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Abstract 

 
Reasoning about capabilities in multi-agent systems is 

crucial for many applications. There are two aspects of 
reasoning about the capabilities of an agent to achieve its 
goals. One is the symbolic, logical reasoning, which is based 
on whether the agent can determine a plan that can be used to 
achieve a goal (i.e. “know-how”). Another is quantitative 
reasoning about levels of skill and whether a set of tasks can be 
achieved within a specified time and with quality constraints. 
Capabilities in this sense are determined by the limits of 
internal processing capacity. Both artificial agents and human 
agents can be subject to processing capacity limits, whether 
due to CPU speed, or cognitive limits on attention, memory, 
etc. This could depend not only on the unique skill levels of 
each individual and their cognitive abilities, but also on their 
ability to handle those task demands in parallel, given intrinsic 
limits on internal cognitive resource capacities. In past work, 
researchers have focused primarily on the logical aspect of 
capability reasoning; less work has been done on modeling the 
quantitative aspects of reasoning about capabilities in agents. 
In this paper, we introduce a general mathematical model to 
define the capabilities of agents to achieve a set of tasks. Our 
definitions of capabilities are based on whether a feasible 
schedule exists to complete the tasks within the constraints, 
either in static environments or dynamic environments, for 
which we present two corresponding preliminary scheduling 
algorithms. We illustrate this model with two experiments to 
evaluate the algorithms. We conclude by discussing the 
potential applications of this model, and future work. 
 
1. Introduction 
 

It is becoming increasingly important in1 multi-agent systems 
(MAS) for agents to be able to reason about each other’s 
capabilities1. In large, complex MAS applications, agents need 
to interact, cooperate, negotiate, and solicit/accept/re-distribute 
tasks dynamically.  This might require individuals to decide 
whether they can/should accept new tasks, or to whom it would 
be most effective or least disruptive to delegate them. For 
instance, in team-based multi-agent systems, agents work 
together toward common, shared goals [12].  Each agent might 
have unique skills and capabilities, and the team would like to 
balance its workload to be most effective [9].  

To date, most previous research on modeling capabilities has 
focused on two aspects.  First, there is the derivation of 
capability for complex combinations of actions, based on 
capability to perform the atomic steps involved.  For example, 
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one might start with associations of certain operators with 
certain agents, and then compute capability over sequences and 
more complex expressions by composition, using dynamic logic 
or other techniques related to programming languages 
semantics [4]. Typically, capability does not mean the agent has 
to be able to execute the action right away, but only that it can 
eventually force the situation to hold, regardless of the initial 
state or occurrence of non-deterministic events. A second 
aspects that has received attention within the AI community is 
the notion of ``know-how.'' [11] It is argued that it is not 
sufficient for an agent to be capable in principle of performing 
something, but that it must have the knowledge, i.e. a plan. 

However, there are important cases in which these models of 
capability are inadequate. In some applications, there is an 
intrinsic limit on processing capacity.  For example, a web 
server can only serve so many web pages per second, or a 
database so many queries.  Workload limits stem from the fact 
that processing the task requires some finite amount of 
processing on fixed resource (such as a CPU).  The existence of 
such limits induces a resource capacity, for which tasks must 
compete. This makes the notion of capability context-
dependent: even if the agent could perform the task in 
principle, it might not be able to accomplish it in time, given its 
other current activities (or commitments).  Meanwhile, agents 
can often process multiple tasks in parallel, such as by time-
sharing or multi-tasking (provided the capacity is not 
exceeded). Interestingly, by scheduling task processing at 
different frequencies, the duration can be dynamically adjusted 
(expanded or contracted), with a compensatory change in 
required workload. This enables agents to adjust their 
processing of individual tasks dynamically in very flexible 
ways, e.g. to reduce workload on non-urgent tasks, or increase 
it on those that need to be finished for a quickly approaching 
deadline. So not only is capability context-dependent, but 
agents have the ability to manipulate the way they do things to 
accommodate new task demands. 

Of course, there is also a sense of capability that has to do 
with quality. Quality is often inter-related with speed.  For 
certain computations, e.g. search algorithms (Monte Carlo, 
simulated annealing, hill-climbing/gradient-descent, GAs), 
iterative algorithms (e.g. convergent algorithms for computing 
derivatives or solving large systems of equations, EM), or 
randomized algorithms, the more processing time they are 
given, the better.  Hence there is a desire to run on faster 
CPUs, or at least ones that can compute an acceptable answer 
in the allotted time.  Different approximation schemes can 
often be used that have different tradeoffs of CPU time 
required (i.e. "effort") versus accuracy of the result.  An 
extreme case of this is anytime algorithms, which guarantee to 
give incrementally better results with increasing time [2]. 



Hence a more quantitative model of capabilities is needed to 
capture these tradeoffs among effort, speed, and quality, and to 
integrate all these together in the presence of intrinsic limits on 
workload or processing capacity, which ultimately makes 
reasoning about capabilities context-dependent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this paper, we present a new definition of capability that 

agents can use for reasoning about their performance and that 
of others in the environment. Our model is situated within a 
quantitative framework that allows for capturing and 
expressing graded tradeoffs among time (duration), effort 
(workload), and quality with which tasks are performed.  In this 
framework, whether or not an agent is capable of performing a 
task depends on what other tasks and deadlines it currently is 
trying to honor.  We formalize this context-dependence by 
defining capability based on whether a feasible schedule can be 
found in which all tasks (current and new) can be completed 
successfully by their deadlines (and other constraints) without 
exceeding 100% of the agent's individual workload limit (or 
other resource capacities) at any given time.  However, it is 
important to note that the definition is flexible enough to allow 
for the possibility that the agent might be able to re-arrange its 
schedule of processing current tasks to accommodate the new 
one, such as by expanding the duration of processing non-
critical tasks to free up some processing resources.  Hence this 
definition of capability is not a simple ``property'' (e.g. a rule 
expressed in logic), but is tied to the notion of scheduling (i.e. 
determining whether a feasible schedule exists). We discuss 
application to teamwork modeling and agent interactions 
toward the end of this paper. 

Figure 1 depicts a capability-reasoning framework for a 
team-based agent system. Through the logic reasoning 
capabilities, the team can build a plan composed of a set of 
tasks. Through a task assignment algorithm that may be part of 
the plan, each team agent gets a subset of tasks. By the 
quantitative reasoning, each agent can know whether executing 
the new tasks satisfies its workload limitation and the time 
constraints of each task. If any team member determines it is 
not capable of its tasks, it may cause either reassignment of 
tasks or revision of the entire team plan. 
 
2. Capability 
 
In this section, we will first introduce a mathematical model of 
single-agent capabilities. Then we will extend this model to 
define the capabilities of a group of agents.   
 
2.1. Mathematical Model 
 

“Workload” has been studied a great deal in cognitive 
science and industrial engineering. A succinct definition of 
mental workload by O’Donnell [7] is “The term workload 
refers to that portion of the operator’s limited capacity actually 
required to perform a particular task.”  The theoretical 
assumption underlying this definition is that the human 
operator has limited processing capacity or resources. If the 
processing demand of a task or tasks exceeds available 
capacity, performance decrements result [13]. Furthermore, 
numerous studies show a substantial positive relationship 
between cognitive abilities and job performance [6]. In multi-
agent systems, especially involved with human agents, there 
exist similar situations as well. The processing capacity of each 
agent is limited. 

Generally, people assume workload a constant, namely, a 
task executed in its duration always has a constant workload 
demanding. But in the real world, the workload of a task may 
be changing with time. For instance, baking turkey is a high 
workload task at the beginning. After putting the turkey into 
the oven, it turns to a low workload task. Nobody will stay in 
front of the oven to watch the turkey in the entire process. The 
chef only needs to check it several times. Therefore, in our 
model, we delineate the workload allocated to a task is a 
function of time. We represent this function by equation 2-1. 

                          f(t)    if      Tstart  
�

 t 
�

 Tend ; 

           w =                                                          (2-1) 
                          0                otherwise. 
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Figure 1: Capability-reasoning framework of an agent team 
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Figure 2:  Workload and effort in duration {Tstart, Tend} 



Where, Tstart and Tend denote the start and end times of the 
task, respectively, and w refers to workload allocation; the 
duration of the task is represented by d = Tend – Tstart. We use 
MC to denote the maximum processing capacity that the agent 
has available at any time. In practice, it could be attention of a 
person or computational capacity of a processor. 

In the sense of “Work harder, finish a task earlier”, there 
exists a trade-off between the workload allocated and the time 
required for a task with given quality. In our model, we assume 
that the more workload, the less time required. We use the term 
“effort” which represents the relation between the workload 
allocation and the duration for a given task with a specific 
quality. According to the above function of workload and 
duration, we define the effort requirement of a task by equation 
2-2, where e refers to effort. Figure2 depicts the workload 
allocation and the effort requirement function for a task in 
duration {Tstart, Tend}. 

 e = � end

start

T
T

dttf )(     (2-2) 

We use the term “quality” to denote the performance 
requirement of a task. The quality of a task an agent can 
achieve depends on its workload allocation and the time 
required. We can translate this relation to the one between 
quality achievement and effort expended. In general, the more 
effort the agent exerts, the higher the quality it can achieve. 
Generally, it is a monotonic relation [15]. Equation 2-3 shows 
the quality achievement as a function of effort, where q refers 
to the corresponding quality by effort paid-off e. Figure 3 
depicts an example of the functional relation between quality 
and effort. 
                         q  =  g(e)                                      (2-3) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The effort is a constant for a given quality requirement, no 
matter how the workload is allocated and the duration is 

assigned. In other words, we could adjust the workload and 
duration combination to satisfy the effort requirement for a 
given quality. In principle, we could adjust the workload and 
duration arbitrarily. But there exists a minimum workload limit 
for most tasks in the real world. On the other hand, after a 
threshold, even if you allocate more workload, you might not be 
able to improve the quality achieved. We denote the threshold 
workload allocation as the highest workload for a given task.  
Thus, we get the adjustable ranges of workload and duration 
needed for a given task with a specific quality requirement. 
Figure 4 shows the adjustable ranges of workload and duration 
of a task with a specific quality requirement. For the same 
quality requirements, the efforts needed are equivalent (iso-
curves). The rectangles in Figure 4 have the same area and 
hence effort. We should clarify that there are some tasks for 
which the workload and duration might not be adjustable. In 
our model, we can view the workload range is not an interval 
but a constant. 

All the above mathematical relations relate to a single agent. 
Considering multiple agents, we could not ignore the different 
skill levels from different agents for a same task. Intuitively, 
letting an agent with higher skill level to do a task is more 
efficient than assigning the task to an agent with lower skill 
level. In our mathematical model, that means that different 
efforts are needed for different agents to achieve a task with a 
given quality requirement. We view the skill as a multiplier 
that increases the effect of a given amount of effort 
proportionally. The smaller the value of skill, the larger the 
effort needed for the same task. An agent could be not capable 
of some tasks at all. In this case, its skill value can be zero. 
Meaning, no matter how much effort the agent pay for a task, it 
could not achieve the given quality of the task. Currently, we 
treat the skill value as a coefficient. In practice, it could be 
more complex than that. For example, a person could improve 
his skill level for a specific task after he has done it many 
times. Hence, skill value could be a function of session, time, 
or some other parameters. 
 
2.2. Definition of Capability 
 

We proceed by introducing formal definitions of an agent’s 
capabilities based on the above mathematical model in this 
section. Our basic idea is that an agent can be said to be 
capable of doing a task if it can find a schedule that can 
accommodate it with other on-going tasks and still satisfy all 
constraints. The application of scheduling to reasoning about 
workload in multi-task environments has been considered in 
various cognitive models [14]. In a static environment, the 
agent schedules all given tasks based on its capability before it 
starts to execute them. In a dynamic environment, the agent 
may execute some tasks as well as evaluate whether it can 
accept new arrival tasks. 

Given: a set of task X = {x1, …, xn}, which has the 
corresponding quality requirement set Q = {q1, …, qn}. For 
each tasks xi in X, the release time and the deadline is the 
corresponding interval {ri, di}, i = 1, …, n. The definition of 
the agent capability in a static environment is as follows: 
Definition 1: Agent Capability in Static Environment 
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Agent A has the capability to achieve the tasks in X, or 
CapStatic(A, X), iff ∃∃∃∃ a schedule S of  X, which is { {ts1, 
te1}, …, {tsn, ten} }.  For each task xi, the workload wi and 
the effort ei are calculated by the equations as follows:                 

                                      fi(t)    if  tsi 
�

 t 
�

 tei 

                        wi =                                                                                 
                                      0        otherwise 

and effort is a function of quality required with a skill 
multiplier: 
                    ei  = g(qi)/si 

also, ei should satisfy the following equation: 

                    ei = � ei

si
i

t
t

dttf )(  

while at any time point t’ during the time interval 
{earliest(tsi), latest(tei)},   

                   � � wi = � fi(t’) �  MW 

and for each task xi 

                    tsi �  ri   &    tei  �  di  

where tsi and tei denote the start time and the end time of 
task xi respectively, si is the skill level of agent A to achieve 
task xi.    

In a dynamic environment, assume an agent A is running with 
schedule S = {{ts1, te1}, …, {tsn, ten}}of a task set X = {x1, … , 
xn} at time t0 when a new task set Y = {y1, … , ym} arrives.  
There is a subset Z = {z1, … , zk}of the task set X, which 
includes the tasks which are being executed but are not 
finished and are interruptible or the tasks which are waiting to 
be executed at time t0. The workload allocation distribution of 
tasks in X-Z is dw = w(t). The corresponding quality 
requirement set of Y is Q = {q1, … , qm}. For each task yi, the 
release time and deadline is given by the interval {ri, di} (i = 1, 
… , m).  The definition of the agent capability in this dynamic 
environment is as follows: 
Definition 2: Agent Capability in Dynamic Environment 

Agent A has the capability to achieve the tasks in Y without 
violating the tasks of X-Z in execution, or CapDyn(A, X, Y), 
iff ∃∃∃∃  a new schedule S’= {{tzs1, tze1}, …, {tzsk, tzek}, {ts, 

k+1, te, k+1}, …, {ts,k+m, te ,k+m}} of the task set Z ∪∪∪∪ Y. For 
each task in this union, the workload wi and the effort ei are 
calculated by the following equations:                 

                                fi(t)    if  tsi �  t �  tei , {ts1, te1} ∈∈∈∈ S’ 
                     wi =                                                                                 

                            0        otherwise 
                 ei  = g(qi)/si 

also, ei should satisfy the following equation: 

                 ei = � ei

si
i

t
t

dttf )(  

while at any time point t’ during the time interval 
{earliest(tsi), latest(tei)},   

                 wi = � fi(t’) �  MW - dw(t’) 

and for each task yi 

                 tsi �  ri   &    tei  �  di  

where tsi and tei denote the start time and the end time of 
each task  in Z ∪∪∪∪ Y respectively, si is the skill level of agent 
A to achieve the task. 
We give an example in Figure 5 to show how an agent 

manages its workload allocation to satisfy its processing 

capacity and the deadlines of its tasks and how the skill levels 
of different agents affect reasoning about agent capability. 
Assume a professional secretary agent could input a file into a 
computer in 1 hour with a given accuracy if he pays all his 
attention (maximum processing capacity) to this inputting task. 
But a novice secretary needs 2 hours. The professional can 
input some files into a computer and listen to the radio at same 
time. In this case, he can finish this file in 1 and half hour. The 
novice could not handle these two tasks parallel at all. So the 
boss asks the professional secretary to listen to the financial 
news simultaneously with inputting the file. Figure 5 depicts 
how the secretary to handle these two tasks simultaneously by 
reducing the workload of the inputting task, which is 
represented by x0. Suppose the deadline of x0 is time T0+2, and 
the financial news is from time T0 to T0+1. In this case, the 
secretary can finish both tasks. However the novice can only 
either makes the task x0 meet its deadline or gets the financial 
news. Here, the task of listening to the financial news could not 
be adjusted because the time constraints of listening to news 
are not adjustable. This example shows the benefit of adjusting 
the combination of workload and duration of a task. Also it 
shows different skill levels will affect the performance of a 
task.    

 
 
 
 
 
 
 
 
 
 
It is straightforward to extend the above definitions to the 

capabilities of a group of agents. What we could do is to 
decompose the given task set to some task subsets. The number 
of the task subsets is equal to or less than the number of agents 
in the multi-agent system. The decomposition of the task set 
should satisfy the capability of the corresponding individual 
agents in the group. Hence, to know whether the multi-agent 
system is capable of achieving tasks in a task set, we need to 
know if there exists a task assignment for all agents in the 
group, which satisfies the capabilities of the corresponding 
agents. Kleinman et al. [5] present a model of task distribution 
in human teamwork that has a similar flavor. 

Suppose that M is composed of an agent group {A1, … , Am }. 
Given; a set of tasks X={x1, … , xn}, which has the 
corresponding quality requirement set Q ={Q1, … , Qn}. For 
each task xi in X, the release time and the deadline is the 
corresponding interval {ri, di}, i = 1, … , n. The definition of 
the capability of a group of agent is as follows: 
Definition 3: Capability of A Group of Agents 

Group M has the capability to achieve the tasks in X or 
CapGroup(M, X), iff ∃∃∃∃  task assignment Y = { Y1, … , Ym }, 
Yj is the task subset of agent Ai and 
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CapSingle(Aj, Yj) for j = 1, … , m. This means there exist m 
task schedules Sj for each Yj respectively, and each Sj 
satisfies the capability of the single agent Aj. 
According to our definition of agent capabilities, the key 

issue of reasoning about agent capability is to search for a 
feasible task schedule that satisfies both the performance 
requirements of given tasks and the agent capabilities. For a 
multi-agent system, a task assignment algorithm is needed to 
satisfy the constraints of all agents in the system. 
 
3. Task Scheduling 
 

We should clarify what the exact meaning of “ schedule”  is 
in the above definitions. It is not just a linear sequence of a set 
of tasks. There could be some parallel tasks in a schedule. Also 
a schedule is not only searched by some mathematical 
scheduling algorithms [1], but also could be searched by pattern 
matching, rule-based reasoning or some other AI approaches 
[16] with satisfying the criteria in above definitions. As for 
scheduling algorithms, there exist many mathematical 
scheduling algorithms, which could be borrowed for our 
capability reasoning from the operating system, real-time 
system fields or manufacturing industry. One of the unique 
aspects in our scheduling algorithms is that the workload 
allocation and execution duration can be adjustable in 
accordance with the trade-off between workload and duration of 
a task. This feature helps an agent to schedule its tasks more 
flexibly and efficiently, but it makes the scheduling algorithm 
more complex. Also, the variance of the quality requirements of 
tasks will generate a different workload allocation. Therefore, 
besides considering the common constraints of tasks, such as 
dependence, preemption, release time, deadline etc. scheduling 
algorithms need to satisfy agent capability criteria. 

Before introducing the formal scheduling algorithms, we 
need to make some assumptions. At first, we assume the 
workload allocation is not a function of time but a constant. 
That implies that the relation among effort requirement, 
workload allocation and execution duration of a task is 
described by the following equation: 
                 effort = workload * duration;                      (3-1) 

If the workload allocation of each task could be adjusted 
arbitrarily, the search space could be infinite. In our algorithms, 
we only consider two alternatives: one is the highest workload a 
task needs; the other is the lowest workload the task needs. 
Correspondingly, there are two alternatives of execution 
durations of the task: shortest duration and longest duration.  
As for the attributes of tasks, we assume all tasks in a task set 
are independent, meaning there are no predecessors or 
successors of each task. Tasks are also non-preemptive, 
meaning tasks could not be interrupted after they start to be 
executed. 

We call the scheduling algorithm for agents in a static 
environment ERFS (Earliest Release time First Scheduled), 
meaning the earlier a task is ready, the earlier it is scheduled. 
Algorithm 1: Earliest Release Time First Schedule  

Input: Task set X = {x1, … , xn} with the corresponding 
quality requirements Q = {q1, … , qn}. (i = 1, … , n). Each 
task xi has the effective time interval {ri, dei}. Agent A has 
the maximum workload MC. 

Output: A feasible schedule S of tasks accepted in X. 
Begin (ERFS) 
(1) Agent A computes effort ei for each task xi  by a 
function of quality:  ei = g(qi); 
(2) Agent A gets the workload ranges by functions: 
                   whi = h(ei)            wli = l(ei) 
where whi and wli refer to the highest workload and lowest 
workload for task xi respectively; 
(3) Agent A gets the duration range by functions: 
                   dsi = ei / whi          dli = ei / wli 
where dhi and dli refer to the shortest duration and longest 
duration for task xi respectively; 
(4) Set all tasks of X acceptable at first; 
(5) Set tasks unacceptable if they satisfy wli > MC or 
(ri+dsi )> dei; 
(6) Replace the whi by wli and dhi by dli if whi > MC but wli 
< MC ; 
(7) Sort acceptable tasks by ri  in increasing order.  
(8) Schedule these tasks by the order in (7) to get an 
original schedule S ={{Ts1, Te1}, … , {Tsm, Tem} }. m refers to 
the number of acceptable tasks. 
(9) If S satisfy the deadlines of these tasks, 
        {Return S; } 
     Else 

 { Put tasks without satisfying their deadlines in 
queue Qu.  Let S = S – Qu ; 

    Adjust all pairs {Tsj, Tej } in S to minimize the idle 
time which is caused by removing tasks from S; 

 Schedule the tasks in Qu parallel with S based on 
the principle: ∀∀∀∀ t, � wk �  MC; t refers to time. 

 Set tasks in Qu which could not be scheduled in S 
as unacceptable; 

 Return S; } 
End (ERES).              
In a dynamic environment, assume tasks arrive stochastically 

over time. The agent is executing the tasks in an existing 
schedule as well as scheduling the new arrival of tasks 
generated by the task generator. At any time, there is at most 
one new task generated. The agent gets the task before the 
release time of the task and schedules it without violating the 
currently executed schedule. We call the algorithm in this 
environment DS (Dynamic Schedule). 
Algorithm2: Dynamical Schedule  

Input: Task x has the quality requirement q and the feasible 
time interval {r, de}. Agent A is executing the tasks in the 
schedule S = {{ts1, te1}, …, {tsn, ten}}. The workload 
allocations for tasks in S is W = {w1, … , wn}. 
Output: Acceptance of x. 
              If it is acceptable, add x to S. 
Begin (DS) 
(1) Agent A computes effort e  for each task x  by a function 
of quality:  e = g(q); 
(2) Agent A gets the workload range of x by functions: 
                   wh = h(e)            wl = l(e) 

where wh and wl refer to the highest workload and lowest 
workload for task x respectively; 
(3) Agent A gets the duration range by functions: 
                   ds = e / wh            dl = e / wl 



where dh and dl refer to the shortest duration and longest 
duration for task x respectively; 
(4) If  wl > MW or (r+ds)> de; 

{ Return Acceptance = false;} 
     else 

{Get the workload distribution of tasks in S by     
dw(t); 
Search the earliest interval {start, end}after release 
time r, in which the workload of x could satisfy the 
equation w+dw(t) �  MW, w is either wh or wi. end is 
equal to start+ds or start+dl depending on which is 
allocated, wh  or wl. Also, end must satisfy end �  de. 
If above searching is successful, 

          { Add {start, end} to S and w to W; 
             Return Acceptance = true; } 

Else 
          { Return Acceptance = false; } } 

End (DS). 
DS extends the EFRS algorithm by attempting to place new 

tasks in the schedule of existing tasks, by trying various 
combinations of shortest-duration/highest-workload or longest-
duration/lowest-workload variants of each task, while assuring 
that current tasks are not interrupted. 
 
4. Experimental Evaluation 
 

We designed two experiments to evaluate the above task 
scheduling algorithms. The goal of these experiments is to 
demonstrate that an agent could utilize its available workload 
more efficiently to achieve more tasks by reasoning about its 
capability quantitatively. 

The framework of the first experiment consists of an agent, 
the task handler, which schedules tasks in a given task set 
generated by a task generator. The agent has two schedulers: 
one is without capability reasoning; the other is with capability 
reasoning. Here, the capability reasoning is based on the 
definition of agent capability. This means the agent can adjust 
its workload to a given task in order to achieve more tasks, and 
the agent is allowed to execute more than one task in parallel. 
In this experiment, the scheduler with capability reasoning 
schedules the tasks by the ERFS algorithm. Conversely, the 
scheduler without capability reasoning only schedules the tasks 
based on a fixed workload allocation, and the agent executes 
the tasks sequentially.  

The task generator generates a random set of 1 to k tasks, 
each having a unique minimum quality threshold of between 
0% and 100%. Each task is assigned a minimum and maximum 
duration of up to 100 time steps, and the workload range is set 
inversely proportional to the range of durations. Figure 6 shows 
the task acceptance rates of the schedulers in experiment #1, 
which is equal to the number of tasks accepted divided by the 
tasks generated. We set the parameter of the task generator k to 
{100, 300, 500, 1000, 2000, 3000, 5000}. For each k, we ran 
the agent 100 times and computed the mean of the tasks 
generated by the task generator. The result of Experiment #1 
shows that the scheduler with capability reasoning can accept 
more tasks than the scheduler without capability reasoning for 
all parameters k we picked. We can see that the scheduler runs 

very stably. For different numbers of tasks, the acceptance rates 
are almost the same. The acceptance rate of the scheduler with 
capability reasoning is roughly twice that of the scheduler 
without capability reasoning. 

   
 
 
 
 
 
 
 
 
 
 
 
 
 
In our second experiment, the agent handles tasks generated 

by a task generator dynamically. There are two synchronized 
threads running in this experiment. One is running the task 
handler, or the agent, while another is running the task 
generator. There are two task streams generated by the task 
generator with different frequencies over the running lifetime 
of the agent. The time unit we use here is milliseconds. The 
tasks are generated similarly to those in Experiment #1, except 
that the durations are set randomly to between 1 and 1000ms. 
The frequency of task stream #1 is one task per 20 
milliseconds. The frequency of task stream #2 is one task per 
100 milliseconds. In Experiment #2, the scheduler with 
capability reasoning schedules the tasks by the DS algorithm. 
Each task scheduler in this experiment has to maintain the 
information of the tasks, which have been scheduled before in 
order to calculate the workload available at the current time. 
Each time the agent accepts a new task, the agent will update 
this information immediately. 

We set the lifetime of the agent to 10,000ms and ran the 
agent 100 times to get the mean of the tasks generated by the 
task generator and the tasks accepted by the schedulers.  On 
average, the task streams generated 462 tasks, of which the 
agent with capability reasoning accepted 117 (25%), while the 
agent without capability reasoning was only able to accept 64 
(14%).  Furthermore, the average workload (or resource 
utilization) was nearly twice as high: 50% for the agent with 
capability reasoning versus 28% without. 
 
5. Discussions and Conclusion 
 

The aim of this paper is to present a mathematical model for 
reasoning about the capabilities of task-performing agents.  
This model tries to capture the quantitative relationship among 
four performance constraints of given tasks and the executive 
agents: the quality requirements and time constraints of tasks, 
as well as the workload limitations and skill levels of the 
agents.  Our model of capability is based on scheduling of 
concurrent tasks so as not to violate maximum workload 
capacity and/or time constraints.  
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Figure 6: Task Acceptance Rates in Experiment #1 



This model of capability and workload estimation could be 
used in an incremental algorithm for constructing team plans.  
For example, as agents are assigned to tasks, estimates 
(predicted over time) of their workload might be updated, and 
assignment of subsequent tasks could be done so as not to 
exceed 100% workload for any one agent at any given time.  
However, it would probably be best to do this in a distributed 
way, since it is likely that no single centralized agent will know 
either the performance characteristics (task parameters such as 
speed, effort, and quality tradeoffs) of each agent, their other 
task demands (e.g. from private/individual goals or 
simultaneous participation in other teams), or other local 
resources or constraints. Furthermore, in accepting new tasks, 
agents might internally re-arrange processing of their 
responsibilities, and these accommodation decisions might not 
necessarily be known by the other agents.  There are a number 
of multi-agent planning algorithms, and these can be extended 
to utilize this information in different ways to produce 
workload-balanced team plans.  

Our model could also be used in handling different types of 
interactions between agents in a dynamic environment. For 
instance, in a dynamic and distributed environment, negotiation 
among agents requires them to reason about their own 
capabilities and sometimes each other’ s capabilities. For 
example, a client agent in a contract net [10] has to evaluate its 
capability to make a decision whether it bids a new task. The 
self-interested agents [8] may deceive its manager to get some 
bids to achieve a higher income, even if they cannot accomplish 
some tasks on time. In this case, the manager may need to 
reason about the capability of its bidders to avoid an 
unexpected delay of its task. 

We view our framework as applying to reasoning about both 
agents and humans.  Both have processing capacity limits that 
affect the assessment of their capability.  Just as agents might 
have computational limits, such as on CPU speed or amount of 
RAM, so humans have limits on cognitive resources like 
memory and attention. For the case involving humans, agents 
need a quantitative model to understand the relative demands, 
capacity, and possibly skill level of the human, in order to 
make appropriate decisions about how to interact [3]. 

An important limitation of our current model is that it treats 
processing capacity as a single, unified resource.  A significant 
direction for future research is to extend our model to 
incorporate multiple types of resources, so we can handle 
different dimensions of interaction based on the types of the 
tasks being performed.  Also, we would like to incorporate 
different task priorities into the decision-making. 
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