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ABSTRACT

Transposon mutagenesis experiments enable the identifica-
tion of essential genes in bacteria. Deep-sequencing of mu-
tant libraries provides a large amount of high-resolution data
on essentiality. Statistical methods developed to analyze this
data have traditionally assumed that the probability of ob-
serving a transposon insertion is the same across the genome.
This assumption, however, is inconsistent with the observed
insertion frequencies from transposon mutant libraries of M.
tuberculosis.

We propose a modified binomial model of essentiality that
can characterize the insertion probability of individual genes
in which we allow local variation in the background insertion
frequency in different non-essential regions of the genome.
Using the Metropolis-Hastings algorithm, samples of the
posterior insertion probabilities are obtained for each gene,
and the probability of each gene being essential is estimated.
We compare our predictions to those of previous methods
and show that, by taking into consideration local insertion
frequencies, our method is capable of making more conser-
vative predictions that better match what is experimentally
known about essential and non-essential genes.
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1. INTRODUCTION

Knowledge of which genes are essential for the growth of an
organism enables the development of new drugs that target
these genes, thus preventing its growth [9]. A common way
to determine which genes are essential in bacterial organisms
is through transposon mutagenesis experiments. In these ex-
periments, large libraries of mutants are created by subject-
ing individual bacilli to transposon mutations. Transposons
are small fragments of DNA that are capable of inserting
within the genome, thereby disrupting the genomic regions
where they insert. The Himarl transposon is frequently used
in transposon mutagenesis experiments, as it is known to
insert at random TA dinucleotide sites (“TA sites”) within
the genome. This specificity to TA sites can be exploited
through sequencing, as the possible insertion locations can
be known beforehand.

Early attempts to use transposon mutant libraries to assess
essentiality utilized micro-array hybridization to determine
which genes where being expressed and which ones where
not [13, 14, 15]. Although these methods were capable of
assessing which genes where disrupted, they did not pro-
vide detailed information about where the insertions took
place. With the development of next-generation sequencing,
large libraries of transposon mutants can be sequenced at
the same time, providing high-resolution information about
which areas in the genome can be disrupted.

Various statistical methods have been developed to analyze
the data obtained with deep-sequencing, and asses the es-
sentiality of bacterial organisms. Some of these methods
have examined the relative number of transposon insertions
that map to specific TA sites (“read counts”). For exam-
ple, Zhang et al [16] developed a non-parametric test of
mean read counts to assess the essentiality requirements for
windows of TA sites throughout the genome. In addition
to read-counts, other methods have focused on the relative
frequency of the insertions (i.e. fraction of TA sites dis-
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rupted). Blades and Broman [3] developed a Multinomial
model to characterize the essentiality of libraries that had
a small number of transposon insertions. This method was
used to assess the genes necessary for growth of M. tubercu-
losis in vitro and in lung [11, 10]. Recently, we developed a
Bayesian model of essentiality that used the extreme value
distribution to determine the probability of observing large
gaps devoid of any insertions that are characteristic of essen-
tial regions [8, 5]. Using the Metropolis Hastings algorithm,
this method was able to avoid using a priori estimates of pa-
rameter values, instead estimating them by sampling from
the corresponding posterior distributions.

One key assumption of this method is that the insertion
probability is the same for all non-essential genes. While
this assumption serves to simplify the statistical model, it
is unlikely that all genes (or all genes within a given class
of essentiality) share the same insertion probability. For
instance, GC-rich regions can be difficult to sequence suc-
cessfully, which may lead to incomplete sequence coverage
in certain genomic regions leading to depressed read-counts
and insertions. This could explain why PE_PGRS genes in
the M. tuberculosis genome have been previously observed
to contain large gaps devoid of insertions, and indeed have
been characterized as essential by some statistical models,
even though this family of genes is generally believed to be
non-essential [2, 11]. Furthermore, because Himarl-based
transposons have specificity to TA sites, and the distribu-
tion of TA sites within genes is variable, genes can contain
different amount of TA sites within regions that can be dis-
rupted (for example, in the N- and C- termini or within
non-essential domains), which can lead to differences in the
number of insertions observed.
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Figure 1: Histogram of the number of insertions ob-
served within windows of 20 TA sites (gray bars).
The binomial distribution (black line) is incapable of
fitting the over-dispersion of observed in the number
of insertions.
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This variability in insertion probability is evident in libraries
of transposon mutants. Figure 1 shows a histogram of the
observed number of insertions (gray bars) within windows
of 20 TA sites, for a transposon mutant library of M. tu-
berculosis [8]. A sliding window of 20 TA sites was shifted
by one across the genome, and the number of insertions ob-
served within the window was determined. The observed
distribution of insertions (gray bar) is more dispersed than
what would be expected with a binomial distribution (black
line), suggesting that the insertion frequency is not constant
but instead varies within genomic regions. Assuming an in-
sertion probability that is globally constant will ignore this
variability, and lead to less reliable predictions.

In this paper, we present a Bayesian method for analyzing
deep-sequencing data from transposon mutagenesis experi-
ments. Our method utilizes a binomial likelihood to model
the insertions within the genes and a beta distribution to
model the local insertion probability for each gene. The
Metropolis-Hastings algorithm is used to estimate the pa-
rameters of the model and obtain the posterior probability
of essentiality for each gene. The predictions of the model
are then compared to previous results, and the effect of tak-
ing into consideration individual insertion probabilities is
examined.

Thus the main contribution of this paper is to show how
to extend Bayesian models of essentiality by relaxing the as-
sumption of a global insertion frequency to a local-frequency
model, where each gene can have its own local variation.
This extension improves the prediction of essential genes by
taking into consideration the variability of insertion prob-
abilities observed in the data, and the length of the genes
into account.

2. METHODS

The data obtained from sequencing the transposon mutant
libraries is mapped to the genome, and the amount of reads
matching individual TA sites (“read counts”) is determined.
The read counts are censored to a maximum value of 1, rep-
resenting whether an insertion was observed at a particular
TA site or not (i.e. a value of 1 indicates at least one inser-
tion was observed, and a value of 0 indicates no insertions
were observed). This model assumes that the insertion fre-
quency is sufficient to determine the essentiality of genes.
Although potentially relevant information about essential-
ity might be lost by censoring the read counts, read counts
can also be unreliable if the sequencing was subject to PCR
bias or amplification [1].

Under this representation TA sites are treated as Bernoulli
events, with the presence or absence of an insertion indicat-
ing a success or a failure. For each gene, the number of TA
sites and insertions it contains is determined, and these are
treated as a series of independent trials. In addition, genes
are assumed to belong to a mixture of two classes of essen-
tiality: essential and non-essential genes. The insertion fre-
quency for each of these classes of genes is modeled through
a mixture of beta distributions. Finally, the Metropolis-
Hastings algorithm is used to sample from the conditional
distributions of the parameters, and the posterior probabil-
ity of a gene belonging to a class essential class of genes is
estimated.
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2.1 Model

For the all genes i € {1...G}, let Y; = {k;, n;} represent the
data for the i-th gene, consisting of the number of inser-
tions, k;, and the total number of TA sites, n;. Each gene i
contains a latent variable 6;, which represents the insertion
probability for this gene. The genes are modeled as a mix-
ture of non-essential and essential genes, with an indicator
variable, Z; = {0, 1}, indicating whether the i-th gene be-
longs to the class of non-essential (0) or essential (1) genes.
The mixture coefficient, w1, represents the probability of a
gene belonging to the essential class (with the probability of
belonging to the non-essential class wo = 1 — wy).

2.1.1 Complete Data Likelihood

For each gene i, the likelihood of observing k; insertions out
of n; TA sites is given by a binomial distribution with suc-
cess probability 6;. Assuming genes are independent of each
other, the complete data likelihood is given by the product
of binomial distributions over all the genes:

G
H Binomial(k;|n;, 6;) (1)

2.1.2  Prior Probabilities

The distribution of individual insertion probabilities, 0; is
modeled by a mixture of two Beta distributions: one mod-
eling the probability of insertion for “essential” genes, and
another modeling the insertion probability at non-essential
genes:

91|Z-L =0~ Beta(Kopo, Ho(l — po))

2
0i|Zi:1~Beta(mp1, ﬁl(l—p1)) ( )

Under this parametrization (i.e. a = kp and 8 = k(1 — p)),
the p parameter represents the mean insertion probability
(i.e. mean of the distribution). On the other hand, the &
parameter can be thought of as the number of observations.
This is because in the common parameterization the sum a+
[ can represent the number of Bernoulli trials depending on
the application. Under this parameterization a4+ 8 = kp +
k(1 — p) = k. Thus, with larger values of k the distribution
becomes tighter around the mean (i.e. p).

Because the p parameters represent probabilities, requiring
support for values in the range [0, 1], Beta distributions are
chosen as priors:

po ~ Beta(ao, o)

p1 ~ Beta(ah ,31) (3)

where o, Po, a1, and §1 are hyper-parameters for the beta
distribution.
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As the k parameters require support for values in the range
[0,inf), gamma distributions are chosen as priors:

ko ~ Gamma(ao, bo)

(4)

k1 ~ Gamma(ai, b1)

where ag, bo, a1, and by are hyper-parameters describing the
shape and and scale of the respective distributions.

The prior distribution for the indicator variable, Z;, is given
by the Bernoulli distribution, with probability of success w1,
which represents the probability of a gene belonging to the
class of essential genes:

Z; ~ Bernoulli(w) (5)

Finally, the prior distribution for w; is given by a Beta dis-
tribution:

w1 ~ Beta(aw, /Bw) (6)

2.1.3  Full Joint Distribution

Using the likelihood function (1) and the prior distributions
(2, 4, 3, 5, 6) described above, the full joint distribution has
the following form:

G
p(K’@:HI,Plvf‘CO:PmZUJI) = Hp(kl | nivei) X p(al I Kzi,pzi)

X p(k1) X p(p1) x p(ko) X p(po) X p(Zi | w1) x P((U;;)
G
= HBinomial(ki\m, 0;) x [Beta(0i|kip1, ki(1— p1))]?

x [Beta(8:[wopo, wo(l — po))]'~%

x Gamma(ko|ao, bo) X Beta(po|ao, o)

x Gamma(k1|a1,b1) x Beta(p1|ai, 81)

x Bernoulli(Z;|w1) x Beta(wi|aw, Bw) (8)

where K = {ki1,k2,....ka}, © = {01,02,...,0Gg}, and Z =
{Z1,Za, ..., Zc}.

2.1.4  Conditional Distributions

Below, the conditional distributions for the parameters of
the essential genes are given (the corresponding distribu-
tions for the non-essential parameters are defined in a sim-
ilar manner). For an individual insertion probability, the
conditional distribution is a beta distribution with updated
parameters:

p(0i|ki,k, p, Zi = 1) x Beta(0;|k1p1 + ki, k1(1 — p1) +ni — ki)
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The beta distributions depend on parameters p; and ki
which are distributed as follows:

p(’{1|ki7 01'7 phZi = 1)

o« Beta(0;|k1p1, £1(1 — p1)) X Gammal(k|ai,br1)

p(p1lki, 0i, k1,2 = 1)
X Beta(0i|n1p1, K,l(l — pl)) X Beta(p1\a1,,81)

Finally, the individual indicator variable, Z;, is given by a
Bernoulli distribution:

. pl
Zzzlkue’w ; ) =B 11
o( | K1, p1,w1) ernoulli (p1+p0)

where,
pl :Beta(Gi\mpl—i—ki, Kl(l—pl)-i-’ni—ki) X w1
p0 IBeta(Qi‘Kopo+ki7 Ko(l—p0)+ni —ki) X (1—(4)1)

2.2 Parameter Estimation

In order to estimate parameters of the model and the prob-
ability of the genes being essential, samples are obtained
through the Metropolis-Hastings algorithm. The Metropolis-
Hastings (MH) algorithm is a Markov Chain Monte Carlo
(MCMC) method that can be used to sample from arbitrary
functions which may be too difficult to sample from other-
wise. Briefly, candidate values are generated from a pro-
posal distribution and then accepted or rejected according
to a ratio of the target function evaluated at the candidate
value (z.) and the last value (z;—1) in the Markov chain:

s _f(z9)
M H Ratio = Fai=T)-

Because the binomial likelihood (1) and the beta priors (2)
are conjugate, the resulting conditional distribution can be
sampled from easily. However, this is not the case for the
conditional distributions of the p and k parameters. We
use a combination of Gibbs Steps and MH steps to obtain
samples for all the parameters (See Algorithm 1).

3. RESULTS

Our method was applied to deep-sequencing data from mu-
tant libraries of the H37Rv strain of M. tuberculosis [8, 5].
The library was grown in minimal media and 0.1% glyc-
erol. The surviving mutants were sequenced with an Illu-
mina GAII sequencer, with a read length of 36 bp, produc-
ing 6 to 8 million reads. These reads were mapped to the
H37Rv genome, producing read counts at each TA site in
the genome.

The H37Rv genome is 4.41 million bp long and contains
3,989 open-reading frames (ORF's) [4]. Of these ORFs, 3947
contain at least 1 TA site, with an average of 15.9 TA sites
per ORF. The remaining 42 ORF's, which do not contain
a TA site, were not considered in this analysis as their es-
sentiality cannot be determined with libraries built with the
Himarl transposon.
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A sample of 52,000 values was obtained with the Metropolis
Hastings algorithm. In order to make sure that the MCMC
chain converged before parameters were estimated, the first
2,000 samples were discarded as part of the burn-in period.
The remaining 50,000 samples were used to estimate the
posterior mean of the parameters of the model. The accep-
tance rate for the po and p; parameters was 60% and 62%,
and the acceptance rate for the ko and k1 parameters was
67% and 72% respectively. Multiple chains of the MH sam-
pler were run in an attempt to verify that the the sampler
was not trapped in local minima, and was converging to the
same area in parameter space.

Algorithm: Random-Walk Metropolis-Hastings

Result: MCMC Samples of the densities p(Z;|Y, ©, p, k)
and p(6;]Y, p, k) for i € {1...G}

Assign starting values to 0;, po, ko, p1, k1 and initialize Z;
based on proportion of insertions within individual genes.
for j=1 to desired sample size do
//Gibbs Steps - 0;
for i < 1 to G do

‘ Sample 0; ~ Beta(ps + ki, k(1 — p) + ni — ki)
end

//MH Step - po
Draw candidate parameter pg from Normal
distribution, N (p(])_l, v) and accept according to MH

ratio o)

//MH Step - ko
Draw candidate parameter x§ from Normal
distribution, N(/@%_l, v) and accept according to MH
o f(sG)
tio —1\~0)
ratio e
//MH Step - p1
Draw candidate parameter pj from Normal
distribution, N(p! ™', v) and accept according to MH
f(p1)
fi™h

ratio

//MH Step - k1

Draw candidate parameter x{ from Normal

distribution, N(x?~", v) and accept according to MH
f(x9)

Flsih)

ratio

Let K, equal the number of genes with Zz-j =1
Let G be the total number of genes
Sample wij) ~ Beta(oaw + K, Bw + G — K)
//Gibbs Steps - Z;
for i < 1 to G do

p1 = p(k1|Z7, = 0,p1,l€1) X w1

po = p(ki|Zi = 0, po, ko) x (1 —w1)

Sample Zim ~ Bernoulli(;5-)

end

end

Algorithm 1: Random-Walk Metropolis-Hastings Algo-
rithm for Sampling values of 0; and Z; for all genes 7
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3.1 Insertion Frequencies

Samples of the individual probabilities were obtained for all
genes. The mean insertion frequency, ;, was estimated from
these samples. Figure 2 contains a density plot of the mean
insertion probability (black-line). The plot shows two peaks
(0 = 0.052 and 6 = 0.721) corresponding to the mixture
of essential and non-essential genes. For comparison, the

insertion frequency observed in the data (i.e. fb—’) is plotted

as well (gray dashed line). The mean insertion probability
resembles the observed frequency, with sharper peaks at the
posterior modes.
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Figure 2: Kernel Density Estimates for the mean
posterior insertion probability (black-solid) and ob-
served insertion frequency (gray-dashed) for all the
genes.

The samples of insertion probability for the genes reflect our
expectations for essential and non-essential genes. Figure 3
shows density plots of the samples for DnaA (Rv0001) and
MmpL11 (Rv0202c). DnaA is a known essential gene in-
volved in DNA repair. It contains a total of 32 TA sites
with a single insertion in the C-terminus. Its mean inser-
tion probability is §; = 0.044, corresponding to the small
probability of observing an insertion in this essential gene.
On the other hand, MmpL11 is a transmembrane transport
protein determined to be non-essential in knock-out exper-
iments [6]. It contains insertions in 20 out of 39 TA sites,
with a mean insertion probability of §; = 0.551, consistent
with expectations of non-essential genes.

3.2 [Essentiality Results

To estimate the probability of a gene being essential, the
sample of individual essentiality values, Z;, was averaged
for all genes (Z; = %EZZ) A method analogous to the
Benjamini-Hochberg procedure for posterior probabilities was
used to obtain the thresholds of essentiality [12]. Setting the
False Discovery Rate at 5%, genes with Z; > 0.99304 are
classified as essential, and genes with Z; < 0.0391 are clas-
sified as non-essential. Those genes that do not meet these
thresholds are classified as Uncertain.
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Figure 3: Kernel Density Estimates for the posterior
insertion probability of DnaA (Rv0001), a known
essential gene involved in DNA repair, and MmpL11
(Rv0202c), a known non-essential gene believed to
function as a transmembrane protein.

3.2.1 Comparison to the TraSH Method

The essentiality of the M. tuberculosis genome has been as-
sessed before, through the Transposon Site Hybridization
method [14, 15]. This method quantifies the amount of lumi-
nescence that is observed in probes that hybridize to each of
the genes in the genome [13]. Hybridization ratios were ob-
tained from libraries of M. tuberculosis grown in rich media
and glucose, and these where used to characterize genes as
essential, non-essential or growth-defect (representing those
genes which lead to reduced growth rate). Genes for which
the hybridization ratio could not be obtained were classified
as “No-Data”.

Table 1: Essentiality Comparison Between the
TraSH method and the Local-Frequency Model.
Local Frequency Model

Ess. Unc. Non. Total

Essential 329 257 28 614

Growth-Def. 5 20 17 42

TraSH Non-Ess. 36 682 1796 2514

No-Data 80 412 285 7T

Total 450 1371 2126 3947

Table 1 shows a breakdown of the results from the TraSH
method and the local-frequency model. Of the 614 genes
predicted to be essential by TraSH, 28 are predicted to be
non-essential by the local-frequency model. Although these
genes are predicted to be essential by the TraSH experi-
ments, they contained a large number of insertions in the
library analyzed (average 6; = 0.72). This high insertion
frequency suggests the discrepancy could be due to differ-
ences in the growth media between the two libraries.
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In addition to these 28 genes, the methods disagree on 36
other genes which are classified as essential by the local-
frequency model and Non-Essential by TraSH. Similarly,
these genes contain a small number of insertions (average
6 = 0.03) in the library, which suggests that these genes are
essential in the library analyzed, and the discrepancy may
be due to the difference in the construction of the libraries.

3.2.2  Comparison to the Global-Frequency Model
To determine the effect of relaxing the assumption of a con-
stant insertion frequency, we compare our results to a bino-
mial model with global insertion frequencies. Two “global”
insertion frequencies, 6y and 61, are shared across the genes
belonging to a given class of essentiality (i.e. essential and
non-essential genes). Using Gibbs sampling, samples for the
parameters 6y and 6; are obtained, as well as the essential-
ity assignments Zi. Estimates of the probability of essen-
tiality are calculated by averaging the samples, as in the
local-frequency model. After running the Gibbs sampling
procedure for 52,000 iterations, estimates for the parame-
ters were as follows: fp = 0.684 £ 0.002 and #; = 0.102 +
0.002, implying a 68.4% insertion density in non-essential
genes and 10.2% in essential genes.

Table 2: Essentiality Comparison Between the
Global-Frequency Model (GFM) and the Local-
Frequency Model

Local Frequency Model
Ess. Unc. Non. Total

Ess. 450 259 0 709
Unc. 0 603 0 603
GFM | Non. 0 509 2126 2635
Total 450 1371 2126 3947

Table 2 compares the results from the local-frequency and
global-frequency models. Overall, the local-frequency model
is more conservative than the global-frequency model, pre-
dicting more uncertain genes (1,371 vs 603). In fact, all 709
genes classified as essential by the global-frequency model
are classified as either essential (450) or uncertain (259) in
the local-frequency model.In addition, all 450 genes classi-
fied as essential by the local-frequency model are also clas-
sified as essential by the global-frequency model. The local-
frequency model’s tendency to be conservative is also true
for non-essential genes, where the global-frequency model
predicts 2,635 non-essential genes, while the local-frequency
model predicts 2,126 of these to be essential and classifies
the rest (509) as uncertain.

This tendency to be more conservative in its predictions is
due to the fact that the local-frequency model is able to
capture the uncertainty that exists with smaller genes. By
sampling from a beta-binomial model, the lower number of
TA sites (i.e. Bernoulli trials) leads to an increased vari-
ance. Figure 4 shows a density plot of the sampled insertion
density for PPE5, PPE19, and RpmB. All these genes have
an observed insertion density of 0.7 (i.e. % = 0.7), how-
ever they have different number of TA sites (PPE5=135,

PPE19=10, and RpmB=5). While the global-frequency model

classifies all these genes as non-essential, the local-frequency
model classifies RpmB as Uncertain because it takes into ac-
count the increased uncertainty due to the smaller number
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Figure 4: Insertion Density for PPE5 (solid), PPE19
(dashed) and RpmB (dot-dash). All three genes
contained an observed insertion frequency of 0.7, al-
though they were different sizes (# of TA sites). The
larger variance in the insertion density for PPE19
and rmpB reflects the greater uncertainty that ex-
ists in smaller genes.

of TA sites. The “shifting” of the mode of these distributions
is due to the fact that smaller genes will regress towards the
mean of the distribution of non-essential insertion frequen-
cies (i.e. po = 0.69) as there are more strongly affected by
this parameter.

3.2.3 Comparison to the Extreme Value Model
Previously we developed a Bayesian model for gene essen-
tiality that utilized the extreme value distribution to deter-
mine the likelihood of observing a run of TA sites lacking
insertions in a row. By taking the order of insertions into
account, this method enabled the identification of domains
within genes that contained both essential and non-essential
regions. This is in contrast to the binomial model which does
not take into consideration the order of TA sites. These two
models of essentiality are compared in Table 3.

Table 3: Essentiality Comparison Between the
Extreme Value Model (EVM), and the Local-
Frequency Model

Local Frequency Model
Ess. Unc. Non. Total

Ess. 446 222 0 668
Unc. 2 300 40 342
EVM | Non. 2 685 2006 2693
Short 0 164 80 244
Total 450 1371 2126 3947

As with the global-frequency model, the local-frequency model
is more conservative than the extreme value model, clas-
sifying 1,371 of the genes as Uncertain in contrast to the
342 classified by the extreme value distribution. Among
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these genes are MmpL4, MmpL8 and MmpL9, which be-
long to the MmpL protein family, thought to be involved
in polyketide biosynthesis, and lipid metabolism. Although
only MmpL3 has been shown to be essential in knockout
experiments [6], the extreme value model classifies mmpL4,
mmpL8 and mmpL9 as essential because they contain gaps
in insertion density that are longer than expected, despite
also containing a relatively high insertion frequency else-
where in the gene.

Of the 446 genes classified as essential by the local-frequency
model, only 4 of these are classified as non-essential or un-
certain by the extreme value model. All four genes have
a small number of insertions (observed insertion density be-
tween 0.09 - 0.14), suggesting these genes are truly essential.
Indeed, although the total number of TA sites in these genes
ranges from 20-37, the length of the maximum run of non-
insertions ranges from 8 to 12 TA sites. This suggests that
the few insertions observed were capable of interrupting the
run of non-insertions (e.g. one or two insertions occur in the
middle of an otherwise empty gene), making them appear to
be Non-Essential or Uncertain to the extreme value model
(as the run of non-insertions was not sufficiently long).

Because the local-frequency model makes more conservative
predictions depending on the size of the gene, it can make
predictions even for those genes which contain only a very
small number of TA sites within their boundaries. In con-
trast, the extreme value model ignores genes that are deemed
too short (labeled "Short”) by taking a threshold on length
(i.e. < 3 TA sites or a span of nucleotides < 150bp ) and
therefore excluding them from the analysis. Out of 244 genes
classified as “Short” by the extreme value model, the local-
frequency model classifies 164 genes as “Uncertain”, without
the need of an ad-hoc threshold on gene length.

As mentioned before, a potential downside of the binomial
model is that it does not take into consideration the order of
insertions and therefore can miss essential domains within
genes. For example, genes Rv3910 and Rv0018c have been
shown to code for essential protein domains involved in cell
wall synthesis [7]. While the extreme value model is capable
of identifying these genes as essential, the local-frequency
model classifies them as Uncertain.

3.2.4  Effect of the Essentiality Threshold

Although the thresholds on the posterior probabilities of es-
sentiality were determined through the same method for all
Bayesian models (analogous to the Benjamini-Hochberg pro-
cedure for posterior probabilities [12]), this method leads
to different thresholds depending on the posterior proba-
bilities of the genes (originally, 0.9930, 0.9900, and 0.9902
for the local-frequency model, global-frequency model and
extreme value model, respectively). This difference in the
thresholds of essentiality may affect the number of essential
(and non-essential) genes predicted by the models, as well
as the agreement between them. To assess the effect of the
threshold on the predictions of essential genes, we reduced
the threshold on the posterior probability essentiality (from
> 0.99 to > 0.80) and determined the number of essential
genes predicted by the models (Figure 5).

As can be seen, the number of essential genes predicted by
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Figure 5: Number of Essential genes predicted

by the the Local-Frequency Model (LFM, circle),
Global-Frequency Model (GFM, triangle), and the
Extreme Value Model (EVM, cross).

the models increases as the essentiality threshold is relaxed.
However with the local-frequency model predicts less essen-
tial genes than the other models, making more conserva-
tive predictions despite the relaxation of the threshold. The
overlap between the models also increases as the essential-
ity threshold is relaxed. These observations are also true in
non-essential genes, where the local-frequency model is also
more conservative in its predictions.

4. CONCLUSIONS

The intricacies of next-generation sequencing data necessi-
tate the development of methods that can analyze this data
in a robust way. Although assuming a global insertion fre-
quency can simplify the statistical analysis of transposon
mutagenesis data, it does not accurately represent expecta-
tions about the insertion probability of genes. We developed
a Bayesian model that estimates the probability of essential-
ity for all the genes, taking into consideration the individual
insertion probabilities. We applied this model to a library
of M. tuberculosis transposon mutants, and found several
cases which highlight the benefit of assuming an individual
insertion frequency.

The insertion frequency of genes is not expected to be glob-
ally constant across the genes. Differences in sequencing
coverage or errors in mapping reads to the genome can lead
to different insertion frequencies between genes, even among
those with the same class of essentiality (i.e. essential or
non-essential genes). In addition, although our method char-
acterizes all genes which lead to viable mutants as “non-
essential”, mutations can in fact lead to growth-defects that
affect the growth rate of mutants. The severity of the growth-
impairment resulting from mutation at these genes will affect
the number of viable mutants observed in the library, and
therefore the relative frequency of insertions observed for a
given gene. By modeling the insertion frequency for each
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gene, these effects can be taken into consideration where as
they would otherwise be missed by assuming a global inser-
tion frequency.

Previous methods which have assumed a global insertion fre-
quency have been susceptible to these problems. For exam-
ple, although the family of PE_GRS genes have been shown
to be non-essential through knock-out experiments [2], some
of these genes have been characterized as essential by previ-
ous methods. A possible reason for this might be that these
genes contain regions with high GC content that are diffi-
cult to sequence, leading to stretches within the gene that
are devoid of insertions.

While our binomial model is capable of modeling the inser-
tion frequencies among the genes, it does so by consider-
ing only the presence or absence of insertions, and not the
number of reads. Although the number of reads might be
susceptible to problems in sequencing (e.g. PCR amplifi-
cation), it has been successfully used to assess essentiality
before [16, 17]. In addition, our method does not take into
consideration the order of insertions (or non-insertions). A
method we have previously developed, assessed the prob-
ability of observing a series of TA sites lacking insertions
in a row. By using the extreme value distribution, this
method was capable of identifying genes which contained es-
sential and non-essential regions (like an essential domain).
However, this method assumed a global insertion frequency,
which meant it suffered from the limitations already out-
lined. By using a model that can take into consideration
the local variation in insertion frequencies, as the model we
describe here, these limitations can be overcome and more
accurate predictions of essentiality can be made.
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