
Tracking Changes in User Interests with a Few
Relevance Judgments

Dwi H. Widyantoro & Thomas R. Ioerger
Texas A&M University

Department of Computer Sciences
College Station, TX 77843

dhw7942,ioerger@cs.tamu.edu

John Yen
The Pennsylvania State University

School of Information Sciences and Technology
University Park, PA 16802

jyen@ist.psu.edu

ABSTRACT
Keeping track of changes in user interests from a document stream
with a few relevance judgments is not an easy task. To tackle this
problem, we propose a novel method that integrates (1) pseudo-
relevance feedback mechanism, (2) assumption about the
persistence of user interests and (3) incremental method for data
clustering. This approach has been empirically evaluated using
Reuters-21578 corpus in a setting for information filtering. The
experiment results reveal that it significantly improves the
performances of existing user-interest-tracking systems without
requiring additional, actual relevance judgments.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Clustering,
Information Filtering, Relevance Feedback.

General Terms
Algorithms, Management, Experimentation.

Keywords
User Interest Tracking, Persistence Assumption, Pseudo-relevance
Feedback, Incremental Data Clustering.

1. INTRODUCTION
Modeling user interests has been an active research area since the
past decade. Researchers address the problem of changing user
interests by decomposing an interest category into long-term and
short-term interest models, relearning examples of recent window,
applying decay functions, or employing evolutionary algorithms,
among others. Despite their success, most of these approaches
implicitly assume that numerous relevance judgments are
available to systems. However, users tend to be unwilling to
provide the relevance judgments needed [4], making the
assumption above not practical. A more realistic setting is to
assume that the systems require only a few relevance judgments in
order to work with acceptable performance.

Unfortunately, learning changing interests with a few feedback
iterations is a difficult task and little effort if ever has been done
with it. From the Computational Learning Theory perspective,
decreasing the number of examples in a drifting environment
corresponds to increasing the rate of drift, which would hurt the
system performance [1]. The drift rate is the probability that two
consecutive feedback documents with the same topic category
disagree on their relevance judgments. Thus, tracking the
evolution of user interests is harder if the interest categories
change more quickly. Although this problem has been recognized
in previous work [5], no solution has been proposed. In addition,
methods developed for dealing with a few examples in tasks such
as TDT’s topic tracking and automatic query expansion are
mainly still limited to learning static user interests.

Motivated by this observation, we develop a new method for
tracking the dynamics of user interests from a minimal number of
relevance judgments.

2. OVERVIEW OF APPROACH
Figure 1 provides the summary of our approach. Like in
information filtering setting, the input system is a stream of
documents S in which the relevance judgments of some
documents in the stream are made available. Two subsystem
components independently process each document sequentially.
The first component organizes all documents from the stream into
a cluster hierarchy H. The clustering process is performed
incrementally in unsupervised mode (i.e., ignoring the relevance
judgments if any) as it sees a new incoming document in the
stream. The second component so-called context tracker
maintains a sequence of genuine relevance feedback SF in the
order of feedback arrival times.

The context tracker is invoked only when a classifier needs to
build a search profile for information retrieval. It takes as input
the stream SF and the cluster hierarchy H generated up to that
point, and outputs a new stream SPF containing a subset of SF and
relevant documents retrieved from the cluster hierarchy. The
classifier then uses the stream SPF to generate search profile Q by
means of pseudo-relevance feedback mechanism [6].

The change in notion of relevance is inevitable in tracking the
evolution of user interests so that relevance judgments for seeding
the pseudo-relevance feedback process must be selected from
those in SF that are still truly relevant. The context tracker
addresses this problem by associating each document in SF with
its context – that is, an abstraction of interest topic category. It
then applies the assumption about the persistence of user interests
to infer the relevance of each context. Finally, it retrieves all

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’03, November 3-8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-723-0/03/0011…$5.00.

documents relevant to each context from the cluster hierarchy, and
uses the retrieved documents to generate the new stream SPF.

3. DOCUMENT-CONTEXT ASSOCIATION
We use a cluster hierarchy, which is a tree structure, to provide
document-context associations. Each leaf node represents a
singleton cluster containing a single document. A node in the tree
also represents a context. In this paper we assume that the most
appropriate context that can be associated with a document is one
of the document’s ancestors in the hierarchy that distinctively
partitions documents underneath. The followings are two useful
functions needed to access the document-context associations:

1. c = Context(d) returns a context c that can be associated
with an input document d.

2. D = Context_Extension(c) is a function that returns a set of
documents D = {d1, …, dn} with respect to the input
context c. These documents are all leaf nodes that are
descendants of a node representing context c in the tree.

We employ a recently developed algorithm for incremental
hierarchical clustering [9]. One of the cluster properties generated
by the clustering technique is cluster density, which is calculated
from the average distance to the nearest neighbor among the
cluster’s members. We identify distinct contexts by thresholding
the cluster density information, similar to proximity dendogram
cutting that identifies clusters according to dissimilarity levels [2].

The density threshold for distinct context identification is
empirically determined from a validation set. First, a cluster
hierarchy is incrementally built from a stream of documents in the
validation set. Because the document topics are known, distinct
clusters (i.e., contexts) that correspond to topics in the validation
set can be accurately identified. The threshold is then calculated
from the average density of these distinct clusters.

Specifically, let H be the cluster hierarchy generated from the
validation set containing a set of topics T. Let cx∈H be a cluster
that corresponds to topic x∈T. Furthermore, let ε(c) be a set of
documents that are members of cluster c, i.e.,
Context_Extension(c). The cluster cx is identified from H by:

�
�
�

�
�
�

−= � ��
−∈ ∈∈∈ }{)(

,
)(

,maxarg
xTy cd

yd
cd

xd
Hc

x ttc
εε

where td,z = 1 if the topic of document d is z, or 0 otherwise.
Hence, cx maximizes the difference between the numbers of
cluster members that are on x topic and non-x topics. Now let δx
be the average distance to the nearest neighbor among cx’s
members; δ represents the cluster density in the employed
clustering technique. Thus, a higher δ value corresponds to a
lower-density cluster and vice versa. Let δx’s parent be the density of
cx’s parent. Taking δx as the threshold runs the risk of overfitting
to a specific topic while selecting δx’s parent is completely
inappropriate because it also covers the contexts of other topics
(over-generalization). Therefore, the threshold is selected at a
value between δx and δx’s parent, averaged over all topics:

(){ }�
∈

−⋅+=
Tx

xparentsxxxk k
T

δδδδθ ',max
1

where 10 ≤≤ k . We set 5.0=k by default, which maximizes
the margins between overfitting and overgeneralization. Given a
document d, Context(d) returns a cluster c, whose cluster density
is δc, such that δc ≤ θk ≤ δc’s parent and c is one of d’s ancestors.

4. TRACKING CONTEXT RELEVANCE
Now we describe the context tracker algorithm in detail. Let SF =
�(d1, j1), …, (dn, jn)	 be the stream of documents di with its
relevance judgment ji. The relevance judgment is either 1
(relevant or positive) or 0 (irrelevant or negative). A document at
the left side arrives earlier. The context tracker processes its input
in four steps.

Step 1: Transforming the problem of tracking multiple interest
categories into several sub-problems of tracking single interest
category. The original stream of relevance judgments is
partitioned into several, shorter sequences according to their
contexts. The relative ordering of documents in the original
stream is also maintained in each partition.

Example1. Let SF = �(d1,1),(d2,0),(d3,0),(d4,1),(d5,0),(d6,0),(d7,1),
d8,1)	. Suppose that the sets {d2,d6}, {d1,d4,d5} and {d3,d7,d8}
belong to contexts c1, c2 and c3 respectively (i.e.,
Context(d2)=Context(d6)=c1 in the first set, and so on). Then, SF is
partitioned into SF1=�(d2,0),(d6,0)	, SF2=�(d1,1),(d4,1),(d5,0)	 and
SF3=�(d3,0),(d7,1),(d8,1)	 during the first step.

Step 2: Normalizing sequence partitions. Since each partition
generated by the first step contains documents of the same
context, two or more consecutive documents with the same
judgment constitute a redundancy. Current step eliminates such a
redundancy by repeatedly dropping a document whose judgment
is the same as that of the next document on the sequence.

Example 2. From Example 1, d2 is dropped from SF1 because its
subsequent document, d6, has the same relevance judgment.
Similarly, d1 and d7 are also removed from SF2 and SF3,
respectively. It then generates normalized sequence partitions
S′F1=�(d6,0)	, S′F2=�(d4,1),(d5,0)	 and S′F3=�(d3,0), (d8,1)	.

Step 3: Inferring the relevance of each context. To do this, we
adopt the persistence assumption in temporal reasoning, which

Input: a stream of documents S.
Initialization:
 SF = �∅	, the sequence of relevance judgments.
 H = ∅, the cluster hierarchy.

Incremental Learning
 For each document d observed from the stream S,
 1: Update H incrementally to incorporate d.
 2: If the relevance judgment j of d is available,
 Concatenate �(d, j)	 at the end of SF.

Search Profile Generation (only when necessary):
 Apply the context tracker to generate new stream
 SPF based on current values of SF and H.
 Apply pseudo-relevance feedback process on SPF, using a
 selected classifier, to generate search profile Q.

Figure 1. The summary of approach.

(1)

(2)

Table 1. Description of three tracking tasks for experiments.

 Tracking Cycle
 1 −−−− 20 21 −−−− 40 41 −−−− 60 61 −−−− 80 81 −−−− 100

S1
Trade &
9 others

Trade,
Coffee &
8 others

Coffee,
Crude &
8 others

Crude,
Sugar &
8 others

Sugar,
Acq &
8 others

S2
Trade,
Coffee &
8 others

Trade,
Coffee,
Crude &
7 others

Coffee,
Crude,
Sugar &
7 others

Crude,
Sugar,
Acq &
7 others

S3

Trade,
Coffee,
Crude &
7 others

Trade,
Coffee,
Crude,
Sugar &
6 others

Coffee,
Crude,
Sugar,
Acq &
6 others

states that once a fact becomes true it remains true thenceforth
until the fact is negated [3]. The context relevance thus can be
simply inferred from the relevance value given by the last
document in the normalized sequence partition. In addition, we
drop a context if the last document is not relevant while the
preceding document is relevant (i.e., �(di,1),(dj,0)).

Example 3. From Example 2, context c1, as represented by S′F1, is
irrelevant while context c3 is relevant. Context c2 (as represented
by S′F2) is no longer counted.

Step 4: Generating stream for pseudo feedback process. It first
retrieves documents that belong to the remaining contexts from
cluster hierarchy, using Context_Extension() function. A new
stream SPF is then generated from the retrieved documents and is
ordered by the document arrival times. The relevance judgment of
a document in SPF is set to the relevance value of its context.

Example 4. Let {d2,d6,d9,d11}=Context_Extension(c1) and
{d3,d7,d8,d10,d12}=Context_Extension(c3) be the sets of documents
relevant to contexts c1 and c3. The last step will generate
SPF=�(d2,0),(d3,1),(d6,0),(d7,1),(d8,1),(d9,0),(d10,1),(d11,0),(d12,1)	 .

5. EXPERIMENT SETUP
Our experiments used a subset of the Reuters-21578 corpus, and
selected among documents in the ModApte split that had been
assigned a single topic category. As a result, the test set contained
2581 documents consisting of 59 topics. The validation set
needed for determining the density threshold was randomly
selected from the training set, and contained 100 documents of
five topics. The rest of the training set (6452 documents) was used
to generate document streams. We applied stop word removal,
word stemming and tf-idf weighting method to all documents.

The main evaluation objective was to observe the system
performance over time in adapting to various scenarios of changes
in topics of interest. Accordingly, the system was presented with a
stream of documents to process sequentially. Its performances
were then measured at regular intervals on a fixed test set. Let
tracking cycle be a period of processing m-document sequence
and system performance measurement. Referring to the set of
processes depicted by Figure 1, the experiments were conducted
using the following procedures:

1. Initialize SF and the concept hierarchy H.
2. At each tracking cycle i = {1 … K}
3. Perform Incremental Learning process on the ith m-

document sequence taken from the stream S.
4. Execute Search Profile Generation process to create the

search profile Q.
5. Rank all documents in the test set, using the same

classifier as in Step 4 and the search profile Q, and
measure the system accuracy based on the recall-
precision break-even point performance measure.

In this paper we consider MTDR [8] and Rocchio [7] algorithms
as the classifiers needed to perform steps 4 and 5 above.

The document stream S was generated according to a tracking
task, a scenario that described the document stream and the
evolution of user interests. The changes in topics of interest over
time were simulated by alternating among interests in Trade,

Coffee, Crude, Sugar and Acq topics. These five topics are called
target topics whose sizes in the test set were 75, 22, 121, 25 and
696, respectively.

Table 1 described three tracking tasks that were represented by
streams S1, S2 and S3, respectively. A document stream was
arranged into tracking cycles each of which consisted of 10-
document sequence. The table indicated the presence of document
topics on the corresponding tracking cycles. The other and
strikethrough topics represented irrelevant documents. Relevance
judgments are never given to documents with the other topics.

Positive feedback was used for establishing a new (or
emphasizing the interest in a) topic category. Negative feedback
was given for expressing the disinterest in topics previously
considered relevant. These relevance judgments were made
available at tracking cycles that marked the beginning of change
in current target topics, and formed the stream known as SF. The
current target topics were changed after periods of twenty tracking
cycles. Starting from the first tracking cycles, the next relevance
judgments were given to some documents at tracking cycles 21,
41 and so on. When relevance judgments were made available, the
underlined (strikethrough) topics indicated that the corresponding
documents were considered relevant (irrelevant).

6. RESULTS AND CONCLUSION
Figures 2 and 3 showed the performances of systems over time,
averaged over ten runs, on the three tracking tasks. PSEUDO-
FEEDBACK performances in these figures were obtained by
applying the pseudo-relevance feedback mechanism on the stream
SPF generated by the context tracker. For comparison, we also
presented the performances of FULL-FEEDBACK and PARTIAL-
FEEDBACK systems that did not use the context tracker’s outputs.
The FULL-FEEDBACK performances were produced by providing
the stream S, making the relevance judgments of all target topic
documents in the stream available while ignoring all non-target
topic documents. The FULL-FEEDBACK systems provided the
empirical upper bound performances. The PARTIAL-FEEDBACK
results were generated from processing only the genuine relevance
feedback stream SF, which represented only 5% of the numbers of
feedback documents given to the FULL-FEEDBACK systems. It
served as the empirical lower bound (baseline) performances.

The PARTIAL-FEEDBACK systems were given relevance judgments
only at the first tracking cycles during the twenty-tracking-cycle
periods. Consequently, their accuracies were constant, because the

search profiles were evaluated on the same test set, until the next
relevance judgments were received. By contrast, the trends of
FULL-FEEDBACK performances were increasing over time during
which the target topics were stable. These were not surprising
because the systems were able to continuously revise the search
profiles at each tracking cycle.

Regardless of the classifier employed for implementing the
relevance feedback process, the performances of PSEUDO-
FEEDBACK systems improved over the baseline performances, as
shown in Figures 2 and 3. Using the same sequences of relevance
judgments as those given to the PARTIAL-FEEDBACK systems, the
PSEUDO-FEEDBACK systems gained their performances as more
relevant documents became available. Except during the last
twenty tracking cycles, most of the performance gains achieved
over the baseline performances were significant, and in some
cases were even better than the performances of the FULL-
FEEDBACK systems. Nonetheless, the PSEUDO-FEEDBACK systems
during the last twenty tracking cycles were still able to improve
their performances automatically, although rather slower. This
tendency was very encouraging.

In conclusion, we have presented and evaluated the method for
tracking the dynamics of user preference with minimal relevance
judgments. Its evaluation on three tracking tasks indicates the
feasibility and the effectiveness of the method.

7. REFERENCES
[1] Bartlett, P.L., David, S.B. and Kulkarni, S.R. (1996)

Learning Changing Concepts by Exploiting the Structure of
Change, Computational Learning Theory, pp. 131-139.

[2] Jain, A.K. and Dubes, R.C. (1988) Algorithm for Clustering
Data. Prentice Hall.

[3] Gabbay, D.M, Hogger, C. J. and Robinson, J.A. (1995)
Handbook of Logic in AI and Logic Programming: V4.
Epistemic and Temporal Reasoning.

[4] Jansen, B. J., Spink, A. and Saracevic, T. (2000) Real Life,
Real Users and Real Needs: a Study and Analysis of Users
Queries on the Web. Information Processing &
Management, 36(2): 207-227.

[5] Klinkenberg, R. (1999) Learning Drifting Concepts with
Partial User Feedback, Beiträge zum Treffen der GI-
Fachgruppe 1.1.3 Maschinelles Lernen (FGML-99), Perner,
Petra and Fink, Volkmar (ed.).

[6] Mitra, M., Singhal, A. and Buckley, C. (1998) Improving
Automatic Query Expansion. In Proc. of the 21st ACM SIGIR
Conference, pp. 206 - 214.

[7] Rocchio, J.J. (1971) Relevance Feedback in Information
Retrieval. In G. Salton, The SMART Retrieval System:
Experiments in Automatic Doc. Processing, pp. 313-323.

[8] Widyantoro, D.H., Ioerger, T.R. and Yen, J. (2001) Learning
User Interest Dynamics with a Three-Descriptor
Representation. Journal of the American Society for
Information Science, 52(3): 212-225.

[9] Widyantoro, D.H., Ioerger, T.R., and Yen, J. (2002) An
Incremental Approach to Building a Cluster Hierarchy. In
Proc. of the 2nd IEEE International Conference on Data
Mining, pp. 705-708.

Figure 2. The performance over time of MTDR classifier on tracking tasks S1 (left), S2 (middle) and S3 (right).

Figure 3. The performance over time of Rocchio classifier on tracking tasks S1 (left), S2 (middle) and S3 (right).

