Excel 16.16.8 
For gel and TLC image analysis, ImageJ version 1.50i 
R versions 3.2, 3.5 
Python versions 2.7,3.6 with RDKit version 2018_03_4 
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Sample size Sample sizes (n=2) for screening were chosen as standard for high throughput compound screening as a balance of cost and accuracy. The 
assay was optimized to allow 2 replicates to provide statistical power. All results from the screening were confirmed by orthogonal methods, 
whose sample size was chosen (n=3-4) from experience to provide power and accuracy.

Data exclusions No exclusions

Replication Primary data were generated from at least 2 independent replicates, which gave similar results. Results were confirmed using orthogonal 
methods, which demonstrated the reliability of the primary data as described in the manuscript. Follow-up mechanism of action studies were 
performed at least twice with similar results.

Randomization Plate-to-plate variation in screening and RNA polymerase assays, and gel-to-gel variation in DNA gyrase assays was accounted for by modelling 
covariate effects (i.e. batch effects) with a generalized linear model as described in the manuscript.

Blinding Compounds in our study were assigned ID numbers, essentially blinding their identity until after collection and analysis was complete. Follow-
up mechanism of action studies were not blinded.
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Policy information about cell lines

Cell line source(s) HepG2 (human liver hepatocellular carcinoma) cells: WuXi AppTec

Authentication None of the cell lines were authenticated in our lab.

Mycoplasma contamination The cell lines tested negative for mycoplasma contamination.

Commonly misidentified lines
(See ICLAC register)

None.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Female mice, C57BL/6, 7-9 weeks old

Wild animals The study did not involve wild animals

Field-collected samples The study did not involve samples collected from the field
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