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ABSTRACT 
Keeping track of changes in user interests from a document stream 
with a few relevance judgments is not an easy task. To tackle this 
problem, we propose a novel method that integrates (1) pseudo-
relevance feedback mechanism, (2) assumption about the 
persistence of user interests and (3) incremental method for data 
clustering. This approach has been empirically evaluated using 
Reuters-21578 corpus in a setting for information filtering. The 
experiment results reveal that it significantly improves the 
performances of existing user-interest-tracking systems without 
requiring additional, actual relevance judgments. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Clustering, 
Information Filtering, Relevance Feedback. 

General Terms 
Algorithms, Management, Experimentation. 

Keywords 
User Interest Tracking, Persistence Assumption, Pseudo-relevance 
Feedback, Incremental Data Clustering. 

1. INTRODUCTION 
Modeling user interests has been an active research area since the 
past decade. Researchers address the problem of changing user 
interests by decomposing an interest category into long-term and 
short-term interest models, relearning examples of recent window, 
applying decay functions, or employing evolutionary algorithms, 
among others. Despite their success, most of these approaches 
implicitly assume that numerous relevance judgments are 
available to systems. However, users tend to be unwilling to 
provide the relevance judgments needed [4], making the 
assumption above not practical. A more realistic setting is to 
assume that the systems require only a few relevance judgments in 
order to work with acceptable performance. 

Unfortunately, learning changing interests with a few feedback 
iterations is a difficult task and little effort if ever has been done 
with it. From the Computational Learning Theory perspective, 
decreasing the number of examples in a drifting environment 
corresponds to increasing the rate of drift, which would hurt the 
system performance [1]. The drift rate is the probability that two 
consecutive feedback documents with the same topic category 
disagree on their relevance judgments. Thus, tracking the 
evolution of user interests is harder if the interest categories 
change more quickly. Although this problem has been recognized 
in previous work [5], no solution has been proposed. In addition, 
methods developed for dealing with a few examples in tasks such 
as TDT’s topic tracking and automatic query expansion are 
mainly still limited to learning static user interests. 

Motivated by this observation, we develop a new method for 
tracking the dynamics of user interests from a minimal number of 
relevance judgments.   

2. OVERVIEW OF APPROACH 
Figure 1 provides the summary of our approach. Like in 
information filtering setting, the input system is a stream of 
documents S in which the relevance judgments of some 
documents in the stream are made available. Two subsystem 
components independently process each document sequentially. 
The first component organizes all documents from the stream into 
a cluster hierarchy H. The clustering process is performed 
incrementally in unsupervised mode (i.e., ignoring the relevance 
judgments if any) as it sees a new incoming document in the 
stream. The second component so-called context tracker 
maintains a sequence of genuine relevance feedback SF in the 
order of feedback arrival times. 

The context tracker is invoked only when a classifier needs to 
build a search profile for information retrieval. It takes as input 
the stream SF and the cluster hierarchy H generated up to that 
point, and outputs a new stream SPF containing a subset of SF and 
relevant documents retrieved from the cluster hierarchy. The 
classifier then uses the stream SPF to generate search profile Q by 
means of pseudo-relevance feedback mechanism [6].  

The change in notion of relevance is inevitable in tracking the 
evolution of user interests so that relevance judgments for seeding 
the pseudo-relevance feedback process must be selected from 
those in SF that are still truly relevant. The context tracker 
addresses this problem by associating each document in SF with 
its context – that is, an abstraction of interest topic category.  It 
then applies the assumption about the persistence of user interests 
to infer the relevance of each context. Finally, it retrieves all 
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documents relevant to each context from the cluster hierarchy, and 
uses the retrieved documents to generate the new stream SPF. 

3. DOCUMENT-CONTEXT ASSOCIATION 
We use a cluster hierarchy, which is a tree structure, to provide 
document-context associations. Each leaf node represents a 
singleton cluster containing a single document. A node in the tree 
also represents a context. In this paper we assume that the most 
appropriate context that can be associated with a document is one 
of the document’s ancestors in the hierarchy that distinctively 
partitions documents underneath. The followings are two useful 
functions needed to access the document-context associations: 

1. c = Context(d) returns a context c that can be associated 
with an input document d.  

2. D = Context_Extension(c) is a function that returns a set of 
documents D = {d1, …, dn} with respect to the input 
context c. These documents are all leaf nodes that are 
descendants of a node representing context c in the tree. 

We employ a recently developed algorithm for incremental 
hierarchical clustering [9]. One of the cluster properties generated 
by the clustering technique is cluster density, which is calculated 
from the average distance to the nearest neighbor among the 
cluster’s members. We identify distinct contexts by thresholding 
the cluster density information, similar to proximity dendogram 
cutting that identifies clusters according to dissimilarity levels [2].  

The density threshold for distinct context identification is 
empirically determined from a validation set. First, a cluster 
hierarchy is incrementally built from a stream of documents in the 
validation set. Because the document topics are known, distinct 
clusters (i.e., contexts) that correspond to topics in the validation 
set can be accurately identified. The threshold is then calculated 
from the average density of these distinct clusters. 

Specifically, let H be the cluster hierarchy generated from the 
validation set containing a set of topics T. Let cx∈H be a cluster 
that corresponds to topic x∈T. Furthermore, let ε(c) be a set of 
documents that are members of cluster c, i.e., 
Context_Extension(c). The cluster cx is identified from H by:  

�
�
�

�
�
�

−= � ��
−∈ ∈∈∈ }{ )(

,
)(

,maxarg
xTy cd

yd
cd

xd
Hc

x ttc
εε

 

where td,z = 1 if  the topic of document d is z, or 0 otherwise. 
Hence, cx maximizes the difference between the numbers of 
cluster members that are on x topic and non-x topics.  Now let δx 
be the average distance to the nearest neighbor among cx’s 
members; δ represents the cluster density in the employed 
clustering technique. Thus, a higher δ value corresponds to a 
lower-density cluster and vice versa. Let δx’s parent be the density of 
cx’s parent. Taking δx as the threshold runs the risk of overfitting 
to a specific topic while selecting δx’s parent is completely 
inappropriate because it also covers the contexts of other topics 
(over-generalization). Therefore, the threshold is selected at a 
value between δx and δx’s parent, averaged over all topics:  
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where 10 ≤≤ k . We set 5.0=k by default, which maximizes 
the margins between overfitting and overgeneralization. Given a 
document d, Context(d) returns a cluster c, whose cluster density 
is δc, such that   δc ≤ θk  ≤ δc’s parent and c is one of d’s ancestors.  

4. TRACKING CONTEXT RELEVANCE 
Now we describe the context tracker algorithm in detail. Let SF = 
�(d1, j1), …, (dn, jn)	 be the stream of documents di with its 
relevance judgment ji. The relevance judgment is either 1 
(relevant or positive) or 0 (irrelevant or negative). A document at 
the left side arrives earlier. The context tracker processes its input 
in four steps. 

Step 1: Transforming the problem of tracking multiple interest 
categories into several sub-problems of tracking single interest 
category. The original stream of relevance judgments is 
partitioned into several, shorter sequences according to their 
contexts.  The relative ordering of documents in the original 
stream is also maintained in each partition.  

Example1. Let SF = �(d1,1),(d2,0),(d3,0),(d4,1),(d5,0),(d6,0),(d7,1), 
d8,1)	. Suppose that the sets {d2,d6}, {d1,d4,d5} and {d3,d7,d8} 
belong to contexts c1, c2 and c3 respectively (i.e., 
Context(d2)=Context(d6)=c1 in the first set, and so on). Then, SF is 
partitioned into SF1=�(d2,0),(d6,0)	, SF2=�(d1,1),(d4,1),(d5,0)	 and 
SF3=�(d3,0),(d7,1),(d8,1)	 during the first step. 

Step 2: Normalizing sequence partitions. Since each partition 
generated by the first step contains documents of the same 
context, two or more consecutive documents with the same 
judgment constitute a redundancy.  Current step eliminates such a 
redundancy by repeatedly dropping a document whose judgment 
is the same as that of the next document on the sequence.  

Example 2. From Example 1, d2 is dropped from SF1 because its 
subsequent document, d6, has the same relevance judgment. 
Similarly, d1 and d7 are also removed from SF2 and SF3, 
respectively.  It then generates normalized sequence partitions 
S′F1=�(d6,0)	, S′F2=�(d4,1),(d5,0)	 and S′F3=�(d3,0), (d8,1)	. 

Step 3: Inferring the relevance of each context. To do this, we 
adopt the persistence assumption in temporal reasoning, which 

Input: a stream of documents S. 
Initialization:  
   SF = �∅	,  the sequence of relevance judgments. 
   H = ∅, the cluster hierarchy. 

Incremental Learning 
   For each document d observed from the stream S, 
      1: Update H incrementally to incorporate d. 
      2: If the relevance judgment j of d is available, 
               Concatenate �(d, j)	 at the end of SF. 

Search Profile Generation (only when necessary): 
    Apply the context tracker to generate new stream  
         SPF based on current values of SF and H. 
    Apply pseudo-relevance feedback process on SPF, using a  
          selected classifier, to generate search profile Q. 
 

Figure 1. The summary of approach. 
 

(1) 

(2) 



Table 1.  Description of three tracking tasks for experiments. 

  Tracking Cycle  
 1 −−−− 20 21 −−−− 40 41 −−−− 60 61 −−−− 80 81 −−−− 100 

S1 
Trade & 
9 others 

Trade, 
Coffee & 
8 others 

Coffee, 
Crude & 
8 others 

Crude, 
Sugar & 
8 others 

Sugar, 
Acq & 
8 others 

S2 
Trade, 
Coffee &  
8 others 

Trade, 
Coffee, 
Crude &  
7 others 

Coffee, 
Crude, 
Sugar &  
7 others 

Crude, 
Sugar,  
Acq & 
7 others 

 

S3 

Trade, 
Coffee, 
Crude &   
7 others 

Trade, 
Coffee, 
Crude, 
Sugar &  
6 others 

Coffee, 
Crude, 
Sugar, 
Acq &  
6 others 

  

 
 

states that once a fact becomes true it remains true thenceforth 
until the fact is negated [3]. The context relevance thus can be 
simply inferred from the relevance value given by the last 
document in the normalized sequence partition. In addition, we 
drop a context if the last document is not relevant while the 
preceding document is relevant  (i.e., �(di,1),(dj,0)	).  

Example 3. From Example 2, context c1, as represented by S′F1, is 
irrelevant while context c3 is relevant. Context c2 (as represented 
by S′F2) is no longer counted.  

Step 4: Generating stream for pseudo feedback process. It first 
retrieves documents that belong to the remaining contexts from 
cluster hierarchy, using Context_Extension() function. A new 
stream SPF is then generated from the retrieved documents and is 
ordered by the document arrival times. The relevance judgment of 
a document in SPF is set to the relevance value of its context.  

Example 4. Let {d2,d6,d9,d11}=Context_Extension(c1) and 
{d3,d7,d8,d10,d12}=Context_Extension(c3) be the sets of documents 
relevant to contexts c1 and c3. The last step will generate 
SPF=�(d2,0),(d3,1),(d6,0),(d7,1),(d8,1),(d9,0),(d10,1),(d11,0),(d12,1)	 . 

5. EXPERIMENT SETUP 
Our experiments used a subset of the Reuters-21578 corpus, and 
selected among documents in the ModApte split that had been 
assigned a single topic category. As a result, the test set contained 
2581 documents consisting of 59 topics. The validation set 
needed for determining the density threshold was randomly 
selected from the training set, and contained 100 documents of 
five topics. The rest of the training set (6452 documents) was used 
to generate document streams. We applied stop word removal, 
word stemming and tf-idf weighting method to all documents.  

The main evaluation objective was to observe the system 
performance over time in adapting to various scenarios of changes 
in topics of interest. Accordingly, the system was presented with a 
stream of documents to process sequentially. Its performances 
were then measured at regular intervals on a fixed test set.  Let 
tracking cycle be a period of processing m-document sequence 
and system performance measurement. Referring to the set of 
processes depicted by Figure 1, the experiments were conducted 
using the following procedures: 

1. Initialize SF and the concept hierarchy H. 
2. At each tracking cycle i = {1 … K} 
3. Perform Incremental Learning process on the ith m-

document sequence taken from the stream S. 
4. Execute Search Profile Generation process to create the 

search profile Q. 
5. Rank all documents in the test set, using the same 

classifier as in Step 4 and the search profile Q, and 
measure the system accuracy based on the recall-
precision break-even point performance measure.  

In this paper we consider MTDR [8] and Rocchio [7] algorithms 
as the classifiers needed to perform steps 4 and 5 above. 

The document stream S was generated according to a tracking 
task, a scenario that described the document stream and the 
evolution of user interests. The changes in topics of interest over 
time were simulated by alternating among interests in Trade, 

Coffee, Crude, Sugar and Acq topics. These five topics are called 
target topics whose sizes in the test set were 75, 22, 121, 25 and 
696, respectively. 

Table 1 described three tracking tasks that were represented by 
streams S1, S2 and S3, respectively. A document stream was 
arranged into tracking cycles each of which consisted of 10-
document sequence. The table indicated the presence of document 
topics on the corresponding tracking cycles. The other and 
strikethrough topics represented irrelevant documents. Relevance 
judgments are never given to documents with the other topics. 

Positive feedback was used for establishing a new (or 
emphasizing the interest in a) topic category. Negative feedback 
was given for expressing the disinterest in topics previously 
considered relevant. These relevance judgments were made 
available at tracking cycles that marked the beginning of change 
in current target topics, and formed the stream known as SF. The 
current target topics were changed after periods of twenty tracking 
cycles. Starting from the first tracking cycles, the next relevance 
judgments were given to some documents at tracking cycles 21, 
41 and so on. When relevance judgments were made available, the 
underlined (strikethrough) topics indicated that the corresponding 
documents were considered relevant (irrelevant).  

6. RESULTS AND CONCLUSION 
Figures 2 and 3 showed the performances of systems over time, 
averaged over ten runs, on the three tracking tasks. PSEUDO-
FEEDBACK performances in these figures were obtained by 
applying the pseudo-relevance feedback mechanism on the stream 
SPF generated by the context tracker. For comparison, we also 
presented the performances of FULL-FEEDBACK and PARTIAL-
FEEDBACK systems that did not use the context tracker’s outputs. 
The FULL-FEEDBACK performances were produced by providing 
the stream S, making the relevance judgments of all target topic 
documents in the stream available while ignoring all non-target 
topic documents. The FULL-FEEDBACK systems provided the 
empirical upper bound performances. The PARTIAL-FEEDBACK 
results were generated from processing only the genuine relevance 
feedback stream SF, which represented only 5% of the numbers of 
feedback documents given to the FULL-FEEDBACK systems. It 
served as the empirical lower bound (baseline) performances. 

The PARTIAL-FEEDBACK systems were given relevance judgments 
only at the first tracking cycles during the twenty-tracking-cycle 
periods. Consequently, their accuracies were constant, because the 



search profiles were evaluated on the same test set, until the next 
relevance judgments were received. By contrast, the trends of 
FULL-FEEDBACK performances were increasing over time during 
which the target topics were stable. These were not surprising 
because the systems were able to continuously revise the search 
profiles at each tracking cycle.   

Regardless of the classifier employed for implementing the 
relevance feedback process, the performances of PSEUDO-
FEEDBACK systems improved over the baseline performances, as 
shown in Figures 2 and 3. Using the same sequences of relevance 
judgments as those given to the PARTIAL-FEEDBACK systems, the 
PSEUDO-FEEDBACK systems gained their performances as more 
relevant documents became available. Except during the last 
twenty tracking cycles, most of the performance gains achieved 
over the baseline performances were significant, and in some 
cases were even better than the performances of the FULL-
FEEDBACK systems. Nonetheless, the PSEUDO-FEEDBACK systems 
during the last twenty tracking cycles were still able to improve 
their performances automatically, although rather slower.  This 
tendency was very encouraging. 

In conclusion, we have presented and evaluated the method for 
tracking the dynamics of user preference with minimal relevance 
judgments. Its evaluation on three tracking tasks indicates the 
feasibility and the effectiveness of the method. 
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Figure 2. The performance over time of MTDR classifier on tracking tasks S1 (left), S2 (middle) and S3 (right).   

 

 
Figure 3. The performance over time of  Rocchio classifier on tracking tasks S1 (left), S2 (middle) and S3 (right).   


