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1 Abstract

The enrichment and recall of known inhibitors in a virtual screen are correlated with the probability of
finding effective inhibitors through this process. In practice, a large number of false positives are ranked
higher than known inhibitors in many virtual screen results. In this paper, we use the interaction of known
inhibitors across a range of decoy active sites in order to formulate a modified ranking score, Rscore. This
ranking scheme seeks to normalize the DOCK score of a compound based on its interaction with decoy active
sites, and uses a linear programming formulation to optimize Rscore for inhibitors versus non-inhibitors. We
show an increase in recall of known inhibitors by greater than 20% in most of the test cases considered.
Keywords: virtual screen, specificity scoring, docking, linear programming

2 Introduction

Virtual screening techniques are being increasingly used in lead identification for many newly-solved protein
3D structures [3], [11], [10]. Despite the successes of this approach, there still are many deficiencies with this
methodology. The majority of docking algorithms are still unable to handle the flexibility in receptors due to
induced fit (though some programs can account for limited receptor flexibility [1], [25]). More importantly, the
scoring functions used in various docking algorithms can only approximate the protein-ligand/small-molecule
interaction energy due to the various approximations and trade-offs involved in their formulations. Since
these functions are key to ranking the docked ligand/small molecule poses in large-scale virtual screening
runs, very often, the final interaction score for known inhibitors does not compare favorably to the scores of
other drug-like compounds that do not show any inhibition. As the size of the screening library increases,
accurate ranking becomes even more essential, since human analysis of each small-molecule interaction with
the recptor becomes less feasible.

Scoring functions estimate interaction energies in many different ways, ranging from empirical force fields
(with typical electrostatic and van der Waals terms) [16] to statistical force fields (e.g. PMF [19]), and
some try to account for the effects of solvation, ligand conformation, etc. [2]. Stahl et. al [31] empirically
compared 4 different scoring functions (FlexX, PLP, DrugScore and PMF ) across 7 different receptor sites
and found that each scoring function, because of its formulation as well as the parameters used, performed
better on certain classes of small-molecules (lipophilic, polar etc). But, none of them was able to perform

∗to whom correspondence should be addressed
†reetalp@cs.tamu.edu, 979-220-2859
‡jim.sacchettini@gmail.com, 979-862-7636
§ioerger@cs.tamu.edu, 979-845-0161

1



well on a large and diverse database, thereby significantly reducing the usefulness of these scoring functions
in large-scale virtual screens. Consensus scoring schemes have often been suggested as a way to combine
individual soring functions [35]. Consensus score ranks compounds by dropping the worst rank obtained
from any individual scoring function and retaining the second worst rank as the rank of the compound. The
consensus score seeks to select molecules that are consistently ranked higher with each of the individual
scoring functions. Unfortunately, this scoring scheme is typically found to be only as successful as the best
scoring function used [4], [20], [31].

Stahl et. al [31] also defined ScreenScore as a linear combination of the 4 scoring functions mentioned
above and found that while it did not perform as well as the PLP and FlexX scoring functions on 2 of
their 7 receptor sites, they saw an improved performance against the other sites. Since the new score was a
linear combination of the previous scores, it was able to evaluate a diverse range of compounds with higher
accuracy, thereby increasing the diversity within the virtual screen results.

Despite these incremental improvements in the scoring function formulations, the ranking of known
inhibitors in the results of a virtual screen often remain low due to the presence of a large number of false
positives (small molecules with large negative interaction energies but showing no inhibition) in this list.
The different scoring functions defined till date have been focussed on evaluating the interaction between a
given receptor and a small-molecule. Typical scoring functions do not take into account the specificity of
interaction with the receptor, relative to other receptors. It is quite possible that some small molecules have
high interaction energies with multiple active sites. Since the aim of virtual screening is to identify small
molecules that have specific and significant interactions with the receptor site, it is essential to include this
specificity analysis when ranking the results of a virtual screen. In large libraries with 106-107 compounds,
if the known inhibitors are not ranked within approximately the top 1%, there may be thousands of false
positives with apparently good docking scores that must be assayed before finding those with true inhibition
activity.

In this paper, we will present a novel approach that will increase the recall and enrichment rate of a
virtual screen by improving the ranking of known inhibitors versus non-inhibitors. We define a ranking
function Rscore that takes into account the specificity of the small-molecule’s interaction with the protein
by calibrating the score against scores from docking to functionally different active sites (decoy sites). To
this end, we employ a linear programming formulation and determine a set of weights for the interaction of
the molecule to the decoy sites in order to optimize the Rscore value for known inhibitors versus those for
non-inhibitors.

We used DOCK6.1 [17] as the docking algorithm and the DOCK score (or Grid energy) as the initial
scoring function. The active sites of cycloxygenase II (COX-2) and dihydrofolate reductase (DHFR) were
used as test cases and the small-molecules in the Chembridge drug-like library were used as the database in
these experiments.

3 Methods

The specificity of interaction can be evaluated by comparing the DOCK score to the receptor of interest
against the scores to the decoy sites. A good inhibitor should have a large negative score against the receptor
of interest and have lower magnitude interaction energies against the decoy sites. Rscore seeks to re-rank
the results of a virtual screen by incorporating more information about interactions with decoy sites so as
to increase the percentage of known inhibitors at the top of the ranked list.

A straight-forward approach would be to compare the DOCK score to the distribution of scores to the
decoy sites (e.g. compute a Z-score). This approach makes it difficult to deal with cases when docking either
fails (for example, when a small-molecule does not fit into the receptor site) or when the dock score is a very
large positive score (possibly due to insufficient conformational sampling). Each of these three conditions
(docking with a negative score, docking with a positive score, or not docking at all) reflect the “dockability”
of the small-molecule in different ways, and Rscore seeks to combine this information.

Let P1...Pn define the n decoy active sites and P0 define the target receptor and s0..sn are docking scores
to each of the receptors. Then Rscore can be written as

Rscore = w1δ + w2π + w3φ (1)
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where δ is the difference between DOCK score to taregt receptor vs. mean over decoys (with negative
scores).

µ =
1

n

∑
si for si < 0 average of the negative scores (2)

π = number of receptors with positive scores (3)

φ = number of docking failures (4)

We seek weights w1, w2 and w3 so as to minimize the Rscore value for inhibitors as compared to the Rscore

value for non-inhibitors. The choice of the weights is crucial to the correct ranking of known inhibitors and
non-inhibitors. Non-inhibitors can be sampled randomly from the small-molecule library, assuming most of
the compounds from the library do not have any inhibition activity. In this study, we use linear programming
to find a set of weights that maximizes the number of times the known inhibitors are ranked higher than
non-inhibitors.

3.1 Linear Programming Formulation

In the linear programming formulation, constraints are defined and the most stringent constraints can be
written as

Rscorei − Rscorej ≥ 0 ∀i ∈ non-inhibitors, ∀j ∈ inhibitors (5)

where Rscorei and Rscorej are the values of Rscore (as defined by Equation 1) for a non-inhibitor and an
inhibitor respectively. Substituting Equation 1 into Equation 5 and rearranging the terms we get

w1(δnon − δinh) + w2(πnon − πinh) + w3(φnon − φinh) ≥ 0 (6)

Multiple such constraints can be defined by repeatedly randomly choosing a non-inhibitor and a known
inhibitor, computing their values of δ, π and φ and finally, formulating a constraint as in Equation 6.
Since, there are likely to be some inhibitors and/or some non-inhibitors that do not meet the above defined
constriants, slack variables are introduced into each constraint and the weights w1, w2 and w3 are chosen
such that the sum of these slack variables is minimized (reducing the number of times a non-inhibitor is
ranked higher than an inhibitor). This less stringent constraint is written as

Rscorei − Rscorej + sk ≥ 0 (7)

where sk defines the slack variables introduced into each constraint and k runs over the number of constraints
created. The linear program formulation is written as

Minimize : ΣC
k=1sk (8)

s.t. w1 + w2 + w3 = 1 (9)

s.t. Rscorei − Rscorej + sk ≥ 0 k = 1 : C (10)

where C is the total number of constraints.

4 Results

In this work, we employ the COX-2 active site which has been extensively studied and various NSAIDs
(non-steroidal anti-inflammatory drugs) have been designed to interact with this receptor site [5], [13], [14],
[21], [23], [26], [27], [33], [34]. We chose the specific 3D coordinates from 6COX (complexed with SC558) [14]
to define the receptor site of interest. While, there exist multiple crystal structures for COX-II, there are only
small differences in the active site conformations between them and therefore most of the inhibitors should
dock to the chosen crystal structure (the conformations of Arg120 and Leu384 are the most varied, but these

3



changes do not affect most inhibitors [9]). The 9 decoy active sites used in this study are Mycobacterium

tuberculosis (Mtb) alanine racemase, 1XFC (Alr; [15]), Mtb type II dehydroquinase, 1H0R (AroD; [28]),
diaminopelargonic acid synthase, 3BV0 (BioA; [7]), Mtb 1-Deoxy-D-xylulose 5-phosphate reductoisomerase,
2JCZ (DXR; [12]), Mtb long fatty acid chain enoyl-ACP reductase, 1ZID (InhA; [29]), Mtb malate synthase,
1N8W (MS; [30]), Mtb pantothenate synthetase, 2A7X (PanC; [36]), Plasmodium falciparum enoyl-acyl-
carrier-protein reductase, 1NHG (PfENR; [24]) and Mtb phosphoglycerate dehydrogenase, 1YGY (PGDH;
[8]). Each of these active sites was defined based on the coordinates of the bound ligands as well as published
active site definitions. The receptors were all prepared by adding hydrogens and applying AMBER charges
[6] using Sybyl [32].

The 250,000 drug-like small molecules from the Chembridge library (http://www.chembridge.com) were
docked into each of these active sites using Dock6.1. These small molecules were prepared using Openeye
software [22] by adding hydrogens and applying Gasteiger charges. It is assumed that none of these small-
molecules show any inhibition against the COX-2 site and therefore these molecules are used as examples of
non-inhibitors (negative examples of inhibitors) in future linear programming formulations.

Seventeen of the known inhibitors (arachidonic acid, Celebrex, Diclofenac, Etodolac, Etoricoxib, Flur-
biprofen, Ibuprofen, Indomethacin, Ketoprofen, Lumaricoxib, Meloxicam, Naproxen, Piroxicam, Resveratrol,
SC558, Valdecoxib and Vioxx) are listed in Figure 1. These known inhibitors form the set of positive examples
used in this study.

Figure 1: Known inhibitors used in this study.

Fourteen of the 17 known inhibitors docked succesfully with negative DOCK score to the 6COX receptor
site. Two of the known inhibitors (Valdecoxib and Vioxx) docked with positive scores and Indomethacin did
not dock at all. The inhibitor (substrate) arachidonate had the highest (most negative) DOCK score (-60.69)
and the inhibitor Etoricoxib has the lowest DOCK score (-22.77). Table 4 lists the DOCK score of the 17
known inhibitors against the 9 decoy active sites as well as the COX-2 site. This table shows that SC558
and Celebrex dock with a positive score in majority of the decoy active sites (6/9 and 7/9 respectively) and
do not dock against the remaining decoy sites. All the other inhibitors dock with a negative score (albeit
lower DOCK score) with majority of the decoy sites.

In this experiment, 100 constraints were created by randomly picking a non-inhibitor and an inhibitor
and adding a constraint as defined in Equation 7. The known inhibitors are used in training (to optimize
the weights using the linear programming formulation) and also used in testing (to evaluate whether the use
of Rscore improves the ranking of known inhibitors). Therefore, care is taken to ensure separation between
training and test cases by using a leave-one out method. N-1 known inhibitors are used for creating the
constraints and determining the optimal weights and the remaining inhibitor is used as test case. For each
set of 100 constraints, the values for w1, w2 and w3 were obtained using GLPSOL available as part of the
GNU Linear Programming Kit (http://www.gnu.org/software/glpk). This was repeated 300 times and the
final set of weights was defined as the average of the weights obtained in each linear programming iteration.

Table 4 shows the value of δ for each known inhibitor against the 9 decoy sites, the number of sites
that have positive DOCK scores and the number of sites that the inhibitor fails to dock against. The value
of Rscore is listed for each known inhibitor. The table lists the ranking of the inhibitor according to the
original DOCK score and the ranking according to Rscore. It also lists the consensus score computed by
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finding the second worst rank based on DOCK score and CScore (Sybyl implementation that computes
DSCORE, PMFSCORE, GSCORE and CHEMSCORE ). This table shows that the ranking of most of the
known inhibitors using Rscore greatly increases the enrichment rate; 8/14 rank within the top 5%. Several
increase in ranks by greater that 20%; e.g. Piroxicam increases in rank from 23% (DOCK ) to the top
2% (Rscore). Rscore performs much better than the ranking using consensus score. Rscore ranks were
not computed for Celebrex and SC558 since both these compounds did not dock to any of the decoy sites
with a negative score (thereby no normalization factor indicating specificity could be computed). Figure 2a
compares the enrichment curves based on DOCK score, consensus score and Rscore.

Active Site
Inhibitor ALR AroD BioA DXR InhA MS PanC PfENR PGDH COX-2
Arachidonate 599 -51.49 -64.98 -68.69 -38.42 -63.43 -57.95 -46.65 -60.69
Celebrex 2868 128 3851 10249 91.66 18.75 11068 -44.08
Diclofenac 720 -41.3 126 -35.74 -37.28 -41.10 10.79 -34.55
Etodolac 606 -21.92 2.69 -25.36 -37.46 -43.46 -42.30 -34.80
Etoricoxib 232 -31.68 238 -23.28 -32.39 3.73 61.17 -22.77
Flurbiprofen 87 -40.92 -34.46 -41.84 -19.13 -30.40 -40.79 -42.15 -11.78 -34.80
Ibuprofen -43.9 -44.17 -41.66 6.67 -33.34 -41.07 -39.83 -15.35 -39.31
Indomethacin 1090 56.46 144 -40.68 -22.17 -35.26 -29.81 -53.53 2209
Ketoprofen 19 -34.96 -40.3 -34.92 -26.27 -38.01 -41.03 -43.71 -13.01 -34.31
Lumaricoxib 197 -30.15 130 -20.69 -31.33 -36.63 1150 -20.36
Meloxicam 41 -20.77 -41.38 16.75 -38.41 -43.05 -7.63 -35.47
Naproxen 41 -39.17 -38.8 -42.34 -21.29 -32.88 -43.90 -39.84 -17.50 -43.72
Piroxicam 662 -29.92 -41.26 4.11 -38.43 -40.60 -39.75 19.40 -32.21
Resveratrol -10.49 -32.15 -36.01 -46.40 -40.69 -34.52 -36.76 -20.61 -35.40
SC558 4468 100 3583 3662 61.34 249 -38.26
Valdecoxib 872 -22.31 -19.94 92.99 -30.49 34.95 8.05 -41.45 11.26 439
Vioxx 672 -16.03 -37.76 57.17 -43.54 -22.03 -33.60 -42.21 4637 71.92

Table 1: DOCK scores of known COX-II inhibitors across various receptor sites.

DOCK µ δ π φ Rscore DOCK Consensus Rscore
Inhibitor Score Rank Score Rank Rank
Arachidonate -60.69 -55.95 -4.74 1 1 0.984 35 (0%) 60866 (24%) 949 (0%)
Celebrex -44.08 (a) 7 2 5821 (2%) 3994 (2%)
Diclofenac -34.55 -38.85 4.3 3 2 2.009 42125 (17%) 57686 (23%) 18227 (7%)
Etodolac -34.80 -34.1 -0.7 2 2 1.993 39030 (16%) 131660 (53%) 13877 (6%)
Etoricoxib -22.77 -29.12 6.35 4 2 2.016 91311 (37%) 144670 (58%) 20025 (8%)
Flurbiprofen -34.80 -32.69 -2.11 1 0 -0.005 39031 (16%) 143323 (57%) 5 (0%)
Ibuprofen -39.31 -37.03 -2.27 2 0 -0.005 18331 (7%) 75762 (30%) 5 (0%)
Ketoprofen -34.31 -34.02 -0.29 1 0 0.0007 43325 (17%) 59152 (24%) 7 (0%)
Lumaricoxib -20.36 -29.7 9.34 3 2 2.024 95525 (38%) 19093 (8%) 20807 (8%)
Meloxicam -35.47 -30.24 -5.23 2 2 1.979 35755 (14%) 121213 (48%) 10252 (4%)
Naproxen -43.72 -34.46 -9.26 1 0 -0.023 6395 (3%) 82715 (33%) 1 (0%)
Piroxicam -32.21 -37.99 5.78 3 1 1.014 57959 (23%) 109242 (44%) 4248 (2%)
Resveratrol -35.40 -32.21 -3.19 0 1 0.987 36088 (14%) 97086 (39%) 1235 (0%)
SC558 -38.26 (a) 6 2 22611 (9%) 1764 (1%)

Table 2: Rscore calculation and its comparison to DOCK Score. Ranks are given as a percentage relative to the Chemibridge
library containing 250,000 compounds. µ is the mean negative score over the decoy sites, δ is the normalized value of the DOCK

score to the target receptor, π is the number of decoy receptors with positive scores and φ is the number of decoy receptors
with docking failures. (a) indicates that the compound did not dock successfully (with a negative score) to any decoy sites, so
Rscore could not be computed.

This study was repeated with E. coli dihydrofolate reductase (DHFR) [37]. There exist a number of known
inhibitors with nanomolar IC50’s for DHFR. This study was repeated using 9 of these known inhibitors. The
receptor site was based on the crystal structure of 1RX3, complexed with methotrexate and NADP (the latter
was included in the receptor definition used for docking). Only 7 of the 9 chosen inhibitors docked to the
1RX3 active site. The rankings using the three scores examined in this study are tabulated in Table 4. While
DOCK ranks only one of the known inhibitors near the top, and all the others around 100,000, Rscore ranks
all the known inhibitors at approximately 10,000 or below (out of 250,000), and 3 within the top 100. The
enrichment curve is shown in Figure 2b.
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Figure 2: The enrichment curves for COX-II (panel a) and DHFR (panel b) based on the three different scores
explored in this study. This graph shows that Rscore significantly increases the enrichment in comparison
to both DOCK score as well as the consensus score from Sybyl.

Inhibitor IC50 DOCK Consensus Rscore
(Pubchem (nM) Rank Score Rank Rank

CID)
10012485 1.1 × 104 185598 (74%) 170858 (68%) 11 (0%)
22302034 109 16 (0%) 15828 (7%) 10004 (4%)
2796981 790 189228 (76%) 185665 (74%) 20 (0%)
4047882 660 137277 (55%) 169443 (68%) 5154 (2%)
446245 310 150390 (60%) 16583 (7%) 10024 (4%)
446998 18 41825 (17%) 165826 (68%) 67 (0%)
462591 400 133819 (54%) 39029 (16%) 9167 (4%)

Table 3: Comparison of Rscore to DOCK Score and consensus score for DHFR in virtual screen against ChemBridge library
consisting of 250,000 compounds.

5 Discussion

Rscore helps remove biases in the scoring function (e.g. preference toward large and charged compounds)
and thereby promotes diversity within the top ranked compounds. Additionally, despite its use of known
inhibitors in its analysis, it does not necessarily bias the results towards the scaffold of known inhibitors.
It only seeks to mimic the interaction profile of the known inhibitors across the decoy sites (i.e. those
that interact favorably to the target receptor and unfavorably to the decoy sites). Therefore it retains the
diversity of selections from the database.

In this study, we have assumed all the compounds in the library are non-inhibitors. Examining the
chemical similarity between the known inhibitors and the compounds in the small-molecule library could be
used to identify compounds with similar chemical profiles and these compounds can then be additionally
considered as positive examples in the linear programming formulation. Since the formulation of Rscore

depends on known inhibitors, any increase in the number of known inhibitors used in training will improve
the reliability of the weights obtained thereby increasing the reliability of Rscore.

Essential to the definition of Rscore is the docking of small-molecules to the decoy active sites. While
the process of docking 250,000 compounds to decoy active sites is time-consuming, these jobs have to be
run only once and the results can be used for normalizing subsequent virtual screen runs. The number of
decoy sites is variable and a larger number of sites can only increase the accuracy of the approach. The
computation of weights using linear programming is very simple and fast.
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6 Conclusions

In this paper, we have proposed a novel quantitative approach to increase the recall in a virtual screen. This
methodology increases the rank of some of the known inhibitors by almost 20%. This significant increase
in ranking ensures higher hit-to-false positive ratios. This quantitative analysis of inhibitor specificity based
on DOCK scores for decoy sites provides a simple, yet, powerful tool to re-rank the results of a virtual
screen without having to modify the scoring function. Future experiments are needed to further analyse the
performance of Rscore for other receptor sites. Combining information from multiple crystal structures for a
given active site (examples of receptor conformational flexibility) might further improve this analysis. This
method holds great promise towards increasing enrichment in virtual screens.
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structure of alanine racemase from Mycobacterium tuberculosis contains a conserved entryway into the active site. Biochemistry,
44:1471-1481.

[16] Mackarell AD. (2004) Empirical Force Fields for Biological Macromolecules: Overview and Issues J. Comp. Chem, 25:1584-1604.

[17] Moustakas DT., Lang PT., Pegg S., Pettersen E., Kuntz ID., Brooijmans N., Rizzo RC. (2006) Development and validation of a
modular, extensible docking program: DOCK 5. J Comput Aided Mol Des., 20(10-11):601-619.

[18] Mozziconacci JC., Baurin N., Morin-Allory L. and Marot C. (2002) Automated docking of cox-2 selective inhibitors for virtual
screening and combination with 2D-QSAR approach. Eighth Electronic Computational Chemistry Conference.

[19] Muegge I. and Martin YC. (1999) A General and Fast Scoring Function for Protein-Ligand Interactions: A Simplified Potential
Approach. J. Med. Chem., 42:791-804.

[20] Oda A., Tsuchida K., Takakura T., Yamaotsu N., and Hirono S. (2006) Comparison of Consensus Scoring Strategies for Evaluating
Computational Models of Protein-Ligand Complexes. J. Chem. Inf. Model., 46(1):380 -391.

7



[21] Olgen S., Akaho E. and Nebioglu D. (2001) Synthesis and receptor docking studies of N-substituted indole-2-carboxylic acid esters
as a search for COX-2 selective enzyme inhibitors. Eur J Med Chem., 36(9):747-770.

[22] OEChem, version 1.3.4, OpenEye Scientific Software, Inc., Santa Fe, NM, USA, www.eyesopen.com, 2005.

[23] Palomer A., Pascual J., Cabre M., Borras L., Gonzalez G., Aparici M., Carabaza A., Cabre F., Garcia ML. and Mauleon D. (2002)
Structure-based design of cyclooxygenase-2 selectivity into Ketoprofen. Bioorg Med Chem Lett., 12(4):533-537.

[24] Perozzo R., Kuo M., Sidhu AS., Valiyaveettil JT., Bittman R., Jacobs WR., Fidock DA. and Sacchettini JC. (2002) Structural
Elucidation of the Specificity of the Antibacterial Agent Triclosan for Malarial Enoyl Acyl Carrier Protein Reductase. J.Biol.Chem.,
277:13106-13114.

[25] Rarey M., Kramer B., Lengauer T. and Klebe G. (1996) A fast flexible docking method using an incremental construction algorithm.
J Mol Biol., 261(3):470-89.

[26] Riendeau D., Percival MD., Boyce S., Brideau C., Charleson S., Cromlish W., Ethier D., Evans J., Falgueyret JP., Ford-Hutchinson
AW., Gordon R., Greig G., Gresser M., Guay J., Kargman S., Leger S., Mancini JA., O’Neill G., Ouellet M., Rodger IW., Therien
M., Wang Z, Webb JK, Wong E, Chan CC, et al. (1997) Biochemical and pharmacological profile of a tetrasubstituted furanone as
a highly selective COX-2 inhibitor. Br J Pharmacol., 121(1):105-117.

[27] Riendeau D., Percival MD., Brideau C., Charleson S., Dube D., Ethier D, Falgueyret JP, Friesen RW, Gordon R, Greig G, Guay J,
Mancini J, Ouellet M, Wong E, Xu L, Boyce S, Visco D, Girard Y, Prasit P, Zamboni R, Rodger IW, Gresser M, Ford-Hutchinson
AW, Young RN, Chan CC. (2001) Etoricoxib (MK-0663): preclinical profile and comparison with other agents that selectively
inhibit cyclooxygenase-2. J Pharmacol Exp Ther., 296(2):558-566.

[28] Robinson DA., Roszak AW., Frederickson M., Abell C., Coggins JR. and Lapthorn AJ. Structural Basis for Selectivity of Oxime
Based Inhibitors Towards Type II Dehydroquinase from Mycobacterium Tuberculosis. To be Published

[29] Rozwarski DA., Grant GA., Barton DH., Jacobs WR., Sacchettini JC. (1998) Modification of the NADH of the isoniazid target
(InhA) from Mycobacterium tuberculosis. Science, 279:98-102.

[30] Smith CV., Huang CC., Miczak A., Russell DG., Sacchettini JC. and Honer Zu Bentrup K. (2003) Biochemical and structural
studies of malate synthase from Mycobacterium tuberculosis. J.Biol.Chem., 278:1735-1743.

[31] Stahl M. and Rarey M. (2001) Detailed analysis of scoring functions for virtual screening. J Med Chem., 44(7):1035-1042.

[32] SYBYL 7.3, Tripos International, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA.

[33] Szabo G., Fischer J., Kis-Varga A. and Gyires K. (2008) New celecoxib derivatives as anti-inflammatory agents. J Med Chem.,
51(1):142-147.

[34] Tsai WJ., Shiao YJ., Lin SJ., Chiou WF., Lin LC., Yang TH., Teng CM., Wu TS., Yang LM. (2006) Selective COX-2 inhibitors.
Part 1: synthesis and biological evaluation of phenylazobenzenesulfonamides. Bioorg Med Chem Lett., 16(17), 4440-4443.

[35] Wang R. and Wang S. (2001) How does consensus scoring work for virtual library screening? An idealized computer experiment.
J Chem Inf Comput Sci., 41(5):1422-1426.

[36] Wang S. and Eisenberg D. (2006) Crystal Structure of the Pantothenate Synthetase from Mycobacterium tuberculosis, Snapshots
of the Enzyme in Action. Biochemistry, 45:1554-1561.

[37] Zolli-Juran M., Cechetto JD., Hartlen R., Daigleb DM., and Brown ED. (2003) High Throughput Screening Identifies Novel
Inhibitors of Escherichia coli Dihydrofolate Reductase that are Competitive with Dihydrofolate. Bioorganic & Medicinal Chemistry
Letters, 13:2493-2496.

8


