
A Quantitative Model of Capabilities in Multi-Agent Systems

Linli He and Thomas R. Ioerger
Department of Computer Science

Texas A&M University – College Station
{linli, ioerger@cs.tamu.edu}

Abstract

Reasoning about capabilities in multi-agent systems is

crucial for many applications. There are two aspects of
reasoning about the capabilities of an agent to achieve its
goals. One is the symbolic, logical reasoning, which is based
on whether the agent can determine a plan that can be used to
achieve a goal (i.e. “know-how”). Another is quantitative
reasoning about levels of skill and whether a set of tasks can be
achieved within a specified time and with quality constraints.
Capabilities in this sense are determined by the limits of
internal processing capacity. Both artificial agents and human
agents can be subject to processing capacity limits, whether
due to CPU speed, or cognitive limits on attention, memory,
etc. This could depend not only on the unique skill levels of
each individual and their cognitive abilities, but also on their
ability to handle those task demands in parallel, given intrinsic
limits on internal cognitive resource capacities. In past work,
researchers have focused primarily on the logical aspect of
capability reasoning; less work has been done on modeling the
quantitative aspects of reasoning about capabilities in agents.
In this paper, we introduce a general mathematical model to
define the capabilities of agents to achieve a set of tasks. Our
definitions of capabilities are based on whether a feasible
schedule exists to complete the tasks within the constraints,
either in static environments or dynamic environments, for
which we present two corresponding preliminary scheduling
algorithms. We illustrate this model with two experiments to
evaluate the algorithms. We conclude by discussing the
potential applications of this model, and future work.

1. Introduction

It is becoming increasingly important in1 multi-agent systems
(MAS) for agents to be able to reason about each other’s
capabilities1. In large, complex MAS applications, agents need
to interact, cooperate, negotiate, and solicit/accept/re-distribute
tasks dynamically. This might require individuals to decide
whether they can/should accept new tasks, or to whom it would
be most effective or least disruptive to delegate them. For
instance, in team-based multi-agent systems, agents work
together toward common, shared goals [12]. Each agent might
have unique skills and capabilities, and the team would like to
balance its workload to be most effective [9].

To date, most previous research on modeling capabilities has
focused on two aspects. First, there is the derivation of
capability for complex combinations of actions, based on
capability to perform the atomic steps involved. For example,

1 This work was supported in part by MURI grant #F49620-00-

1-0326 from DoD and AFOSR.

one might start with associations of certain operators with
certain agents, and then compute capability over sequences and
more complex expressions by composition, using dynamic logic
or other techniques related to programming languages
semantics [4]. Typically, capability does not mean the agent has
to be able to execute the action right away, but only that it can
eventually force the situation to hold, regardless of the initial
state or occurrence of non-deterministic events. A second
aspects that has received attention within the AI community is
the notion of ``know-how.'' [11] It is argued that it is not
sufficient for an agent to be capable in principle of performing
something, but that it must have the knowledge, i.e. a plan.

However, there are important cases in which these models of
capability are inadequate. In some applications, there is an
intrinsic limit on processing capacity. For example, a web
server can only serve so many web pages per second, or a
database so many queries. Workload limits stem from the fact
that processing the task requires some finite amount of
processing on fixed resource (such as a CPU). The existence of
such limits induces a resource capacity, for which tasks must
compete. This makes the notion of capability context-
dependent: even if the agent could perform the task in
principle, it might not be able to accomplish it in time, given its
other current activities (or commitments). Meanwhile, agents
can often process multiple tasks in parallel, such as by time-
sharing or multi-tasking (provided the capacity is not
exceeded). Interestingly, by scheduling task processing at
different frequencies, the duration can be dynamically adjusted
(expanded or contracted), with a compensatory change in
required workload. This enables agents to adjust their
processing of individual tasks dynamically in very flexible
ways, e.g. to reduce workload on non-urgent tasks, or increase
it on those that need to be finished for a quickly approaching
deadline. So not only is capability context-dependent, but
agents have the ability to manipulate the way they do things to
accommodate new task demands.

Of course, there is also a sense of capability that has to do
with quality. Quality is often inter-related with speed. For
certain computations, e.g. search algorithms (Monte Carlo,
simulated annealing, hill-climbing/gradient-descent, GAs),
iterative algorithms (e.g. convergent algorithms for computing
derivatives or solving large systems of equations, EM), or
randomized algorithms, the more processing time they are
given, the better. Hence there is a desire to run on faster
CPUs, or at least ones that can compute an acceptable answer
in the allotted time. Different approximation schemes can
often be used that have different tradeoffs of CPU time
required (i.e. "effort") versus accuracy of the result. An
extreme case of this is anytime algorithms, which guarantee to
give incrementally better results with increasing time [2].

Hence a more quantitative model of capabilities is needed to
capture these tradeoffs among effort, speed, and quality, and to
integrate all these together in the presence of intrinsic limits on
workload or processing capacity, which ultimately makes
reasoning about capabilities context-dependent.

In this paper, we present a new definition of capability that

agents can use for reasoning about their performance and that
of others in the environment. Our model is situated within a
quantitative framework that allows for capturing and
expressing graded tradeoffs among time (duration), effort
(workload), and quality with which tasks are performed. In this
framework, whether or not an agent is capable of performing a
task depends on what other tasks and deadlines it currently is
trying to honor. We formalize this context-dependence by
defining capability based on whether a feasible schedule can be
found in which all tasks (current and new) can be completed
successfully by their deadlines (and other constraints) without
exceeding 100% of the agent's individual workload limit (or
other resource capacities) at any given time. However, it is
important to note that the definition is flexible enough to allow
for the possibility that the agent might be able to re-arrange its
schedule of processing current tasks to accommodate the new
one, such as by expanding the duration of processing non-
critical tasks to free up some processing resources. Hence this
definition of capability is not a simple ``property'' (e.g. a rule
expressed in logic), but is tied to the notion of scheduling (i.e.
determining whether a feasible schedule exists). We discuss
application to teamwork modeling and agent interactions
toward the end of this paper.

Figure 1 depicts a capability-reasoning framework for a
team-based agent system. Through the logic reasoning
capabilities, the team can build a plan composed of a set of
tasks. Through a task assignment algorithm that may be part of
the plan, each team agent gets a subset of tasks. By the
quantitative reasoning, each agent can know whether executing
the new tasks satisfies its workload limitation and the time
constraints of each task. If any team member determines it is
not capable of its tasks, it may cause either reassignment of
tasks or revision of the entire team plan.

2. Capability

In this section, we will first introduce a mathematical model of
single-agent capabilities. Then we will extend this model to
define the capabilities of a group of agents.

2.1. Mathematical Model

“Workload” has been studied a great deal in cognitive
science and industrial engineering. A succinct definition of
mental workload by O’Donnell [7] is “The term workload
refers to that portion of the operator’s limited capacity actually
required to perform a particular task.” The theoretical
assumption underlying this definition is that the human
operator has limited processing capacity or resources. If the
processing demand of a task or tasks exceeds available
capacity, performance decrements result [13]. Furthermore,
numerous studies show a substantial positive relationship
between cognitive abilities and job performance [6]. In multi-
agent systems, especially involved with human agents, there
exist similar situations as well. The processing capacity of each
agent is limited.

Generally, people assume workload a constant, namely, a
task executed in its duration always has a constant workload
demanding. But in the real world, the workload of a task may
be changing with time. For instance, baking turkey is a high
workload task at the beginning. After putting the turkey into
the oven, it turns to a low workload task. Nobody will stay in
front of the oven to watch the turkey in the entire process. The
chef only needs to check it several times. Therefore, in our
model, we delineate the workload allocated to a task is a
function of time. We represent this function by equation 2-1.

 f(t) if Tstart
�

 t
�

 Tend ;

 w = (2-1)
 0 otherwise.

Agent m

Logical Reasoning

Quantitative Reasoning

Figure 1: Capability-reasoning framework of an agent team

Task
Scheduling

A subset of tasks

Quality
Requirements of

Tasks

Skill levels of
Agent 1

Workload
allocations of

Agent 1

Common Goal

Logic Plan
(A set of tasks)

Task Assignment

Time
Constraints

Agent 1

Tstart Tend
t

w

MC

w= f(t)

e =
� end

start

T
T

dttf)(

Figure 2: Workload and effort in duration {Tstart, Tend}

Where, Tstart and Tend denote the start and end times of the
task, respectively, and w refers to workload allocation; the
duration of the task is represented by d = Tend – Tstart. We use
MC to denote the maximum processing capacity that the agent
has available at any time. In practice, it could be attention of a
person or computational capacity of a processor.

In the sense of “Work harder, finish a task earlier”, there
exists a trade-off between the workload allocated and the time
required for a task with given quality. In our model, we assume
that the more workload, the less time required. We use the term
“effort” which represents the relation between the workload
allocation and the duration for a given task with a specific
quality. According to the above function of workload and
duration, we define the effort requirement of a task by equation
2-2, where e refers to effort. Figure2 depicts the workload
allocation and the effort requirement function for a task in
duration {Tstart, Tend}.

 e = � end

start

T
T

dttf)((2-2)

We use the term “quality” to denote the performance
requirement of a task. The quality of a task an agent can
achieve depends on its workload allocation and the time
required. We can translate this relation to the one between
quality achievement and effort expended. In general, the more
effort the agent exerts, the higher the quality it can achieve.
Generally, it is a monotonic relation [15]. Equation 2-3 shows
the quality achievement as a function of effort, where q refers
to the corresponding quality by effort paid-off e. Figure 3
depicts an example of the functional relation between quality
and effort.
 q = g(e) (2-3)

The effort is a constant for a given quality requirement, no
matter how the workload is allocated and the duration is

assigned. In other words, we could adjust the workload and
duration combination to satisfy the effort requirement for a
given quality. In principle, we could adjust the workload and
duration arbitrarily. But there exists a minimum workload limit
for most tasks in the real world. On the other hand, after a
threshold, even if you allocate more workload, you might not be
able to improve the quality achieved. We denote the threshold
workload allocation as the highest workload for a given task.
Thus, we get the adjustable ranges of workload and duration
needed for a given task with a specific quality requirement.
Figure 4 shows the adjustable ranges of workload and duration
of a task with a specific quality requirement. For the same
quality requirements, the efforts needed are equivalent (iso-
curves). The rectangles in Figure 4 have the same area and
hence effort. We should clarify that there are some tasks for
which the workload and duration might not be adjustable. In
our model, we can view the workload range is not an interval
but a constant.

All the above mathematical relations relate to a single agent.
Considering multiple agents, we could not ignore the different
skill levels from different agents for a same task. Intuitively,
letting an agent with higher skill level to do a task is more
efficient than assigning the task to an agent with lower skill
level. In our mathematical model, that means that different
efforts are needed for different agents to achieve a task with a
given quality requirement. We view the skill as a multiplier
that increases the effect of a given amount of effort
proportionally. The smaller the value of skill, the larger the
effort needed for the same task. An agent could be not capable
of some tasks at all. In this case, its skill value can be zero.
Meaning, no matter how much effort the agent pay for a task, it
could not achieve the given quality of the task. Currently, we
treat the skill value as a coefficient. In practice, it could be
more complex than that. For example, a person could improve
his skill level for a specific task after he has done it many
times. Hence, skill value could be a function of session, time,
or some other parameters.

2.2. Definition of Capability

We proceed by introducing formal definitions of an agent’s
capabilities based on the above mathematical model in this
section. Our basic idea is that an agent can be said to be
capable of doing a task if it can find a schedule that can
accommodate it with other on-going tasks and still satisfy all
constraints. The application of scheduling to reasoning about
workload in multi-task environments has been considered in
various cognitive models [14]. In a static environment, the
agent schedules all given tasks based on its capability before it
starts to execute them. In a dynamic environment, the agent
may execute some tasks as well as evaluate whether it can
accept new arrival tasks.

Given: a set of task X = {x1, …, xn}, which has the
corresponding quality requirement set Q = {q1, …, qn}. For
each tasks xi in X, the release time and the deadline is the
corresponding interval {ri, di}, i = 1, …, n. The definition of
the agent capability in a static environment is as follows:
Definition 1: Agent Capability in Static Environment

e

q

Max(q)

q=g(e)

Figure 3: Quality versus effort

MW

t

w

Highest(w)

Longest(du)

Lowest(w)

Equivalent
Quality Lines

Figure 4: Equivalent Quality (or Effort) Line

Agent A has the capability to achieve the tasks in X, or
CapStatic(A, X), iff ∃∃∃∃ a schedule S of X, which is { {ts1,
te1}, …, {tsn, ten} }. For each task xi, the workload wi and
the effort ei are calculated by the equations as follows:

 fi(t) if tsi
�

 t
�

 tei

 wi =
 0 otherwise

and effort is a function of quality required with a skill
multiplier:
 ei = g(qi)/si

also, ei should satisfy the following equation:

 ei = � ei

si
i

t
t

dttf)(

while at any time point t’ during the time interval
{earliest(tsi), latest(tei)},

 � � wi = � fi(t’) � MW

and for each task xi

 tsi � ri & tei � di

where tsi and tei denote the start time and the end time of
task xi respectively, si is the skill level of agent A to achieve
task xi.

In a dynamic environment, assume an agent A is running with
schedule S = {{ts1, te1}, …, {tsn, ten}}of a task set X = {x1, … ,
xn} at time t0 when a new task set Y = {y1, … , ym} arrives.
There is a subset Z = {z1, … , zk}of the task set X, which
includes the tasks which are being executed but are not
finished and are interruptible or the tasks which are waiting to
be executed at time t0. The workload allocation distribution of
tasks in X-Z is dw = w(t). The corresponding quality
requirement set of Y is Q = {q1, … , qm}. For each task yi, the
release time and deadline is given by the interval {ri, di} (i = 1,
… , m). The definition of the agent capability in this dynamic
environment is as follows:
Definition 2: Agent Capability in Dynamic Environment

Agent A has the capability to achieve the tasks in Y without
violating the tasks of X-Z in execution, or CapDyn(A, X, Y),
iff ∃∃∃∃ a new schedule S’= {{tzs1, tze1}, …, {tzsk, tzek}, {ts,

k+1, te, k+1}, …, {ts,k+m, te ,k+m}} of the task set Z ∪∪∪∪ Y. For
each task in this union, the workload wi and the effort ei are
calculated by the following equations:

 fi(t) if tsi � t � tei , {ts1, te1} ∈∈∈∈ S’
 wi =

 0 otherwise
 ei = g(qi)/si

also, ei should satisfy the following equation:

 ei = � ei

si
i

t
t

dttf)(

while at any time point t’ during the time interval
{earliest(tsi), latest(tei)},

 wi = � fi(t’) � MW - dw(t’)

and for each task yi

 tsi � ri & tei � di

where tsi and tei denote the start time and the end time of
each task in Z ∪∪∪∪ Y respectively, si is the skill level of agent
A to achieve the task.
We give an example in Figure 5 to show how an agent

manages its workload allocation to satisfy its processing

capacity and the deadlines of its tasks and how the skill levels
of different agents affect reasoning about agent capability.
Assume a professional secretary agent could input a file into a
computer in 1 hour with a given accuracy if he pays all his
attention (maximum processing capacity) to this inputting task.
But a novice secretary needs 2 hours. The professional can
input some files into a computer and listen to the radio at same
time. In this case, he can finish this file in 1 and half hour. The
novice could not handle these two tasks parallel at all. So the
boss asks the professional secretary to listen to the financial
news simultaneously with inputting the file. Figure 5 depicts
how the secretary to handle these two tasks simultaneously by
reducing the workload of the inputting task, which is
represented by x0. Suppose the deadline of x0 is time T0+2, and
the financial news is from time T0 to T0+1. In this case, the
secretary can finish both tasks. However the novice can only
either makes the task x0 meet its deadline or gets the financial
news. Here, the task of listening to the financial news could not
be adjusted because the time constraints of listening to news
are not adjustable. This example shows the benefit of adjusting
the combination of workload and duration of a task. Also it
shows different skill levels will affect the performance of a
task.

It is straightforward to extend the above definitions to the

capabilities of a group of agents. What we could do is to
decompose the given task set to some task subsets. The number
of the task subsets is equal to or less than the number of agents
in the multi-agent system. The decomposition of the task set
should satisfy the capability of the corresponding individual
agents in the group. Hence, to know whether the multi-agent
system is capable of achieving tasks in a task set, we need to
know if there exists a task assignment for all agents in the
group, which satisfies the capabilities of the corresponding
agents. Kleinman et al. [5] present a model of task distribution
in human teamwork that has a similar flavor.

Suppose that M is composed of an agent group {A1, … , Am }.
Given; a set of tasks X={x1, … , xn}, which has the
corresponding quality requirement set Q ={Q1, … , Qn}. For
each task xi in X, the release time and the deadline is the
corresponding interval {ri, di}, i = 1, … , n. The definition of
the capability of a group of agent is as follows:
Definition 3: Capability of A Group of Agents

Group M has the capability to achieve the tasks in X or
CapGroup(M, X), iff ∃∃∃∃ task assignment Y = { Y1, … , Ym },
Yj is the task subset of agent Ai and

 � m
j

j XY
1====

====

t

w

MC

Figure 5: Secretary Example

2/3MC

T0 T0+1 T0+1.5 T0+2

x0

x1

CapSingle(Aj, Yj) for j = 1, … , m. This means there exist m
task schedules Sj for each Yj respectively, and each Sj
satisfies the capability of the single agent Aj.
According to our definition of agent capabilities, the key

issue of reasoning about agent capability is to search for a
feasible task schedule that satisfies both the performance
requirements of given tasks and the agent capabilities. For a
multi-agent system, a task assignment algorithm is needed to
satisfy the constraints of all agents in the system.

3. Task Scheduling

We should clarify what the exact meaning of “ schedule” is
in the above definitions. It is not just a linear sequence of a set
of tasks. There could be some parallel tasks in a schedule. Also
a schedule is not only searched by some mathematical
scheduling algorithms [1], but also could be searched by pattern
matching, rule-based reasoning or some other AI approaches
[16] with satisfying the criteria in above definitions. As for
scheduling algorithms, there exist many mathematical
scheduling algorithms, which could be borrowed for our
capability reasoning from the operating system, real-time
system fields or manufacturing industry. One of the unique
aspects in our scheduling algorithms is that the workload
allocation and execution duration can be adjustable in
accordance with the trade-off between workload and duration of
a task. This feature helps an agent to schedule its tasks more
flexibly and efficiently, but it makes the scheduling algorithm
more complex. Also, the variance of the quality requirements of
tasks will generate a different workload allocation. Therefore,
besides considering the common constraints of tasks, such as
dependence, preemption, release time, deadline etc. scheduling
algorithms need to satisfy agent capability criteria.

Before introducing the formal scheduling algorithms, we
need to make some assumptions. At first, we assume the
workload allocation is not a function of time but a constant.
That implies that the relation among effort requirement,
workload allocation and execution duration of a task is
described by the following equation:
 effort = workload * duration; (3-1)

If the workload allocation of each task could be adjusted
arbitrarily, the search space could be infinite. In our algorithms,
we only consider two alternatives: one is the highest workload a
task needs; the other is the lowest workload the task needs.
Correspondingly, there are two alternatives of execution
durations of the task: shortest duration and longest duration.
As for the attributes of tasks, we assume all tasks in a task set
are independent, meaning there are no predecessors or
successors of each task. Tasks are also non-preemptive,
meaning tasks could not be interrupted after they start to be
executed.

We call the scheduling algorithm for agents in a static
environment ERFS (Earliest Release time First Scheduled),
meaning the earlier a task is ready, the earlier it is scheduled.
Algorithm 1: Earliest Release Time First Schedule

Input: Task set X = {x1, … , xn} with the corresponding
quality requirements Q = {q1, … , qn}. (i = 1, … , n). Each
task xi has the effective time interval {ri, dei}. Agent A has
the maximum workload MC.

Output: A feasible schedule S of tasks accepted in X.
Begin (ERFS)
(1) Agent A computes effort ei for each task xi by a
function of quality: ei = g(qi);
(2) Agent A gets the workload ranges by functions:
 whi = h(ei) wli = l(ei)
where whi and wli refer to the highest workload and lowest
workload for task xi respectively;
(3) Agent A gets the duration range by functions:
 dsi = ei / whi dli = ei / wli
where dhi and dli refer to the shortest duration and longest
duration for task xi respectively;
(4) Set all tasks of X acceptable at first;
(5) Set tasks unacceptable if they satisfy wli > MC or
(ri+dsi)> dei;
(6) Replace the whi by wli and dhi by dli if whi > MC but wli
< MC ;
(7) Sort acceptable tasks by ri in increasing order.
(8) Schedule these tasks by the order in (7) to get an
original schedule S ={{Ts1, Te1}, … , {Tsm, Tem} }. m refers to
the number of acceptable tasks.
(9) If S satisfy the deadlines of these tasks,
 {Return S; }
 Else

 { Put tasks without satisfying their deadlines in
queue Qu. Let S = S – Qu ;

 Adjust all pairs {Tsj, Tej } in S to minimize the idle
time which is caused by removing tasks from S;

 Schedule the tasks in Qu parallel with S based on
the principle: ∀∀∀∀ t, � wk � MC; t refers to time.

 Set tasks in Qu which could not be scheduled in S
as unacceptable;

 Return S; }
End (ERES).
In a dynamic environment, assume tasks arrive stochastically

over time. The agent is executing the tasks in an existing
schedule as well as scheduling the new arrival of tasks
generated by the task generator. At any time, there is at most
one new task generated. The agent gets the task before the
release time of the task and schedules it without violating the
currently executed schedule. We call the algorithm in this
environment DS (Dynamic Schedule).
Algorithm2: Dynamical Schedule

Input: Task x has the quality requirement q and the feasible
time interval {r, de}. Agent A is executing the tasks in the
schedule S = {{ts1, te1}, …, {tsn, ten}}. The workload
allocations for tasks in S is W = {w1, … , wn}.
Output: Acceptance of x.
 If it is acceptable, add x to S.
Begin (DS)
(1) Agent A computes effort e for each task x by a function
of quality: e = g(q);
(2) Agent A gets the workload range of x by functions:
 wh = h(e) wl = l(e)

where wh and wl refer to the highest workload and lowest
workload for task x respectively;
(3) Agent A gets the duration range by functions:
 ds = e / wh dl = e / wl

where dh and dl refer to the shortest duration and longest
duration for task x respectively;
(4) If wl > MW or (r+ds)> de;

{ Return Acceptance = false;}
 else

{Get the workload distribution of tasks in S by
dw(t);
Search the earliest interval {start, end}after release
time r, in which the workload of x could satisfy the
equation w+dw(t) � MW, w is either wh or wi. end is
equal to start+ds or start+dl depending on which is
allocated, wh or wl. Also, end must satisfy end � de.
If above searching is successful,

 { Add {start, end} to S and w to W;
 Return Acceptance = true; }

Else
 { Return Acceptance = false; } }

End (DS).
DS extends the EFRS algorithm by attempting to place new

tasks in the schedule of existing tasks, by trying various
combinations of shortest-duration/highest-workload or longest-
duration/lowest-workload variants of each task, while assuring
that current tasks are not interrupted.

4. Experimental Evaluation

We designed two experiments to evaluate the above task
scheduling algorithms. The goal of these experiments is to
demonstrate that an agent could utilize its available workload
more efficiently to achieve more tasks by reasoning about its
capability quantitatively.

The framework of the first experiment consists of an agent,
the task handler, which schedules tasks in a given task set
generated by a task generator. The agent has two schedulers:
one is without capability reasoning; the other is with capability
reasoning. Here, the capability reasoning is based on the
definition of agent capability. This means the agent can adjust
its workload to a given task in order to achieve more tasks, and
the agent is allowed to execute more than one task in parallel.
In this experiment, the scheduler with capability reasoning
schedules the tasks by the ERFS algorithm. Conversely, the
scheduler without capability reasoning only schedules the tasks
based on a fixed workload allocation, and the agent executes
the tasks sequentially.

The task generator generates a random set of 1 to k tasks,
each having a unique minimum quality threshold of between
0% and 100%. Each task is assigned a minimum and maximum
duration of up to 100 time steps, and the workload range is set
inversely proportional to the range of durations. Figure 6 shows
the task acceptance rates of the schedulers in experiment #1,
which is equal to the number of tasks accepted divided by the
tasks generated. We set the parameter of the task generator k to
{100, 300, 500, 1000, 2000, 3000, 5000}. For each k, we ran
the agent 100 times and computed the mean of the tasks
generated by the task generator. The result of Experiment #1
shows that the scheduler with capability reasoning can accept
more tasks than the scheduler without capability reasoning for
all parameters k we picked. We can see that the scheduler runs

very stably. For different numbers of tasks, the acceptance rates
are almost the same. The acceptance rate of the scheduler with
capability reasoning is roughly twice that of the scheduler
without capability reasoning.

In our second experiment, the agent handles tasks generated

by a task generator dynamically. There are two synchronized
threads running in this experiment. One is running the task
handler, or the agent, while another is running the task
generator. There are two task streams generated by the task
generator with different frequencies over the running lifetime
of the agent. The time unit we use here is milliseconds. The
tasks are generated similarly to those in Experiment #1, except
that the durations are set randomly to between 1 and 1000ms.
The frequency of task stream #1 is one task per 20
milliseconds. The frequency of task stream #2 is one task per
100 milliseconds. In Experiment #2, the scheduler with
capability reasoning schedules the tasks by the DS algorithm.
Each task scheduler in this experiment has to maintain the
information of the tasks, which have been scheduled before in
order to calculate the workload available at the current time.
Each time the agent accepts a new task, the agent will update
this information immediately.

We set the lifetime of the agent to 10,000ms and ran the
agent 100 times to get the mean of the tasks generated by the
task generator and the tasks accepted by the schedulers. On
average, the task streams generated 462 tasks, of which the
agent with capability reasoning accepted 117 (25%), while the
agent without capability reasoning was only able to accept 64
(14%). Furthermore, the average workload (or resource
utilization) was nearly twice as high: 50% for the agent with
capability reasoning versus 28% without.

5. Discussions and Conclusion

The aim of this paper is to present a mathematical model for
reasoning about the capabilities of task-performing agents.
This model tries to capture the quantitative relationship among
four performance constraints of given tasks and the executive
agents: the quality requirements and time constraints of tasks,
as well as the workload limitations and skill levels of the
agents. Our model of capability is based on scheduling of
concurrent tasks so as not to violate maximum workload
capacity and/or time constraints.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 500 1000 1500 2000 2500

Scheduler #2
Acceptance

Rate

Scheduler #1

Tasks Generated

Figure 6: Task Acceptance Rates in Experiment #1

This model of capability and workload estimation could be
used in an incremental algorithm for constructing team plans.
For example, as agents are assigned to tasks, estimates
(predicted over time) of their workload might be updated, and
assignment of subsequent tasks could be done so as not to
exceed 100% workload for any one agent at any given time.
However, it would probably be best to do this in a distributed
way, since it is likely that no single centralized agent will know
either the performance characteristics (task parameters such as
speed, effort, and quality tradeoffs) of each agent, their other
task demands (e.g. from private/individual goals or
simultaneous participation in other teams), or other local
resources or constraints. Furthermore, in accepting new tasks,
agents might internally re-arrange processing of their
responsibilities, and these accommodation decisions might not
necessarily be known by the other agents. There are a number
of multi-agent planning algorithms, and these can be extended
to utilize this information in different ways to produce
workload-balanced team plans.

Our model could also be used in handling different types of
interactions between agents in a dynamic environment. For
instance, in a dynamic and distributed environment, negotiation
among agents requires them to reason about their own
capabilities and sometimes each other’ s capabilities. For
example, a client agent in a contract net [10] has to evaluate its
capability to make a decision whether it bids a new task. The
self-interested agents [8] may deceive its manager to get some
bids to achieve a higher income, even if they cannot accomplish
some tasks on time. In this case, the manager may need to
reason about the capability of its bidders to avoid an
unexpected delay of its task.

We view our framework as applying to reasoning about both
agents and humans. Both have processing capacity limits that
affect the assessment of their capability. Just as agents might
have computational limits, such as on CPU speed or amount of
RAM, so humans have limits on cognitive resources like
memory and attention. For the case involving humans, agents
need a quantitative model to understand the relative demands,
capacity, and possibly skill level of the human, in order to
make appropriate decisions about how to interact [3].

An important limitation of our current model is that it treats
processing capacity as a single, unified resource. A significant
direction for future research is to extend our model to
incorporate multiple types of resources, so we can handle
different dimensions of interaction based on the types of the
tasks being performed. Also, we would like to incorporate
different task priorities into the decision-making.

6. References

[1] Brucker, P. (1998). Scheduling Algorithms, Second

Revised and Enlarged Edition. Springer.

[2] Dean, T. and Boddy, M. (1988). An Analysis of Time-
Dependent Planning. In Proc. National Conf. on Artificial
Intelligence, pp. 49--54, 1988.

[3] Ioerger, T.R., He, L, Lord, D., Tsang, P., (2002).
Modeling Capabilities and Workload within Teams. in
Proc. 24th Annual Conference of the Cognitive Science
Society.

[4] Hoek, W., Linder, B. and Meyer, J.C., (1994). A logic of
capabilities. Proc.of the Third Int’l Symp. on Logical
Foundations for Computer Science, 366-378.

[5] Kleinman, D., Luh, P.B., Pattipati, K.R., and Serfaty, D.
(1992). Mathematical models of team performance: A
distributed decision-making approach. in Teams: Their
Training and Performance. R. Sweezy and E. Salas (eds.).
New York: Ablex.

[6] Kanfer, R. and Ackerman P.L (1989). Motivation and
Cognitive Abilities: An Integrative/Aptitude-Treatment
Interaction Approach to Skill Acquisition. Journal of
Applied Psychology, Vol. 74, No. 4, 657-690.

[7] O’ donnell, R.D. and Eggemeier, F.T. (1986). Workload
assessment methodology. In K.R. Boff, L. Kaufman, and J.
Thomas, Eds., Handbook of Perception and Human
Performance: Volume II. Cognitive Processes and
Performance. New York: John Wiley, Chap. 42.

[8] Sandholm, T. and Lesser, V. (1995). Issues in Automated
Negotiation and Electronic Commerce: Extending the
Contract Net Framework. Proceedings of the First
International Conference on Multiagent Systems, 66-73.

[9] Schaerf, A., Shoham, Y. and Tennenholtz, M. (1995).
Adaptive load balancing: A study in multiagent learning.
Journal of Artificial Intelligence Research, 2:475-500.

[10] Smith, R.G. (1980) The contract net protocol: High-level
communication and control in distributed problem solver.
IEEE Transactions on Computers, 29(12):1104--1113.

[11] Singh, M.P. (1999). Know-how. in Foundations of
Rational Agency, A Rao and M. Wooldridge (eds.),
Kluwer. 105-132.

[12] Tambe, M. (1997). Towards flexible teamwork. Journal of
Artficial Intelligence Research, 7:83-124.

[13] Tsang P. and Wilson, G.F. (1997) Mental Workload, in
Handbook of Human Factors and Ergonomics, Second
Edition. A Wiley-Interscience Publication, John Wiley &
Sons INC. pp.417-449.

[14] Tulga, M.K. and Sheridan, T.B. (1980). Dynamic decision
and workload in multitask supervisory control. IEEE
Trans. On Systems, Man, and Cybernetics, 10(5):217-232.

[15] Wickens C.D. (1999). Attention, time-sharing, and
workload. in Engineering Psychology and Human
Performance. C.D. Wickens and J.G. Hollands (eds.),
Prentice Hall. p. 439-479.

[16] Zweben, M. and Fox, M.S. (1994). Intelligent Scheduling.
Zweben, M. and Fox, M.S. (Eds), San Francisco: Morgan
Kaufmann Publisher.

