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ABSTRACT
Recombination is an evolutionary force that results in mosaic
genomes for microorganisms. �e evolutionary history of microor-
ganisms cannot be properly inferred if recombination has occurred
among a set of taxa. �at is, polymorphic sites of a multiple se-
quence alignment cannot be described by a single phylogenetic tree.
�us, detecting the presence of recombination is crucial before phy-
logeny inference. �e phylogenetic-based methods are commonly
utilized to explore recombination, however, the compatibility-based
methods are more computationally e�cient since the phylogeny
construction is not required. We propose a novel approach focusing
on the pairwise compatibility of polymorphic sites of given regions
to characterize potential breakpoints in recombinant bacterial and
viral genomes. �e performance of average compatibility ratio
(ACR) approach is evaluated on simulated alignments of di�erent
scenarios comparing with two programs, GARD and RDP4. �ree
empirical datasets of varying genome sizes with varying levels of
homoplasy are also utilized for testing. �e results demonstrate
that our approach is able to detect the presence of recombination
and identify the recombinant breakpoints e�ciently, which pro-
vides a be�er understanding of distinct phylogenies among mosaic
sequences.
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1 INTRODUCTION
�e accurate inference of phylogeny for microorganisms is essen-
tial to be�er understand the evolutionary history of a set of species.
A phylogenetic tree will be reconstructed based on polymorphisms
of a multiple sequence alignment to present the evolutionary re-
lationships of a set of isolates using methods such as maximum
parsimony, maximum likelihood, or minimum evolution, etc. If
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there exists a single tree topology that can explain all polymorphic
sites of an alignment, then the tree represents the evolutionary
history of the given set of taxa. In recent decades, studies indicate
that some microorganisms are relatively less mosaic because of
shorter evolutionary history or complete clonality, for instance,
Mycobacterium tuberculosis[15] and Bacillus anthracis[26]. How-
ever, growing evidences have shown that some microbiota exhibit
homoplasy in their genomes, that is, they are not monophyletic. �e
appearance of homoplasy is that polymorphic sites are not from a
common ancestor but arise independently in multiple branches[45].
Homoplasy could be caused by horizontal gene transfer (HGT) and
homologous recombination. For bacteria, HGT is an evolutionary
force that frequently occurs and results in mosaic genomes[17, 44].
�e known mechanisms of HGT are transformation, transduction
and conjugation. Transformation and transduction acquire a new
DNA fragment from environment or other organisms via insertion
while conjugation requires intercellular contact to transfer genetic
variants from donor to recipient by homologous recombination. Ho-
mologous recombination exchanges genetic material between two
homologous DNA sequences [4]. For viruses, main mechanisms for
driving evolution are point mutation and recombination. Several
bacteria and viruses have been reported that suggest recombina-
tion events occurred during evolution, including HIV-1[1, 32, 36],
Mycobacterium avium[18], Staphylococcus aureus[13], Streptococcus
pneumoniae[6] and Salmonella enterica[7].

A phylogenetic tree can be misleading if a sequence alignment is
mosaic since some recombinant sites cannot be described by a single
tree topology. If the microorganisms underwent recombination, it
is essential to estimate the extent of homoplasy and identify recom-
bination breakpoints to obtain corresponding phylogenies to model
the evolution[27, 35, 40]. Current methods to detect recombination
can be categorized into phylogenetic, distance, compatibility and
nucleotide substitution distribution methods[33, 34]. Phylogenetic
methods are commonly used in existing programs, for instance,
Simplot, Plato, GARD, RDP4 and ClonalFrameML[8, 14, 23, 31, 36].
If recombinant regions exist, then the tree topologies that are con-
structed based on the regions will be discordant with the global
topology. Among them, GARD is a phylogenetic-based method that
applies a genetic algorithm to build a maximum likelihood model
for recombination detection[30, 31]. RDP4 is also a phylogenetic-
based method that makes use of a pairwise scanning approach to
scan for the alignment[23]. In contrast, distance and compatibility
methods do not require the phylogeny. For distance-based meth-
ods, pairwise distances will be computed, and distance pa�erns
will be searched along a multiple sequence alignment. PHYPRO
uses a sliding window to get the genetic statistics[47] while RAT
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utilizes thresholds of genetic distance and number of sequences to
search for possible recombinant regions[12]. In addition, compati-
bility methods focus on site-to-site congruence and extend pairwise
sites to all possible combinations of pairs within a given region.
If two sites are compatible, then the relationship of taxa at both
sites can be explained by the same tree topology[11, 20, 21, 24].
Nucleotide substitution distribution methods analyze the trends in
substitutions or ��ing degree in nucleotide distributions across the
alignment[39, 43, 48].

With the advancement of next-generation sequencing techniques,
the whole genomes of a number of strains can be analyzed at the
same time so the size of an alignment may increase as the number
of strains scales. Since phylogenetic-based methods require the
phylogeny construction, they are less e�cient than matrix-based
or compatibility-based methods. Also, studies have shown that
methods of substitution pa�erns and compatibility perform be�er
than phylogenetic methods or other general methods in terms of
accuracy and e�ciency[5, 33, 34, 41]. Yet, only a few studies have
applied the compatibility concept[3, 16]. Reticulate is a program
to compute neighbor similarity score (NSS) using compatibility
matrices to cluster sites that are compatible[16]. �e clustering
is obtained by shu�ing the matrices with Monte Carlo random-
ization. Another recombination testing program de�nes a re�ned
incompatibility score as a pairwise homoplasy index (PHI) to test
for recombination[3]. �e signi�cance of PHI is computed by per-
mutation tests. Both methods are able to detect recombination and
report the informative sites, but unable to identify breakpoints to
obtain non-overlapping regions.

To be�er understand di�erent phylogenetic histories of evolu-
tion that involve recombination for a given set of taxa in a more
computationally e�cient way, we develop an average compatibility
ratio approach to analyze the multiple sequence alignment of Single
Nucleotide Polymorphisms (SNPs) to explore possible recombina-
tion breakpoints. �e overall compatibility ratio will be calculated
�rst to screen for the presence or absence of recombination. If it
presents, then ACR approach will scan for each site along the align-
ment to identify the site where its upstream sites are incompatible
with its downstream sites but the adjacent sites located within the
same region are more jointly compatible. �e potential breakpoints
depending on a given threshold will be reported, and then the align-
ment will be divided into non-overlapping consecutive segments.
�e compatibility ratios and changes per site (CPS) information of
each segment are also provided. �e ACR approach is tested on
simulated datasets of two scenarios and three empirical datasets,
and the performance is compared with GARD[31] and RDP4[23].
Comparing the results of simulation scenarios with ground truths,
we show that ACR approach performs be�er than other programs.
�e results of the analyses of bacterial and viral genomes demon-
strate that our proposed approach is able to characterize biological
sequence alignments and provide segments that re�ect distinct
phylogenetic histories.

2 METHODS
2.1 Compatibility Score
For a given multiple sequence alignment of n taxa (n ≥ 4) and m
sites (m ≥ 1), a character χ is a set of states (A1,A2, . . . ,An ) of all

strains at a given site of the alignment. �e states are elements of
{A,T ,C,G}. Hence, for the above alignment, there arem characters
and four types of states. Pairwise compatibility is de�ned as two
characters are compatible if and only if there exists a phylogenetic
tree that explains both characters. �at is, no extra changes of
state are required for both characters to evolve with a single tree
topology. For a given set of characters, C = (χ1, χ2, . . . ), all charac-
ters are jointly compatible if and only if all pairs of characters are
compatible with each other, i.e., a single tree exists and �ts for all
of the characters[10, 11, 20, 21, 24].

Since the single nucleotide polymorphisms in a multiple se-
quence alignment are informative for inferring phylogeny, the
polymorphic sites are extracted. If the site has an unknown nu-
cleotide, a gap or over two types of nucleotides, it is considered as
ambiguous and excluded before determining compatibility. �ere-
fore, each site will contain two types of nucleotides, and then the
multiple sequence alignment will be converted to the binary se-
quence. �at is, each character becomes a binary character whose
states have two elements, 0 and 1.

Given a site in a binary sequence alignment of length n, the char-
acter χb is presented as a binary string concatenating the states
of all n strains in the same order as the alignment, and the set χ ′b
records the indexes of the strains with state 1 in χb . Two binary
characters χ1 and χ2, which represent two sites, are compatible if
and only if one of the following conditions is satis�ed: χ ′1 ⊆ χ ′2,
χ ′2 ⊆ χ ′1, χ ′1 ⊆ χ ′2 or χ ′2 ⊆ χ ′1. In other words, two binary char-
acters of length n are compatible if and only if the set of pairs of
binary states A ∈ χ1 and B ∈ χ2, {(A1,B1), (A2,B2), . . . , (An ,Bn )},
has at most three types of binary pairs of states out of four combi-
nations, {(0, 0), (0, 1), (1, 0), (1, 1)}. �e compatibility theorem has
been proved in [10, 11]. An example of SNP sequences of three
characters in sitei , sitej and sitek is illustrated for the concept of
compatibility. For sitei and sitej , they are incompatible according
to the de�nition, so there does not exist any tree that is able to
accommodate characters at the sitei and sitej . Characters at the
sitei and sitek are compatible, so there exists a single tree that is
compatible with both sites. As shown in Figure 1(a), the number
of changes per site for sitei or sitek is 1, yet it requires at least 2
changes for sitej , that is, presence of homoplasy. Characters at
the sitej and sitek are also compatible. In Figure 1(b), the tree that
is able to describe both sitej and sitek cannot accommodate the
character at the sitei . Figure 1 demonstrates that there does not
exist a tree that is compatible with sitei and sitej , therefore there
does not exist a tree that is compatible with these 3 sites.

Example for demonstrating compatibility:

*......
,

sitei sitej sitek
strain1 C G C
strain2 A T C
strain3 C T C
strain4 A G G
strain5 A G G

+//////
-

=>

*......
,

sitei sitej sitek
strain1 0 0 0
strain2 1 1 0
strain3 0 1 0
strain4 1 0 1
strain5 1 0 1

+//////
-

2.1.1 Pairwise Compatibility Score of Characters: Suppose that
the number of total polymorphic sites in a sequence alignment of
n taxa is m, a m x m matrix, CompatPW , is generated to record
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(a) A tree based on SNPs at the sitei and sitek

(b) A tree based on SNPs at the sitej and sitek

Figure 1: Phylogenetic trees of the example

compatibility information for each pair of sites. �at is, the com-
patibility information of pairwise characters at the sitei and sitej ,
χi and χj , is recorded in CompatPWi j , where 1 ≤ i, j ≤ m. If two
characters are compatible, the score is 1; otherwise, 0.

CompatPWi j =



1, if characters of χi and χj are compatible
0, otherwise

CompatPW

=



CompatPW11 CompatPW12 . . . CompatPW1m
CompatPW21 CompatPW22 . . . CompatPW2m

...
...

...

CompatPWm1 CompatPWm2 . . . CompatPWmm


2.1.2 Summary of Compatibility Scores of a Given Region: �e

summary of compatibility of a given region starting from sitep to
siteq ,CompatSumpq , where 1 ≤ p,q ≤ m, is the summation of com-
patibility scores of all pairs within the region. For an alignment of
lengthm, given a length l (l ≤ m), am x l matrixCompatSumMatrix
represents the summary of compatibility of all pairs within a given
region of at most length l starting from each site to its downstream
sites. �e CompatSumpq could be calculated recursively by sum-
ming CompatSump (q−1) and the compatibility information of ad-
ditional combinations of pairs that are contributed by adding a
downstream site q.

Since the SNP sequence alignment of microorganisms may be
cyclic or linear, two conditions are considered during computa-
tion. If the genome sequence is cyclic, the next downstream site
of the ending site in the alignment will be the �rst site. For each
site, the summary of compatibility will be calculated recursively
starting from its next downstream site to the given length l . If the
genome sequence is linear, the summary of compatibility will be
computed recursively until q reaches tom or the summation of p
and l , whichever occurs �rst.

CompatSumpq

=




CompatPWpq , if q = p + 1

CompatSump (q−1) +
q−1∑
i=p

CompatPWiq , if 1 ≤ p < q ≤ m

CompatSump (q−1) +
m∑
i=p

CompatPWiq +

q−1∑
i=1

CompatPWiq ,

if 1 ≤ q < p ≤ m (cyclic)

CompatSumMatrix (cyclic )

=



CompatSum12 CompatSum13 . . . CompatSum1(1+l )
CompatSum23 CompatSum24 . . . CompatSum2(2+l )

...
...

...

CompatSumm1 CompatSumm2 . . . CompatSumml


2.1.3 Ratio of Compatibility Scores of a Given Region: �e ratio

of compatibility score of a given region, CompatRRpq , is the sum-
mation of compatibility scores of all pairs of sites to the number of
all combinations of pairwise sites starting from sitep to siteq . �e
CompatRRpq will be bounded between 0 and 1, which indicates the
tendency of compatibility within the regions between sitep and
siteq . In other words, the higher ratio re�ects that more characters
are jointly compatible, suggesting more sites are congruent in a
tree within the region. In contrast, the lower the ratio is, the less
likely the recombination events happened in the region.

CompatRRpq =
CompatSumpq(r

2
) ,




r = q − p + 1, if 1 ≤ p < q ≤ m

r =m − p + q + 1, if 1 ≤ q < p ≤ m (cyclic)

2.2 Characterization of Recombination
Breakpoints

A sliding window size, w , is de�ned in terms of SNPs, regardless
of genomic span (bp) or overall rate of mutations because non-
polymorphic sites are non-informative and discarded. �at is, the
size of a sliding window is the constant number of polymorphic
sites instead of nucleotides. It would get be�er estimates of in-
compatibility, especially in the regions with sparse SNPs. Given
a size w , for each sitei , we average all of the compatibility ratios
of regions that include sitei and locate within [i −w , i +w], i.e.,
avдCompatRRi . �e total number of combinations of regions that
satisfy the criteria is |w |2. If the genome sequence is linear, the
sites located in the head and tail regions of size w will be ignored.
�e sliding window size can be adjusted according to the length of
an alignment.

A site with a local minimum represents that its upstream region
and downstream region within the length of |w | are less jointly com-
patible comparing to other regions. So, sites with local minimums
are the potential breakpoints for inferring phylogeny incongruence.
�e default value of the cuto� is the mean minus two standard devi-
ations of all ratios, which is of the one-tailed order of a two-sigma
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e�ect. �e value can be adjusted for rare recombinant or frequently
recombinant sequences. Or top k non-overlapping segments of the
entire alignment can be reported by giving an intended number of
k. �en, the top k-1 sites that have local minimums will be returned
as breakpoints. In addition, the minimum length of a segment can
be set to reduce the false positive rate since smaller regions may
result in higher compatibility ratio. �e consecutive sites between
every two adjacent breakpoints construct a non-overlapping seg-
ment that is expected to be more congruent with a topology. �us,
a list of top potentially recombinant regions will be obtained.

avдCompatRRi

=




∑i−1
p=i−w

∑w
q=i+1CompatRRpq

|w |2
, if w + 1 ≤ i ≤ m −w

(
∑m
p=m−(w+1−i ) +

∑i−1
p=1)

∑w
q=i+1CompatRRpq

|w |2
,

if i < w + 1 (cyclic)∑i−1
p=i−w (

∑m
q=i+1 +

∑w−(m−i )+1)
q=1 )CompatRRpq

|w |2
,

if i > m −w (cyclic)

2.3 Build the Phylogenetic Trees and Calculate
the Homoplasy Ratios for Segments:

Once the recombination segments are identi�ed, the homoplasy
ratio will be computed to evaluate the congruence/correctness,
and the phylogenetic tree will be plo�ed for each segment. �e
polymorphic sites of segments will be extracted and used to build
a phylogenetic tree for all strains. �e ratio of the required SNPs
for constructing a phylogenetic tree to the total number of selected
SNPs of a segment will be calculated and de�ned as homoplasy ratio,
that is, changes per site. �e PHYLIP package of version 3.695[29]
is used to infer the phylogeny of a dataset. �e phylogenetic tree is
reconstructed using the maximum parsimony method as the default
se�ing. �e homoplasy ratio can also be calculated using Sanko�’s
algorithm[37]. Sanko�’s algorithm is a dynamic programming
algorithm for counting the minimum cost of a tree using a cost
matrix and backtracing approach. Here, the Sanko� score stands
for the minimum number of state changes that are required in a
given tree topology. �e score of 1 represents that the character
of a given site is congruent with the tree while the score above 1
stands for the extra number of changes needed for a given tree. �e
higher the Sanko� score, the higher the extent of incongruence of
a given site, i.e., multiple changes are required to explain the tree
pa�ern. Hence, the homoplasy ratio using Sanko�’s algorithm is
the summation of the Sanko� scores to the number of sites of a
given region.

2.4 Computational Complexity
�e Algorithms of compatibility determination, average ratio cal-
culation and breakpoints characterization are shown in Algorithm
1 to Algorithm 3.

2.4.1 Time Complexity. Since it has to loop over all SNP sites
and all isolates, the time complexity of Algorithm 2 is O (ml ∗
max (n, l )), wherem is the length of SNPs, n is the number of strains

Algorithm1Determination of pairwise compatibility of characters
1: Input: Two binary characters χi and χj at the sitei and sitej
2: Let A and B be the states of characters χi and χj , respectively
3: A subset B ← T rue , B subset A ← T rue , notA subset B ← T rue ,

B subset notA← T rue
4: for i = 1→ n do
5: if A[i] = 1 && B[i] = 0 then
6: A subset B ← False
7: end if
8: if A[i] = 0 && B[i] = 1 then
9: B subset A← False

10: end if
11: if A[i] = 0 && B[i] = 0 then
12: notA subset B ← False
13: end if
14: if A[i] = 1 && B[i] = 1 then
15: B subset notA← False
16: end if
17: end for
18: if A subset B ‖ B subset A ‖ notA subset B ‖ B subset notA then
19: return T rue
20: else
21: return False
22: end if
23: T rue means χi and χj are compatible while False means they are incompatible

Algorithm 2 E�cient computation of compatibility score and ratio
for each site to its downstream sites of length l

Input: A binary n xm matrix of an alignment of SNPs withm sites and n strains
2: Require: A given length of downstream sites, l

if CompatAll ≥ a given threshold (99.5% as default) then
4: Print ”No recombination event detected in the alignment.”

return
6: end if

CompatPW [m, l ]← 0
8: for i = 1→m do

for j = i + 1→ l do
10: CompatPW [i, j]← Algorithm 1 (Characters at the sitei and sitej )

end for
12: end for

CompatSumMatr ix [m, l ]← 0
14: for p = 1→m do

for q = p + 1→ p + l do
16: if q = p + 1 then

CompatSumMatr ix [p, 1]← CompatPW [p, q]
18: else if q ≤ m then

CompatSumMatr ix [p, q−p]←CompatSumMatr ix [p, q−
p − 1] +

∑q−1
i=p CompatPW [i, q]

20: else
t ← q −m

22: CompatSumMatr ix [p, q−p]←CompatSumMatr ix [p, q−
p − 1] +

∑m
i=p CompatPW [i, t ]+ ∑t−1

i=1 CompatPW [i, t ]
end if

24: end for
end for

26: CompatRR[m, l ]← 0
for r = 1→ l do

28: NumCombi[1 : m, r ]←
(
r+1

2
)

end for
30: CompatRR ← CompatSumMatr ix

NumCombi
return CompatRR

and l is the number of downstream sites. For Algorithm 3, the time
complexity is O (mw ), where w is the sliding window size.

2.4.2 Space Complexity. �e matrix size of Algorithm 2 isO (ml ),
while the space of Algorithm 3 is O (m).
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Algorithm 3 Identi�cation of recombination breakpoints
Input: �e m x l CompatRR matrix
Require: A given sliding window size of w , targeting k breakpoints or cuto�
for local minimums

3: avдCompatRR[m, 1]← 0
for i = 1→m do

if i ≥ w + 1 && i ≤ m −w then

6: avдCompatRR[i, 1]←
∑i−1
p=i−w

∑w
q=i+1 CompatRRpq

|w |2
else if i < w + 1 then

avдCompatRR[i, 1]←
(
∑m
p=m−(w+1−i ) +

∑i−1
p=1 )

∑w
q=i+1 CompatRRpq

|w |2
9: else

avдCompatRR[i, 1]←
∑i−1
p=i−w (

∑m
q=i+1 +

∑w−(m−i )+1
q=1 )CompatRRpq

|w |2
end if

12: end for
return positions of local minimums that are lower than the given cuto� or top
k local minimums as breakpoints

3 EVALUATION DATASETS
Four simulated datasets and three empirical datasets of bacterial
and viral genomes are used to evaluate the ACR approach. �e
sequences of all strains are aligned, the sites that have low coverages
or gaps are excluded, and then the sites that have polymorphisms
are extracted. �e input format is the same as fasta �les.

3.1 Generation of Simulated Datasets
To generate datasets of recombinant sequences, our simulation
algorithm consists of the generation of DNA sequences evolving
along a tree topology and the construction of shu�ed tree topol-
ogy. For a given phylogeny, it generates (polymorphic) nucleotide
sequences by generating a random ancestral sequence (with equal
nucleotide prior probabilities), and then sampling changes on ran-
dom branches (one per site) with probability proportional to branch
length, assuming equal nucleotide transition probabilities. Also, the
input tree topology can be modi�ed by swapping any two branches.
�at is, the algorithm will randomly pick two internal nodes, cut o�
one node with all its child nodes as a branch, and a�ach it to another
node to get a shu�ed tree. Given a non-recombinant phylogenetic
topology and a targeting sequence length, the sequences of strains
will be simulated till reaching the given length based on the given
topology and the shu�ed topology, respectively. Next, recombi-
nant sequences will be obtained by concatenating the generated
sequences to get the simulated alignment. For each alignment, the
positions of region boundaries will be recorded, the homoplasy
score for each site will be calculated using the Sanko�’s algorithm,
and the scores will be averaged to get the extent of genetic diversity.

3.2 Empirical Datasets
�e �rst empirical dataset consists of nine Staphylococcus aureus (S.
aureus) clinical isolates[13] and aligned with the reference strain
of ST8:USA300 (methicillin-resistant S. aureus). Mosaic structure
has already been reported for these strains. �e alignment has
48417 SNP sites. �e second one is Human Immunode�ciency
virus type 1 (HIV-1) recombinant dataset. Recombination is well-
known among HIV-1 genomes. It contains an alignment of gene
pol (DNA polymerase) of 12 strains and 1593 sites[42]. �e third
one is composed of 50 strains of Mycobacterium tuberculosis (M.
tuberculosis) with 10565 SNP sites[46] that is highly congruent

and have shown basically no recombination events in previous
studies[2, 15].

4 RESULTS
4.1 Evaluations using Simulated Datasets
To evaluate the performance of our compatibility approach, a non-
homoplastic phylogenetic tree topology of 73 taxa is utilized from
a study of clinical isolates of M. tuberculosis in Panama [19] to
generate SNP sequence alignments that are assumed cyclic. Two
scenarios are set, including di�erent levels of genetic diversity
of one recombinant region and datasets of more than one recom-
binant regions. �e �rst simulated scenario has two datasets of
di�erent levels of homoplasy containing 3000 SNP sites where the
region[1000, 2000] is reorganized. �e alignments of relatively low
and high levels of homoplasy and the plot of six kinds of sliding
window sizes for averaging the ratios for each site are shown in
Figure 2 and Figure 3, respectively. �e multiple curves show how
sensitivity for detecting breakpoints depends on window size used.

�e second simulated scenario has a dataset of two recombined
regions with the same reorganizing topology and a dataset of two
recombined regions with distinct topologies. Both datasets contain
6000 SNP sites where region[1000, 2000] and region[4000, 4500]
are reorganized. Both of them are reconstructed by shu�ing some
internal branches, that is, these two regions have recombination
and may not be described by the original tree topology. �e �rst
dataset has two distinct topologies for two recombinant regions,
and the second dataset has the same topology for two recombinant
regions. �e plot of the Sanko� score for each site and the plot of
six kinds of sliding window sizes for averaging the ratios for each
site are shown in Figure 4 for dataset I and in Figure 5 for dataset II.

�e ground truth and the results of using GARD, RDP4 and our
approach for four simulated datasets of two scenarios are listed
in Table 1. In scenario I, the identi�ed breakpoints are around
1000 and 2000 with di�erences of at most 25 nucleotides for two
datasets for three approaches, showing the capability of recombina-
tion detection. In scenario II, GARD only reported one breakpoint
around 2000 for both datasets yet the expecting results should be
four points that are close to 1000, 2000, 4000 and 4500, suggesting
that GARD is unable to detect the recombinant regions for this kind
of simulations. �e breakpoints characterized by our approach are
closer to the ground truth than those by RDP4.

4.2 Evaluations using Empirical Datasets
4.2.1 A Case Study on Recombinant Dataset: Staphylococcus

aureus. �e phylogenetic tree that is constructed using all SNP
sites is shown in Figure 6. It requires a total number of 54157 SNPs
to build the tree yet has 48417 SNPs, so its number of changes
per site is 1.119 (54157/48417). �e overall compatibility ratio is
0.978. �e plot of average compatibility ratio of three window
sizes is shown in Figure 7. Figure 8 illustrates that 10 breakpoints
are identi�ed using default se�ing and the window size of 500
for the overall alignment. Since the GARD is unable to analyze
sequences of length above 12k, the alignments between 10k and 20k
are taken out to evaluate three programs in the same base. Top four
breakpoints are identi�ed by our ACR approach using the window
size of 500 and default cuto�. Five segments are obtained, and
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Table 1: Breakpoints of four simulated datasets identi�ed by our approach, GARD and RDP4

Breakpoints Ground truth ACR GARD RDP4
ScenarioI − DatasetI 1000, 2000 989, 2000 1025, 1999 984, 2010
ScenarioI − DatasetI I 1000, 2000 998, 1998 1003, 1996 989, 1266, 2037
ScenarioI I − DatasetI 1000, 2000, 4000, 4500 993, 2006, 4005, 4496 2001 978, 2000, 4005, 4515
ScenarioI I − DatasetI I 1000, 2000, 4000, 4500 998, 1995, 4000, 4498 2004 980, 2008, 4014, 4533

(a) Sanko� score for each site

(b) Average compatibility ratio for each site using window sizes
of 75, 125, 250, 500, 750 and 1000

Figure 2: Scenario I–Dataset I: Relatively low level of homo-
plasy

(a) Sanko� score for each site

(b) Average compatibility ratio for each site using window sizes
of 75, 125, 250, 500, 750 and 1000

Figure 3: Scenario I–Dataset II: Relatively high level of ho-
moplasy

(a) Sanko� score for each site

(b) Average compatibility ratio for each site using window sizes
of 75, 125, 250, 500, 750 and 1000

Figure 4: Scenario II–Dataset I: Combined regions with dis-
tinct tree topologies

(a) Sanko� score for each site

(b) Average compatibility ratio for each site using window sizes
of 75, 125, 250, 500, 750 and 1000

Figure 5: Scenario II–Dataset II: Combined regions with the
same tree topology
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Figure 6: Phylogenetic tree of 9 strains based on all 48417
SNPs for S. aureus

Figure 7: Average compatibility ratio for each site using win-
dow sizes of 500, 750 and 1000 for S. aureus

Figure 8: Identi�ed breakpoints using window sizes of 500
for S. aureus

their local phylogenetic trees are shown in Figure 9. Comparing
to the regional tree, phylogenetic trees of the second, third and
��h segments show that the branch of two strains, ERR410037 and
ERR410036, receives the copies from parents of the branch of three
strains, ERR410041, ERR410040 and ERR410034. �e tree topology
of the regional tree is di�erent from the global tree. Additionally,
the information of compatibility ratio (CompatRR) and changes per
site for 5 segments, local region between 10k and 20k and the entire
region are listed in Table 2. �e analysis of the alignment using
GARD with default se�ing was stopped before convergence while
RDP4 reveals evidence of recombination in this alignment using
PHI-test (p-value < 10−5). �e breakpoint distribution plot using
RDP4 is shown in Figure 10. �e top six breakpoints are 10147,
14410, 14975, 16990, 17285 and 19485. Besides the �rst and last sites,
the rest are close to the sites identi�ed by ACR, showing similar
recombination detection results from ACR and RDP4.

4.2.2 A Case Study on Recombinant Dataset: HIV-1 pol. �e
HIV-1 pol (DNA polymerase) dataset contains 12 strains with 1593
sites and 72 polymorphic sites. �e multiple-sequence alignment is

(a) Top four breakpoints of the region[10k, 20k] using window
sizes of 500 nucleotides

(b) Phylogenetic tree of the region[10k, 20k]

(c) Regional phylogenetic trees of �ve segments

Figure 9: Recombination segments within the region[10k,
20k] identi�ed by ACR for S. aureus

Figure 10: Breakpoints characterized by RDP4 for S. aureus

acyclic for the HIV-1 virus. Figure 11 describes the phylogenetic
tree of using all polymorphic sites. �e number of changes per
site is 1.375 (99/72), and the overall compatibility ratio is 0.927.
�e plot of average compatibility ratio of three window sizes is
shown in Figure 12. Two breakpoints, 27 and 61, are identi�ed
using default cuto� (mean-2*std) and window size 7. �e results
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Table 2: Compatibility ratio and changes per site of three segments within the region[10k, 20k] using ACR for S. aureus

Segment Size Genes CompatRR Required sites CPS
Sall [1, 48417] 48417 USA300HOU 0001-USA300HOU 2716 0.978 105217 1.119
Slocal [10001, 20000] 10000 USA300HOU 0555-USA300HOU 1155 0.986 10945 1.095
S1 [10001, 14250] 4250 USA300HOU 0555-USA300HOU 0810 0.990 4591 1.080
S2 [14251, 15167] 917 USA300HOU 0810-USA300HOU 0903 0.953 1022 1.115
S3 [15168, 17022] 1855 USA300HOU 0903-USA300HOU 0983 0.992 1987 1.071
S4 [17023, 18278] 1256 USA300HOU 0984-USA300HOU 1042 0.989 1350 1.075
S5 [18279, 20000] 1722 USA300HOU 1043-USA300HOU 1155 0.987 1878 1.091

Figure 11: Phylogenetic tree of 12 strains based on all 72
SNPs for HIV-1 pol

Figure 12: Average compatibility ratio for each site using
window sizes of 5, 7 and 10 for HIV-1 pol

of three segments are shown in Figure 13 and listed in Table 3.
�e �rst segment has the lower number of changes per site and
di�erent evolutionary phylogeny. �e number of changes per site
of the second segment drops down to 1.088, indicating that the sites
within this segment are more jointly compatible. �e coordinates
of 11 sites located in the third segments are from 1325 to 1586
consecutively in the pol gene. �e polymorphic sites within this
region are highly incompatible with each other and incongruent
with the global tree. However, both GARD and RDP4 found no
evidence of recombination events in this alignment.

4.2.3 A Case Study on Non-recombinant Dataset: Mycobacterium
tuberculosis. �e dataset contains 50 strains with 10565 SNPs sites.
�e number of changes per site is 1.006 (10633/10565). �e over-
all compatibility ratio is 0.999, re�ecting the clonal nature of M.
tuberculosis strains worldwide. Hence, we should expect to �nd
no recombination. �e plot of average compatibility ratio of three
window sizes is shown in Figure 14. Since the average compatibility
ratio of the entire alignment is over 99.5%, our approach will report
no combination breakpoints. In addition, both GARD and RDP4
reported that no evidence of recombination event was found in the
alignment.

(a) Top two breakpoints using window sizes of 7 nucleotides

(b) Regional phylogenetic trees of four seg-
ments

Figure 13: Recombination segments identi�ed by ACR for
HIV-1 pol

Figure 14: Average compatibility ratio for each site using
window sizes of 125, 250 and 500 for M. tuberculosis
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Table 3: Compatibility ratio and changes per site for window size of 7 using ACR for HIV-1 pol

Segment Size CompatRR Required sites CPS
Sall [1, 72] 72 0.927 99 1.375
S1 [1, 27] 27 0.912 36 1.333
S2 [28, 61] 34 0.989 37 1.088
S3 [62, 72] 11 0.727 18 1.636

5 DISCUSSION
In the simulations, scenario I provides two levels of sequence diver-
gences within a region in the middle of alignments. GARD, RDP4
and our approaches are all able to detect the presence of recom-
bination. �e breakpoints that are identi�ed by our approach are
closer to the ground truth than the other two programs. In scenario
II, two recombinant regions with the same or distinct phylogenies
are simulated. GARD only reports one breakpoint. RDP4 is able to
report four breakpoints but deviates more from the ground truth
than our method. Default se�ings of GARD and RDP4 are used for
analyzing the alignments, respectively. GARD has three parame-
ters, including nucleotide substitution bias mode, site-to-site rate
variation, rate classes. �e performance of GARD may be improved
by adjusting di�erent se�ings for parameters. RDP4 contains its
own automated RDP program[22] as well as other programs. Auto-
mated RDP program and breakpoint distribution plot are applied.
No parameter is required for automated RDP program while the
windows size can be adjusted for screening for the alignment using
breakpoint distribution plot.

Since recombination events are more complex in biological or-
ganisms and the genomes of virus are usually smaller than genomes
of bacteria, recombinant empirical datasets of bacteria and virus are
included for evaluation. In the virus dataset of shorter sequences,
GARD and RDP4 report no recombination in the alignment of 72
polymorphic sites. In the bacteria dataset of larger size of sequences,
the results of RDP4 and our approach are similar. GARD has the re-
striction of sequence length of 12k nucleotides. �e analysis of the
alignment using GARD was stopped before convergence, because
the CPU time limit per job was reached.

Evidence of homologous recombination has been reported in the
pathogen of S. aureus. Examining the polymorphic sequences of a
set of isolates throughout the genomes provides an opportunity to
pro�le the genetic exchanges that may be driven by selective forces
such as antibiotic usage or drug resistance[9, 28]. �e existence of
several recombination hotspots has been discovered in S. aureus, in-
cluding transposons, plasmids, phages, the staphylococcal casse�e
chromosome (SCC), pathogenicity genomic islands and genomic
islets [13, 38]. In our analysis, the methicillin-resistance gene mecA
(USA300HOU 0956) is located in the third segment in Figure 9. �e
mecA gene belongs to staphylococcal casse�e chromosome mec
(SCCmec) elements that are genomic islands. �e third segment
has distinct phylogeny, indicating genetic changes occur within
the region. �erefore, identifying recombination breakpoints based
on the variation of alignment would contribute to uncovering the
genomic evolutionary histories in terms of phylogenetic incongru-
ence.

It has been observed that the HIV-1 genome is highly mosaic
within the regions of envelope gene (env), polymerase gene (pol)
and gag [1, 25]. �e highly chimeric genomes of HIV-1 isolates are
generated by inter-subtype or inter-group recombination of diver-
gent strains under selective pressures, selective advantages, rapid
evolution or immune response a�er infection[36, 42]. Studies have
shown that recombination is responsible for HIV-1 evolution, sug-
gesting that exploration of the recombination pa�erns and hotspots
is crucial for characterization of pathogenesis. In our analysis, 72
sites are polymorphic out of 1593 site of alignment, yet 22 polymor-
phic sites are not compatible to the global tree topology, showing
highly mosaic in the sequences. �e alignment is further divided to
three segments using our ACR approach. As a result, the changes
per site for the �rst and second segments are lower than the global
one, and the phylogenies of them are distinct from the global tree,
showing that the evolutionary histories are inconsistent. Further-
more, the last 11 consecutive polymorphic sites located within the
third segment are quite incompatible with each other.

6 CONCLUSIONS
�e proposed average compatibility ratio approach is able to quickly
screen for multiple sequence alignments to detect the presence
of recombination and then characterize the breakpoints. Non-
overlapping segments divided by the identi�ed breakpoints have
higher compatibility ratios, lower homoplasy ratios and distinct
phylogenies, showing that adjacent sites within a segment are more
jointly compatible and are more likely to be described by a single
tree. Our analyses of simulated and empirical datasets and com-
parisons of two programs demonstrate that our ACR approach is
e�ective and e�cient to identify recombinant regions in bacterial
and viral genomes. It could potentially provide a be�er understand-
ing of phylogenetic relationships and evolutionary history among
a set of taxa.
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