
An Incremental Approach to Building a Cluster Hierarchy

Dwi H. Widyantoro & Thomas R. Ioerger
Texas A&M University

Department of Computer Sciences
College Station, TX 77843-3112 USA

dhw7942,ioerger@cs.tamu.edu

John Yen
The Pennsylvania State University

School of Information Sciences and Technology
University Park, PA 16802-2117 USA

jyen@ist.psu.edu

Abstract

In this paper we present a novel Incremental Hierarchi-
cal Clustering (IHC) algorithm. Our approach aims to con-
struct a hierarchy that satisfies the homogeneity and the
monotonicity properties. Working in a bottom-up fashion,
a new instance is placed in the hierarchy and a sequence of
hierarchy restructuring process is performed only in regions
that have been affected by the presence of the new instance.
The experimental results on a variety of domains demon-
strate that our algorithm is not sensitive to input ordering,
can produce a quality cluster hierarchy, and is efficient in
terms of its computational time.

1. Introduction

Hierarchical clustering is an important tool in dataware-
houseanalysis [8], ontology construction of a dynamic text
collection (e.g., similar to the one in Yahoo!) and in interac-
tive information retrieval [9]. As it involves a large data set
that grows rapidly over time, re-clustering the data set peri-
odically is not an efficient process. Due to the “information
overload” phenomenon in recent years, the ability to per-
form a clustering process incrementally is increasingly ap-
pealing because it offers a viable option to a problem faced
by a non incremental clustering process.

The sensitivity to input ordering is one of the major is-
sues in incremental hierarchical clustering [6]. Previous
works mitigate the effect of input ordering by applying re-
structuring operators, which can be broadly categorized into
local andglobal approaches. Although relatively efficient
to recover nodes misplaced at neighboring nodes, the local
approaches [5, 11] in general suffer from their inability to
deal with major structural changes. The global approaches
[1, 4] alleviate these problems but these approaches are very
expensive and make the algorithm non-incremental. By
contrast, our method described in this paper represents a
trade-off between the local and the global approaches while

preserving the incremental nature of the algorithm.
Incremental clustering algorithm has also been devel-

oped by Ester et al. fromData Mining perspective [2].
Specifically, they develop an incremental version ofDB-
SCAN, a density-based clustering algorithm. However,DB-
SCAN and its incremental version arepartitional clustering
algorithms. Our approach is more related to the agglomer-
ative hierarchical clustering techniques [3, 10], and there-
fore, can be viewed as the incremental version of the more
traditional bottom-up hierarchical clustering methods.

2. Our Incremental Algorithm

Our approach aims to construct a concept hierarchy with
two properties:homogeneityandmonotonicity. Informally,
a homogeneous cluster is a set of objects with similar den-
sity. A hierarchy of clusters satisfies the monotonicity prop-
erty if the density of a cluster is always higher than the den-
sity of its parent. That is, the density of clusters monotoni-
cally increases along any path in the concept hierarchy from
the root to a leaf node.

A cluster hierarchy is basically a tree structure with
leaf nodes represent singleton clusters covering single data
points. Each node in the tree maintains two types of in-
formation: cluster centerand cluster density. The clus-
ter density describes the spatial distribution of child nodes
of a node. We define a cluster‘s density as the average
distance to the closest neighbor among the cluster‘s mem-
bers. A natural way of obtaining the distances to the nearest
neighbors is by creating the minimum spanning tree (MST)
of objects in the cluster. Specifically, the density repre-
sentation of a node is a tripleD = 〈NDP, µ, σ〉 where
NDP = {di | diε<} is a population of nearest distance
dis, µ andσ are the average and the standard deviation of
NDP . Eachdi in NDP is the length of an edge, measured
by the distance between two nodes, of theMST structure
connecting a node’s child nodes. In general, the distance
between two nodes,w.r.t. the nodes’ cluster center, can be
measured by usingLn distance function family.



To Appear in the 2002 IEEE International Conference on Data Mining 2

N

��AA

+ NJ
⇒ N

��AA

NJ

INS NODE(N, NJ)
(a)

N

��AA

NI

+ NJ ⇒
N

�H

NK

�� @@
NI NJ

INS HIERARCHY(NI , NJ)
(b)

N

�� @@
�H

NI NJ

�@

⇒

N
�� HH
NI

�@

NJ

DEMOTE(NI , NJ)
(c)

N

�� @@
�H

NI NJ

=⇒

N
�� HH
NK

�� @@
NI NJ

MERGE(NI , NJ)
(d)

N
�H

NK

��AA�
 �	SK

⇒

N

�@
�H

NI

��AA�
 �	SI

NJ

��AA�
 �	SJ

(NI , NJ) = SPLIT(Θ, NK)
(e)

Figure 1. Restructuring operators: (a) node insertion operator, (b) hierarchy insertion operator, (c)
demotion operator, (d) merging operator, and (e) splitting operator. SK , SI & SJ are the sets of child
nodes of NK , NI & NJ , respectively; SK = {SI ∪ SJ} and (SI , SJ) = Θ(SK). Θ is a splitting function
that separates SK by disconnecting an edge in the cluster’s MST structure into two disjoint sets SI

and SJ . (NI , NJ) = SPLIT(Θ, NK) splits NK into NI and NJ w.r.t. the splitting function Θ.

Definition 1 Let DC = 〈NDP, µ, σ〉 be a density rep-
resentation of a clusterC. Given a lower limitLL =
f(µ, σ) ≤ µ and an upper limitUL = g(µ, σ) ≥ µ, the
clusterC is homogeneous with respect tof and g if and
only if LL ≤ di ≤ UL for ∀diεNDP .

Definition 2 Let C be a homogenous cluster. Given a new
point A, let B be aC ‘s cluster member that is the nearest
neighbor toA. Let d be the distance fromA to B. A (and
B) is said toform a higher (lower) dense regionin C if
d < LL (d > UL, respectively).

Our approaches to incorporating a new data point into
a cluster hierarchy incrementally can be divided into two
stages. During the first stage, the algorithm locates a node
in the hierarchy that can host the new data point. The sec-
ond stage performs hierarchy restructuring. This two-stage
algorithm is applied on observing the third and subsequent
data points. The initial hierarchy is created by merging the
first two points.

Locating the initial placement of a new data point during
the first stage is carried out in a bottom-up fashion:

1. Find the closest point over leaf nodes.

2. Starting from the parent of the closest leaf node, per-
form upward searchto locate a cluster (or create a new
cluster hierarchy) that can host the new point with min-
imal density changes and minimal disruption of the hi-
erarchy monotonicity. LetN be the node being exam-
ined at current level. The placement of a new pointNJ

in the hierarchy is performed according to the follow-
ing rules:

• if LL ≤ d ≤ UL then perform INSNODE
(N,NJ) (see Figure 1a) whered is the distance
from the new pointNJ to the nearestN ’s child
node.

• if NJ forms a higher dense regiononN , andNJ

forms a lower dense regionon at least one ofN ‘s

child nodes then perform INSHIERARCHY
(NI , NJ) (see Figure 1b) whereNI is the child
node ofN closest to the new pointNJ .

If none of the rules applies, the search proceeds to the
next higher-level cluster. If the search process reaches
the top-level cluster, a new cluster will be inserted at
the top level using the hierarchy insertion operator.

The second stage aims to recover any structural changes
that occur after incorporating a new data point. The follow-
ing algorithm describes the hierarchy restructuring process.

AlgorithmHierarchy Restructuring
1. LetcrntNodebe the node that accepts the new point.
2. While (crntNode 6= ∅)
3. LetparentNode← Parent(crntNode)
4. Recover the siblings ofcrntNode that are misplaced.
5. Maintain the homogeneity ofcrntNode.
6. LetcrntNode← parentNode

One of the most common problems is that a node is
stranded at an upper level cluster. In such a case, a node
NJ , which is supposed to be a child node ofNI , is mis-
placed asNI ‘s sibling. Line 4 addresses this issue by utiliz-
ing Definition 2 to detect the problem. Specifically, a node
NJ , which is the sibling ofNI , is said to be misplaced as
NI ’s sibling if and only ifNJ does not form a lower dense
region in NI . If such a problem is detected, we iteratively
apply DEMOTE(NI , NJ) (see Figure 1c).

Line 5 in the Hierarchy Restructuring algorithm repairs a
cluster whose homogeneity property has been violated. In-
tuitively, the recovery process involves the elimination of
both the lower and the higher dense regions, repeatedly, un-
til all nearest distances in the cluster are within the cluster‘s
bounds. The following algorithm describes the homogene-
ity maintenance process of a cluster. Working in adivide
and conquerfashion, it receives a clusterN and replacesN
by one or more homogeneous clusters.



To Appear in the 2002 IEEE International Conference on Data Mining 3

AlgorithmHomogeneity Maintenance(N)
1. Let an inputN be the node that is being examined.
2. Repeat
3. LetNI andNJ be the pair of neighbors amongN ‘s

child nodes with the smallest nearest distance.
4. If NI andNJ form a higher dense region,
5. Then MERGE(NI , NJ) (see Figure 1d)
6. Until there is no higher dense region found inN during

the last iteration.
7. LetMI andMJ be the pair of neighbors amongN ‘s

child nodes with the largest nearest distance.
8. If MI andMJ form a lower dense regionin N ,
9. Then Let (NI , NJ) = SPLIT (Θ, N). (see Figure 1e)
10. Call Homogeneity Maintenance(NI).
11. Call Homogeneity Maintenance(NJ).

3. Evaluation

Let DAT A be the set of all data points, andTCi ε T C
be theith target cluster in a set of target clustersT C. Let
E(TCi) denote the set of data points belong to a target clus-
ter TCi such thatDAT A =

⋃
iE(TCi) for ∀ TCi ε T C,

andE(TCi) ∩ E(TCj) = ∅ for i 6= j. Moreover, letNεH
be a node in a cluster hierarchyH that is produced by a
clustering algorithm using all data points inDAT A. Let
E(N) denote the set of data points (i.e. leaf nodes) that are
descendants of a nodeN . For eachTCi ε T C, letN∗

i be the
corresponding node inH such that:

N∗
i = arg max

NεH

{
‖E(TCi)∩E(N)‖
‖E(TCi)∪E(N)‖

}
Thus,N∗

i is a node inH that represents a target clusterTCi.
The quality of cluster hierarchyH is then calculated as an
accuracy measure, which is defined as follows.

AccH =

∑
TCiεT C ‖E(TCi) ∩ E(N∗

i )‖
‖DAT A‖

× 100% (1)

In all experiments, we useUL = µ + σ as the upper
bounds andLL = µ−σ as the lower bounds of clusters with
three or more cluster members. We set the upper bounds
1.5d and the lower bounds (2/3)d for two-member clusters
whered is the distance between the two clusters‘ members.

To test the sensitivity of our algorithm to input ordering,
we use three natural data sets taken from the UCI reposi-
tory: Soybean Small, Soybean Large, andVoting. The dis-
tance between two instances or clusters on these domains is
calculated using theL1 distance function. The experiments
are performed in two settings:randomandbad orderings
[6]. We also runCOBWEB [5] andARACHNE [12] for per-
formance comparison with other incremental systems.

Table 1. The performance of various incre-
mental hierarchical clustering algorithms.

Our IHC COBWEB ARACHNE

Accuracy (%) on Random Ordering
Soybean Small 96.00 97.27 85.10
Soybean Large 69.49 64.27 60.80

Voting 85.55 84.37 79.40
Accuracy (%) on Bad Ordering

Soybean Small 97.36 81.02 78.38
Soybean Large 71.97 60.13 64.26

Voting 85.58 77.81 66.75

Table 1 summarizes the experiment results, averaged
over 25 trials. As indicated in the table, the performances of
our algorithm are better than the other incremental systems
in most cases. Our algorithm is also relatively not sensitive
to the presentation of input ordering.

The next experiment is to test whether the performance
of our IHC algorithm is still competitive with those of non
incremental algorithms particularly the agglomerative hier-
archical clustering methods [3, 10]. In this experiment we
use a subset of the Reuters-21578 1.0 test collection ob-
tained from the UCI KDD archive. We select only a sub-
set of training stories that are assigned a single topic cate-
gory. Each document is preprocessed (i.e. by removing stop
words, performing features selection and weighting) and is
represented by a feature vector. We measure the distance
between two documents or clusters using theL2 distance
function. Because a document topic should be independent
of the length of document, the feature vectors and cluster
centers are normalized byL2 normalization.

Table 2 depicts the best hierarchy quality produced by
each clustering algorithm and the time needed to perform
the clustering process. Because ourIHC algorithm could
produce different result on different input ordering, we av-
erage the result over 25 trials. As shown in table, the best
result from the agglomerative methods is achieved by the
group-averagewith the accuracy of 93.38%. This is only
about 2.1% higher than the accuracy achieved by ourIHC

algorithm, which is 91.28%.

The last column of Table 2 reveals that the best result
of our IHC algorithm is obtained by taking a much shorter
time than those of the agglomerative approaches. While
the best result of our algorithm requires only 56.1 seconds
to perform the clustering process, the agglomerative meth-
ods need at least 5600 seconds, about 100 times longer than
ours. Not only does ourIHC algorithm offer an incremental
process that can avoid data re-clustering, it also efficiently
performs the clustering process.



To Appear in the 2002 IEEE International Conference on Data Mining 4

Table 2. The performance on Reuter data set.
Clust. Method Accuracy(%) Execution Time

(seconds)
IHC Algorithm 91.28 56.1
SingleLinkage 81.60 5749.2
CompleteLinkage 81.18 5692.3
Group-Average 93.38 5749.3
Centroid 80.55 5897.7
Ward 91.27 5820.7

4. Discussion

The worst case analysis of ourIHC algorithm reveals that
it needsB3D logB n time to incorporate a single object,
whereB is the average branching factor of the tree,D is
the dimension (e.g., #features) of objects, andn is the num-
ber of objects that have been previously incorporated in the
tree. Tests on a variety of domains indicate that the tree
branching factor is relatively small, ranging from 2 to 6.D
can be associated with the cost for calculating the distance
between two objects. The most expensive operation is re-
calculating the distances among pairs of child nodes during
theMST update1, which isB2D time. Given the incremen-
tal update time as above, the time complexity of ourIHC

algorithm isO(N log N). This is better than the time com-
plexity of an agglomerative method, which isO(N2).

Our notion of density, which provides a basis for defining
the homogeneity property, is based on a graph theoretic ap-
proach [10]. Despite the advantage of recognizing clusters
of any shapes, usingMST or a similar structure in a cluster-
ing process also has a drawback in that it easily chains sev-
eral clusters together particularly in batch clustering such
as thesingle linkageagglomerative clustering [3]. If there
exists a formation of data points that could link clusters, the
single linkagemethod tends to find those links because the
underlyingMST-like structure is formed over all data points.
However, this problem is not necessarily the case in our al-
gorithm. Because the calculation of distance between two
nodes in our algorithm is based on the nodes’ cluster cen-
ter and theMST structure of a node is built over only the
child nodes, the underlyingMST structures are local to the
nodes’ levels. As a result, theMST structures in ourIHC

algorithm are scattered into several hierarchy levels and are
dependent on the input ordering. The chance is therefore
very small for encountering an ordering of several objects
that can chain two clusters at the same hierarchy levels and
clusters‘ parents. Hence, the clusters chaining problem that

1Currently we usePrim‘s algorithm to rebuild theMST structure, which
has an every-case time complexity ofΘ(B2). Fortunately, there exists an

incrementalMST algorithm [7] withΘ(
√

(B − 1)) update time that could
be used to improve the efficiency of theMST update.

is deterministic in batch clustering is a random variable in
incremental setting with very low probability of occurrence.

5. Conclusion

This paper highlights the inefficiency problem faced by
non incremental hierarchical clustering methods in a dy-
namic environment. In response to this problem, we present
a new incremental hierarchical clustering algorithm. Exper-
iments conducted on a variety of domains indicate the ef-
fectiveness of our algorithm that illuminates its potential as
a valuable tool for Data Mining task.

Acknowledgments

This research is partially supported by Contract
DAAD17-00-P-0649 from the U.S. Army Research Labo-
ratory (ARL) and by a grant from Dell Foundation.

References

[1] G. Biswas, J. Weinberg, and D. Fisher. Iterate: A concep-
tual clustering algorithm for data mining.IEEE Trans. on
Systems, Man, and Cybernetics, 28(2):100–111, 1998.

[2] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu.
Incremental clustering for mining in a data warehousing en-
vironment. InProceedings of the 24th VLDB Conference,
1998.

[3] B. S. Everitt, S. Landau, and M. Leese.Cluster Analysis.
New York, NY: Oxford University Press Inc, 2001.

[4] D. Fisher. Iterative optimization and simplification of hi-
erarchical clusterings.Journal of Artificial Intelligence Re-
search, 4:147–180, 1996.

[5] D. H. Fisher. Knowledge acquisition via incremental con-
ceptual clustering.Journal of Machine Learning, 2:139–
172, 1987.

[6] D. H. Fisher, L. Xu, and N. Zard. Ordering effects in clus-
tering. InProceedings. of the 9th International Conference
on Machine Learning, pages 163–168, 1992.

[7] G. Frederickson. Data structures for on-line updating of
mst, with applications.Siam J. on Comput., 14(4):781–798,
1985.

[8] J. Han and M. Kamber.Data mining : concepts and tech-
niques. San Francisco : Morgan Kaufmann Publishers,
2001.

[9] M. Hearst and J. Pederson. Reexamining the cluster hipoth-
esis: Scatter/gather on retrieval results. InProceedings of
ACM SIGIR, pages 76–84, 1996.

[10] A. Jain and R. C. Dubes.Algorithms for Clustering Data.
Englewood Cliffs, New Jersey: Prentice Hall, 1988.

[11] M. Lebowitz. Experiments with incremental concept forma-
tion: Unimem. Journal of Machine Learning, 1:103–138,
1987.

[12] K. B. McKusick and P. Langley. Constraints on tree structure
in concept formation. InProceedings of the 12th Interna-
tional Conference on Artificial Intelligence, pages 810–816,
1991.


