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ABSTRACT

Motivation: Next-generation sequencing affords an efficient analysis

of transposon insertion libraries, which can be used to identify essen-

tial genes in bacteria. To analyse this high-resolution data, we present

a formal Bayesian framework for estimating the posterior probability of

essentiality for each gene, using the extreme-value distribution to

characterize the statistical significance of the longest region lacking

insertions within a gene. We describe a sampling procedure based on

the Metropolis–Hastings algorithm to calculate posterior probabilities

of essentiality while simultaneously integrating over unknown internal

parameters.

Results: Using a sequence dataset from a transposon library for

Mycobacterium tuberculosis, we show that this Bayesian approach

predicts essential genes that correspond well with genes shown to

be essential in previous studies. Furthermore, we show that by using

the extreme-value distribution to characterize genomic regions lacking

transposon insertions, this method is capable of identifying essential

domains within genes. This approach can be used for analysing trans-

poson libraries in other organisms and augmenting essentiality predic-

tions with statistical confidence scores.

Availability: A python script implementing the method described is

available for download from http://saclab.tamu.edu/essentiality/.
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1 INTRODUCTION

Transposon mutagenesis is a frequently used laboratory method

for determining essential genes in bacterial organisms. Essential

genes are those genes necessary for growth under a wide variety

of environmental conditions. Knowledge of essential genes is

important for the discovery of new antibacterial drugs because

these genes are potential targets for inhibitors (Hasan et al.,

2006). One way of determining essential genes is to identify

regions of the genome in which insertional mutations produce

non-viable cells. To do this, a high-density library of transposon

mutants is constructed. The synthetic transposons used in

these studies are small fragments of DNA (typically 1–2kb),

which can be inserted into different locations in the chromosome

through the action of a distally encoded transposase enzyme

(Hayes, 2003). For example, derivatives of the Himar1 trans-

poson are widely used and have been characterized to insert

at arbitrary TA dinucleotides without any other obvious se-

quence specificity bias (Lampe et al., 1996; Rubin et al., 1999).

The total number of TA sites within a gene often varies �10–100

sites depending on gene length and GC content. When a trans-

poson inserts at one of these TA sites within a gene, it presum-

ably disrupts the function of the gene. In a large library of

transposon insertion mutants, genes harbouring insertions are

presumed to be non-essential. Genes lacking insertions may be es-

sential, as they cannot tolerate disruption; however, this depends

on the size of gene and degree of saturation of the library

(Lamichhane et al., 2003). Typically, 10–15% of open reading

frames (ORFs) in a bacterial genome are found to be essential

(Gerdes et al., 2003), including genes involved in core metabol-

ism, cell-wall biosynthesis, protein translation and DNA replica-

tion (all of which are known targets of existing drugs).

Differential analysis of essential genes in bacteria passaged

through a host could be used to identify genes specifically

required for infection (Sassetti and Rubin, 2003).
In the original implementation, the location of transposon

insertions in individual mutants was read out via microarray hy-

bridization. A primer-extension step, using a primer complimen-

tary toone end of the transposon,was used to amplify the adjacent

genomic region, and the relative abundance of these nucleic acid

probes was quantified via hybridization to oligonucleotide repre-

senting each gene (Sassetti et al., 2003). Both the resolution and

the quantitative accuracy of this method were limited. More re-

cently, use of hybridization to analyse transposon libraries has

been replaced by deep sequencing using next-generation sequen-

cers, which yield millions of short reads (typically 50–100bp).

Mapping of reads amplified from transposon boundaries can

give precise coordinates of insertions within the genome

(Gawronski et al., 2009; Griffin et al., 2011; Langridge et al.,

2009). The high-resolution data afforded by deep sequencing pre-

sent some unique challenges for analysis of gene essentiality.

It has previously been observed that even essential genes can tol-

erate transposon insertions in the extremeN- andC-termini of the*To whom correspondence should be addressed.
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ORF (Akerley et al., 1998; Christen et al., 2011; Smith et al., 1996).
Previous analyses have often used an ad hoc criterion, such as

exclusion of insertions in the first/last 5–20% of the coding

region (Gawronski et al., 2009). For similar reasons, insertions
are sometimes tolerated in linker regions between domains, or

one domain but not another of an essential protein

(Lamichhane et al., 2005). For example, transposon insertions in
the N-terminus of Mmpl5 caused attenuation of infection in

mouse lungs, whereas insertions in the C-terminus did not

(Lamichhane et al., 2005). Thus, it is inaccurate to assume that
only genes completely lacking transposon insertions are essential.

In previous work, we described a novel statistical method for
analysing transposon insertion data to characterize the essential-

ity of genes within an organism (Griffin et al., 2011). The method

was based on identifying the longest consecutive stretch of TA
sites lacking insertions in a gene and estimating the likelihood of

such an open region occurring by chance through the extreme-
value (Gumbel) distribution. This model was based on an ana-

logy to runs of tails in a sequence of coin tosses, where each TA

site is viewed as an independent Bernoulli trial given the back-
ground insertion frequency in non-essential genes. This analysis

was shown to correlate well with previous characterizations of

genes essential for in vitro growth of Mycobacterium tuberculosis.
The primary advantage of this method is that essentiality is based

on statistically significant stretches of TA sites lacking insertions,

regardless of the presence of insertions at other regions within the
gene. This is in contrast to other models, such as a multinomial

model, where the order of insertions is not taken into consider-

ation (Blades and Broman, 2002), and it may miss regions char-
acteristic of essential domains. One limitation of our previous

method is that it depends on an a priori estimate of the insertion

frequency in non-essential genes. Although this can be approxi-
mated (over all TA sites in the whole genome) or tuned itera-

tively (by separating out essential genes), a more rigorous

statistical treatment is desirable.
One possible way to approximate the parameters of this

model and find estimates of essentiality is to use the expect-
ation-maximization (EM) algorithm. Although the EM algo-

rithm converges relatively quickly, it depends on maximizing

the likelihood of the given distribution. This is not feasible for
the product of Gumbel distributions, as no closed-form expres-

sion for the derivative exists.
In this article, we present a formal Bayesian analysis of trans-

poson insertion data that simultaneously estimates the likelihood

of essentiality for each gene and the non-insertion frequency for
each class, given in the data. We develop a formula for the joint

and conditional densities based on the likelihood for each gene.

We describe how to use a Metropolis–Hastings (MH) sampling
procedure to estimate the parameters from the data, by sampling

from the joint probability densities. This method produces a

formal estimate of essentiality for each gene from the posterior
probability given the observed insertion data, marginalizing over

the unknown insertion frequencies in essential and non-essential

genes.

2 METHODS

The sequence data obtained from transposon mutagenesis experiments

consist of a set of reads mapping to TA dinucleotides sites within

the genome. The read counts at each TA site are discretized to a binary

value of 1 (‘insertion’) or 0 (‘non-insertion’) depending on the presence or

absence of transposon reads mapping to those locations. Although the

number of reads mapping to a location may contain useful additional

information about essentiality, it can also be subject to variability because

of phenomena such as polymerase chain reaction bias. Thus, we take the

presence/absence of insertions within genes to be sufficient for identifying

essential regions in our model. TA sites are assumed to be independent

from each other and treated as a set of Bernoulli trials (analogous to

coin-tossing, with insertions and non-insertions representing outcomes

of tails or heads), which is a reasonable assumption in non-essential

genes, where the probability of insertion at adjacent sites is thought to

be independent.

From these data, we obtain the maximum number of consecutive TA

sites lacking insertions within the genes and the number of nucleotides

spanned by this sequence. Although the geometric distribution governs

the distribution of the number of non-insertions observed in a row, the

Gumbel (extreme-value distribution) can be used to characterize the long-

est run of non-insertions observed in a gene. The Gumbel distribution

serves as a likelihood function for non-essential genes, as the longest

runs of non-insertion should follow what we expect given the global

non-insertion frequency. On the other hand, essential genes, whose max-

imum runs of non-insertions should be longer than expected, are instead

modelled through a normalized sigmoid function. This likelihood function

reflects the fact that any gene can be essential (with more or less uniform

probability), except those genes with spans of non-insertion that are too

small to represent a domain. Using this model of the data, we derive pos-

terior densities for the essentiality of each gene and use the MH algorithm

to obtain an Markov Chain Monte Carlo (MCMC) sample of values of

these densities from which to estimate their posterior probabilities.

2.1 Bayesian mixture model

Let Yi ¼ fni, ri, sig represent our observations for the ith gene for

i ¼ 1:::G, where ni represents the total number of TA sites, ri represent

the longest run of non-insertions observed and si represents the span

of nucleotides of the longest run of non-insertions. Each gene is modelled

as coming from one of two classes, 1 and 0, representing essential

and non-essential genes, respectively. The complete set of essentiality as-

signments is represented by the latent variable Z ¼ hZ1,Z2, :::ZGi

(Boolean vector), with the essentiality assignment of an individual

ith gene represented by the Boolean variable Zi, which takes on binary

values of 1 and 0 for the two possible classes. We assume a Bernoulli

probability, �0, that governs probability of non-insertion across

non-essential genes. Finally, ! ¼ h!1,!0i, the mixing coefficient, repre-

sents the prevalence of essential and non-essential genes within the mix-

ture (with !0 ¼ 1� !1).

2.1.1 Likelihood for non-essential genes The data, Yi, for each gene

consist of observations ri and si, representing the maximum run of

non-insertions (TA sites without insertions) in a row, and the number

of nucleotides spanned by this gap of non-insertions. The joint likelihood

of these observations is

pðri, sijZi ¼ 0,�0,!1Þ ¼ pðrijZ ¼ 0,�0,!1Þ � pðsijri,Z ¼ 0,�0,!1Þ

To the likelihood of observing a maximum run of non-insertions, ri,

is modelled through the Gumbel distribution:

pðrijZi ¼ 0,�0,!1Þ ¼ Gumbelðri;m, �Þ ¼
1

�
e�z�e

�z

ð1Þ

where z ¼ ri�m
� , and m and � are the location and scale parameters,

respectively, of the underlying distribution. In analogy to coin-tossing,

these parameters are functions of the probability of non-insertion, �0,

and of the total number of trials, n, derived by determining the expected
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maximum value in a series of independent samples from a geometric

distribution (Schilling, 1990):

m ¼ log 1
�0

ðnð1� �0ÞÞ � ¼
1

log 1
�0

ð2Þ

Note that the expected length of the maximum run of non-insertions

increases logarithmically with n (the total number of TA sites in the gene).

As ri and si are highly correlated (Fig. 1), we model their dependence as

linear-Gaussian, with covariance matrix � ¼ �2r , �r, s
� �

, �r, s, �
2
s

� �� �
esti-

mated a priori from empirical data:

pðsijri,Z ¼ 0,�0,!1Þ � Nðsi � �rri, �
2
r Þ ð3Þ

were �r and �r are the parameters of the normal distribution, derived

from the linear-Gaussian relationship (i.e. �r ¼
�r, s
�r
) observed in the data.

The joint likelihood of the observations at non-essential genes is

therefore:

pðri, sijZi ¼ 0,�0,!1Þ ¼ Gumbelðri;m, �Þ �Nðsi � �rri, �
2
r Þ ð4Þ

2.1.2 Likelihood for essential genes We model the likelihood at

essential genes based on a sigmoid function that is uniform as long as the

gene contains a gap that is as large as a typical protein domain, as a gap

could be any size, even as large as the entire ORF. Using this likelihood

allows our method to disambiguate those cases where the run of

non-insertions actually represents a smaller or larger segment of the

genome than suggested by the number of consecutive TA sites without

insertions.

pðri, sijZi ¼ 1,�0,!1Þ ¼ pðsijZ ¼ 1,�0,!1Þ � pðrijsi,Z ¼ 1,�0,!1Þ

The number of nucleotides spanned by a given run on non-insertions,

si, is modelled by a normalized sigmoid (logistic) function:

pðsijZi ¼ 1Þ ¼ �ðsi; �Þ ¼
C

1þ e��ð��siÞ
ð5Þ

where � is the mean number of nucleotides spanned by an average protein

domain, � is equal to 0.1 and C is normalization constant. Previous

studies of the length of domains within proteins have found the average

size to be �100 amino acids or 300bp (Wheelan et al., 2000). Using this

threshold for �, the likelihood of observing a given span si is more or less

uniform, except it is near 0 if the longest run of non-insertions spans

less than �300bp. Supplementary Figure S2 shows how sensitive the

model is to the these parameters.

As with non-essential genes, the likelihood of observing a span of

nucleotides ri given si is modelled through a linear-Gaussian dependence

similar to Equation (3), but with an inverse relationship [i.e.

Nðri � �ssi, �
2
s Þ]. The joint likelihood of the observations at essential

genes is, therefore,

pðri, sijZi ¼ 1,�0,!1Þ ¼ �ðsiÞ �Nðri � �ssi, �
2
s Þ ð6Þ

2.1.3 Prior distributions Our previous expectation for the probability

of non-insertion at non-essential genes, �0, is represented by a beta

distribution, with hyper-parameters �0 and 	0:


ð�0Þ ¼ Betað�0;�0,	0Þ ¼
�ð�0 þ 	0Þ

�ð�0Þ�ð	0Þ
��0�10 ð1� �0Þ

	0�1

The previous probability of an individual essentiality assignment, Zi,

depends on the probability that the ith gene is essential or non-essential;

therefore, it is characterized by a Bernoulli distribution with that

depends on !1:


ðZij!1Þ ¼ BernoulliðZi;!1Þ ¼ !
Zi

1 ð1� !1Þ
1�Zi

Similarly, the previous probability of an essentiality assignment for

all genes, Z is a product of Bernoulli trials with probability !1:


ðZj!1Þ ¼
YG
i

Bernoullið!1Þ ¼ !
Kz

1 ð1� !1Þ
G�Kz

where G is the total number of genes and Kz is the sum of the binary

vector of essentiality assignments (i.e. Kz ¼ �Zi). Finally, our previous

expectations for the mixing coefficient !1 are given by a beta distribution:


ð!1Þ ¼ Betað!1;�w,	wÞ ¼
�ð�w þ 	wÞ

�ð�wÞ�ð	wÞ
!�w�11 ð1� !1Þ

	w�1

2.1.4 Joint distribution To derive the posterior probability density

functions necessary for our Bayesian inferences of essentiality, we first

define the full joint distribution, pðZ,Y,�0,!1Þ. The full joint distribution

is equal to the product of the data-likelihood and the previous

expectations for the variables: pðZ,Y,�0,!1Þ ¼ pðYjZ,�0,!1Þ pð�0Þ

pðZj!1Þ pð!1Þ. We assume independence among genes; therefore, the like-

lihood can be written as a product of the observations over individual

genes:

pðY,Z,�0,!1Þ ¼ pðYjZ,�0,!1Þ � 
ð�0Þ � 
ðZj!1Þ � 
ð!1Þ

¼
Ynon
i¼1

Gumbelðrij�, �Þ �Nðsi � �rri, �
2
r Þ

" #

�
Yess
i¼1

�ðsiÞ �Nðri � �ssi, �
2
s Þ

" #
� Betað�0;�0,	0Þ

� BinomialðKz;G,!1Þ � Betað!1;�w,	wÞ

ð7Þ

2.1.5 Conditional distributions Using the full joint probability (7),

we derive a conditional distribution for the probability of non-insertion

at non-essential genes, �0, using proportionality to cancel out those

parameters that are constant with respect to �0:

pð�0jY,Z,!1Þ / pðYjZ,�0,!1Þ � 
ð�0Þ � 
ðZj!1Þ � 
ð!1Þ

/
YG
i

pðri, sijZi,�0,!1Þ � 
ð�0Þ � 
ðZj!1Þ � 
ð!1Þ

/
Ynon
i¼1

Gumbelðrijm, �Þ � 
ð�0Þ

ð8Þ

Similarly, we derive a conditional distribution for the individual essen-

tiality values Zi, specifying both possible essentiality assignments (i.e.

Zi ¼ 1 and Zi ¼ 0):

pðZi ¼ 1jY,Zf�ig,�0,!1Þ

/ pðsijZi ¼ 1Þ � pðrijsi,Zi ¼ 1Þ � 
ðZi ¼ 1j!1Þ

/ �ðsiÞ �Nðri � �ssi, �
2
s Þ � !

Zi¼1
1 ð1� !1Þ

1�Zi¼1

ð9Þ

Fig. 1. Relationship between length of run of non-insertions (#TA sites)

and span (nucleotides)
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pðZi ¼ 0jY,Zf�ig,�0Þ

/ pðrijZi ¼ 0,�0Þ � pðsijri,Zi ¼ 0Þ � 
ðZi ¼ 0j!1Þ

/ Gumbelðrijm, �Þ �Nðsi � �rriÞ � !
Zi¼0
1 ð1� !1Þ

1�Zi¼0

ð10Þ

2.2 Metropolis–Hastings sampling

We wish to obtain posterior estimates of essentiality for all genes, inte-

grating over possible values of the unknown variables (e.g. �0). To

accomplish this, we generate a Markov chain Monte-Carlo sample of

values from the conditional densities of interest. By sampling from

these conditional densities, we can obtain posterior estimates of essenti-

ality, Zi, without having to know or calculate the probability of non-

insertions, �0, before hand; effectively integrating over this parameter.

Because the conditional distribution of Zi admits only two possible

outcomes (i.e. essential and non-essential), this density can be sampled

from a Bernoulli distribution with outcomes proportional to the normal-

ized conditional probability (9, 10):

Z
ðjÞ
i � Bernoulli

� p1
p1 þ p0

�
p1 ¼ pðri, sijZf�ig,�0Þ � !1

p0 ¼ pðri, sijZf�ig,�0Þ � ð1� !1Þ

However, the posterior distribution for the parameter �0 (8) is the

product of multiple Gumbel distributions and a Beta distribution,

which are not conjugate with each other and cannot be easily sampled.

To sample from this posterior density, we use a random-walk MH algo-

rithm. The MH algorithm is capable of sampling from arbitrary distri-

butions of interest by proposing new candidate values from a Gaussian

distribution centred on the last accepted value, �ðj�1Þ0 , with small variance,

v, and accepting or rejecting candidate values probabilistically. Algorithm

1 presents the sampling scheme used to sample the posterior densities

of �0 and Zi. An MH step is taken to sample �0, and then we sample

Zi for each gene.

Algorithm: Random-walk Metropolis–Hastings

Result:MCMC Samples of density pðZjY,�0Þ and pð�0jY,ZÞ assign start-

ing value to �0 and initialize Z based on proportion of insertions within

individual genes (i.e. If jTAjini
50:1 then Zi ¼ 1 else Zi ¼ 0);

Algorithm 1: Random-walk Metropolis–Hastings Algorithm for

sampling �0 and Z

After the samples of parameter value, �0, and essentiality assignments,

Zi, are obtained, their posterior estimates can be obtained by averaging

over the final sample, minus a burn-in stage to ensure the sampling pro-

cedure has mixed well.

3 RESULTS

We applied our method to deep-sequencing data from

transposon-insertion libraries of the H37Rv strain of

M.tuberculosis. The full details of the construction of this library

are presented in Griffin et al. (2011). Briefly, the libraries were

prepared by transforming H37Rv using the MycoMarT7 phage,

leading to �105 independent insertion events. Colony forming

units were inoculated into 200ml of minimal media and 0.1%

glycerol and grown at 37�C. The libraries were sequenced

with an Illumina GAII sequencer and a read length of 36 bp

(6–8 million reads per library).
The H37Rv genome has 4 411 654bp, and it contains 3989

ORFs (Cole et al., 1998). This equates to an average of 15.9

TA sites per ORF, spaced �61bp apart on average. Reads

from two independent libraries were obtained, which were

then summed together to achieve a higher sampling density of

the TA sites. Of the 74 605 total TA sites in the genome, 38 984

(53.12%) had reads mapping to them, showing evidence of

a transposon insertion at those locations. Of these insertion

sites, 32 701 of them occurred within ORFs. We assume that

sites with a small number of reads (i.e. one) could represent

spurious reads possibly because of sequencing errors; therefore,

those sites were treated as lacking any insertions. However,

Supplementary Figure S9 shows the read counts fit an overdis-

persed Poisson distribution, suggesting most are legitimate inser-

tions. Sites with just one insertion are discarded anyway to

be safe, requiring insertions to be confirmed by at least two

reads. This might lower the effective density of the dataset; how-

ever, this does not affect the method. Of the 3989 ORFs

in H37Rv, 41 do not contain any TA sites. An additional set

of 237 genes were deemed too short because of the fact that

they do not contain enough TA sites (i.e ni53), or the span of

nucleotides was too short (i.e. si5150bp). Therefore, a total of

278 genes are reported as ‘no-data’ because our analysis is not

appropriate for these genes.
The sampling procedure was run for 50 000 iterations, provid-

ing estimates of essentiality for all viable genes, as well as esti-

mates of the parameter �0. To ensure that the algorithm mixed

well and the samples obtained were uncorrelated, the first 1000

samples were treated as a ‘burn-in’ period and discarded; only

keeping every 20th sample after there. Supplementary Section S2

contains an analysis of the convergence of the MH procedure

used. The value for �0 (non-insertion frequency in non-essential

genes) was estimated to be 0:290� 0:004 (SD). Performance

on a lower-density dataset, also H37Rv grown on glycerol,

is described in Supplementary Section S3. This lower-density

library contains fewer transposon insertions in coding regions

[i.e. 23 399 (36.3%) compared with 31 715 (50.4%) in the library

described earlier in the text], and it has longer runs of

non-insertions among the genes (�0 ¼ 0:592). Rather than pre-

dicting more essential genes, our analysis is more conservative

in its predictions, as it is less confident of the essentiality of the

genes given the sparsity of the insertions.
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3.1 Essentiality results

After obtaining the sample from the MH procedure, the poster-

ior probability of essentiality for all genes is estimated by

averaging over the sample of essentiality values, �Zi. To set sig-

nificance thresholds while correcting for multiple comparisons

(i.e. to control false discovery rate, FDR), we use a method

described by Muller et al. (2006), which emulates the

Benjamini–Hochberg procedure for Bayesian posterior probabil-

ities. Limiting the FDR at 0.05, genes with �Zi50:0371 are clas-

sified as non-essential, and genes with �Zi40:9902 are classified

as essential. Supplementary Table S1 contains our predictions for

all 3989 ORFs in H37Rv. In total, 667 genes are categorized as

essential, and 2693 are non-essential by this criterion. These in-

clude genes experimentally validated to be essential for growth

in vitro [i.e. prrA and prrB (Haydel et al., 2012), phoP (Goyal

et al., 2011) and mshA and mshC (Buchmeier and Fahey, 2006]

and genes known to be non-essential [i.e. rpfA (Kana et al.,

2008), glnD (Read et al., 2007), echA5 and fadB3 (Williams

et al., 2011)]. The remaining genes represent those for which

the method is unable to reach an essentiality assignment with

confidence. Figure 2 shows a cumulative plot of the �Zi values

for all the genes, with the horizontal lines representing the thresh-

olds of essentiality and non-essentiality. To assess the sensitivity

of this result to the fixed parameters in the likelihood function for

essential genes, we obtained results for different values of � and �
parameters of the sigmoid function. Supplementary Figure S2

shows a cumulative plot of �Zi values for different combinations

of these parameters. The � parameter has little effect on the final

result. On the other hand, a 2-fold increase and decrease of the

� parameter significantly changes the slope of the graph as well as

the number of non-essential genes estimated. This is consistent

with the fact that the � parameter represents the expected span of

nucleotides for essential domains. This has been empirically

determined to be �300nt.

Table 1 reports statistics for the different categories of genes.

On average, essential genes contained significantly longer

maximum runs of non-insertion (17.57) than non-essential
genes, and these runs spanned a larger number of nucleotides
(1039.81bp), which is consistent with our expectations for essen-

tiality. Non-essential genes contained a larger number of inser-
tions on average (15.69). Although essential genes contained only
a small number of insertions (1.68), this number was greater than

zero, indicating that the method is capable of detecting essential
genes with a small number of insertions, provided they contain a

long enough run of non-insertions suggestive of an essential
region.

3.2 Concordance with previous results

The essentiality of the entire M.tuberculosis H37Rv genome has
been characterized previously using transposon-site hybridiza-

tion (Sassetti and Rubin, 2003; Sassetti et al., 2003). We compare
our essentiality inferences with previous results to verify that our

method achieves results that are consistent with expectations of
the essentiality in M.tuberculosis. Sassetti et al. used transposon-
site hybridization (TraSH) to characterize the genes necessary

for optimal growth in vitro, for a library of transposon mutants
grown on 0.02% glucose and rich-media (7H10). Although our

method analyses deep sequencing of transposon libraries, TraSH
uses hybridization of gene-specific probes to quantify the level of
fluorescence being emitted by hybridization probes to determine

which genes are being interrupted in the library of mutants.
Table 2 contains a comparison between the two methods.

Fig. 2. Cumulative plot of posterior probabilities �Zi. The average Zi

value for each gene was plotted in ascending order, for each of the dif-

ferent combinations of parameters investigated. The horizontal lines rep-

resent the final thresholds for essentiality: �Zi40:9902 and �Zi50:0371

Table 2. Comparison of essentiality predictions with TraSH analysis

Category Bayesian method

Essential Uncertain Non-

essential

No-

data

Total

Sassetti-03

Essentials 429 75 81 29 614

Growth defect 9 4 28 1 42

Non-essential 94 151 2131 144 2520

No-data 135 112 453 113 813

Total 667 342 2693 287 3989

The results obtained by Sassetti et al. are compared with those obtained with our

Bayesian method for all 3989 genes in M.tuberculosis.

Table 1. Statistics for essentials, non-essentials and uncertain genes

Category Total Average

Genes TA Sites Insertions Max run Span

Essentials 667 21.32 1.68 17.57 1039.8

Uncertain 342 16.61 6.45 5.75 410.4

Non-essentials 2693 15.69 10.78 2.05 54.5

Non-essential genes are those with Zi50:0371; essential genes are those with

Zi40:9902. Average span is in nucleotides.
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Sassetti et al. also included an additional category of genes rep-

resenting those whose interruption causes growth defects (i.e.
slower growth); our method does not make this distinction.
Excluding these, the two methods show agreement in 69.9% of

essentials and 84.6% of non-essentials for 81.7% genes across
both categories. There were only 81 genes predicted to be essential

by TraSH but not by our method; 94 genes predicted to be
non-essential by TraSH but found to be essential by our method.
Some of these differences could be due to the different growth

conditions of the libraries. For example, because our library was
grown on glycerol, we find genes necessary for glycerol metab-
olism as essential, such as GlpK (glycerol kinase). Other differ-

ences may be due to incomplete sequence coverage (e.g. gaps
in PE_PGRS genes, which are highly GC-rich and hard to

sequence). Two of the 62 PE_PGRS genes in the H37Rv
genome were classified as essential by our model because of
large regions without insertions, although genes in this family

are generally believed to be non-essential (Banu et al., 2002).
Overrepresentation of PE_PGRS gene among essentials was
also noted in other transposon library analyses using sequencing

(Lamichhane et al., 2003).
One notable difference is that Sassetti et al. found glcB to be

non-essential; however, the insertion pattern shown in Figure 3
clearly indicates that this gene was unable to tolerate insertions in
the libraries of mutants analysed. GlcB encodes for malate

synthase in M.tuberculosis, which was originally thought to be
necessary only for growth on fatty acids as part of a glyoxylate
shunt (McKinney et al., 2000), but it has recently been shown

to be essential on other carbon sources like dextrose by chemical
inhibition (Krieger et al., 2012). A complete absence of trans-

poson insertions in Rv1837c was also observed in the
DeADMAn studies (Lamichhane et al., 2003). Our data suggest
that GlcB is also essential for growth on glycerol (in liquid cul-

ture with minimal media), showing a significant run of
non-insertions (25 of 27—spanning 2078nt, p(Zi ¼ 1)¼ 1.0).

It should be noted that in the original TraSH data, GlcB had
a hybridization ratio of 0.41, which was near the threshold for
essentiality (50:20).

3.3 Comparison with other statistical models

In contrast to other models where the order of insertions does
not matter, the Gumbel distribution is capable of identifying
regions lacking insertions within genes that are significantly

longer than expected, despite the presence of insertions elsewhere

in the gene. Models of essentiality that focus solely on the pro-
portion of insertions or the number of reads within genes may
miss these essential regions if enough insertions are observed

elsewhere within the gene.
To evaluate this important distinction, we compare our

method with the method proposed by Blades and Broman

(2002). This method does not take the order of insertions into
consideration, but instead it is based on a multinomial likelihood
function that characterizes the number of mutants with inser-

tions unique to a gene, as well the number of mutants with in-
sertions that occur in regions that overlap with adjacent genes
(which adds uncertainty as to which gene was disrupted). Using

this multinomial likelihood, Blades and Broman implement a
Gibbs sampling procedure that estimates posterior probabilities
of essentiality for all the genes.

We obtained the R package ‘negenes’, which contains the im-
plementation of this method maintained by Karl W. Broman
(http://www.biostat.wisc.edu/kbroman/software/). The Gibbs

sampler was run on the same H37Rv glycerol dataset analysed
earlier in the text, for 50 000 iterations. The first 1000 samples were
ignored as part of the burn-in period, and only every 22th sample

was kept to remove any auto-correlation in the sampling process.
Following Lamichhane et al. (2003), we used the number of inser-
tions within the N-terminal 80% of the ORF, as representative of

the number of viable mutants with insertions in genes.
After obtaining the probability of essentiality from the Gibbs

sampler, we set thresholds for essentiality by correcting for mul-

tiple comparisons and controlling the false discovery rate as
we did for the Gumbel method (implementing a procedure
analogous to the one proposed by Benjamini and Hochberg).

We use these thresholds to classify the genes as essential,
non-essential or uncertain.
The Blades and Broman method predicts 244 essential genes

and 3195 non-essential genes. As the small number of essential

genes could be due to the selected threshold, a less conservative
threshold for essentiality (posterior probability 40:95) results
in 458 genes being predicted as essential, still well below

the 614 essential genes characterized by Sassetti et al. (2003).
A full breakdown of the results is found in Supplementary
Table S5.

The lower number of essentials predicted by the Blades and
Broman method is due to the fact that the presence of even a few
insertions in a gene (i.e. � 1) is enough to make it seem

non-essential under this multinomial model. For example,
GyrB (	 subunit of DNA gyrase), a known essential gene and
target of fluoroquinolones, is found to be non-essential by the

Blades and Broman method, as it is observed to have insertions
at the N-terminus. In contrast, our method finds GyrB to be
essential, as it contains a significant stretch of TA sites lacking

any insertions (40 consecutive TA sites lacking insertions of
43 TA sites in the gene), which is what we would expect from
an essential gene. Although this could be potentially overcome

by ignoring insertions at the ends of the N- and C- termini (e.g.
considering only 5–80% of the coding region as recommended by
Gawronski et al., 2009), a strength of our model is that it does

not need to discard these regions a priori.
The dataset was also analysed with the ESSENTIALS soft-

ware, which uses a negative binomial distribution to analyse read

counts within each gene (Zomer et al., 2012). ESSENTIALS only

Fig. 3. Insertion pattern for Rv1837c. Figures created using the

Integrative Genomics Viewer (IGV)—distributed by the Broad Institute.

http://www.broadinstitute.org/igv/
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predicts 434 genes in the H37Rv genome to be essential (using
a �8.13-fold change cut-off determined by the software) and
3363 genes to be non-essential. Thus, similar to the Blades and

Broman method, the ESSENTIALS software also underpredicts
the number of essential genes compared with what is expected for

this organism (i.e. �600, based on prior TraSH studies).
However, 93.5% of the genes predicted to be essential by the

ESSENTIALS software (406/434) overlap with the genes pre-
dicted to be essential by our Bayesian method, effectively repre-

senting a subset (60% of our 667). In all, 311 of the 434 genes
were correctly labelled as essential according to the original

TraSH experiments, capturing 50% of the 614 essential genes
previously characterized. The primary reason that other genes

that are believed to be essential are not identified as such by
the ESSENTIALS software seems to be because many of these

genes often contain some insertions at a few sites in the ORF
(such as at the N- and C- termini or in a non-essential domain);
thus their read counts are higher than expected for an essential

gene (according to their model).

3.4 Essential domains

One of the advantages of our method for analysing this high-

resolution transposon insertion data is that it can reveal essential
regions or domains within proteins. The regions devoid of inser-

tions detected by our method often correspond to well-defined
protein folding domains. To date, the X-ray crystallographic

structures of only 8.5% of proteins in H37Rv have been deter-
mined (Ehebauer and Wilmanns, 2011). Thus, to test the model’s
ability to detect essential domains, we compare these regions

with Pfam predictions of protein domains within H37Rv genes.
Pfam is able to make predictions of domains based on amino

acid sequence homology using hidden Markov models to repre-
sent protein families (Finn et al., 2010).

Using Pfam, we obtained predictions of 5091 protein domains,
1126 of which were in genes predicted to be essential by our

method. To determine whether the significant runs of
non-insertions observed coincide with protein domain bound-
aries, we calculated a ratio of overlap between the nucleotides

spanned by a maximum run of non-insertions and the do-
main boundaries predicted by Pfam (Table 3). For a Pfam

domain spanning coordinates i::j, if the closest matching re-
gion lacking insertions is k::l, then the overlap score is

minðji� kj, jj� ljÞ=ji� jj. Of the 1126 domains found within
essential genes, 976 (86.68%) of them overlapped significantly

(i.e. score 40:80) with the domain boundaries, suggesting that
the majority of Pfam domains are contained within the runs of

non-insertions observed. Another set of 104 domains (9.24%)

had no significant overlap (i.e. score 50:20), potentially repre-
senting those domains that are within non-essential regions

of essential genes. The remaining 46 (4.08%) domains represent

those with an intermediate overlap (i.e. score between
0:20� 0:80), representing a small set of genes for which the

Pfam boundary prediction may be inconsistent.
In some cases, the pattern of transposon insertions is capable

of identifying individual domains as essential through a sequence

of TA sites lacking insertions that closely matches the boundaries

of the predicted Pfam domain. To identify such cases, we
matched the Pfam domain predictions to the closest run of

non-insertions and calculated a consistency score that reflects

the consistency between the two regions. This consistency score
was based on comparing the distance (in nucleotides) between

the boundaries of the domain prediction i::j and the boundaries

of the run of non-insertions k::l. We restricted attention to genes

for which the run of non-insertions corresponding to the domain
is statistically significant (P50.05 using a cumulative Gumbel

distribution), and whose distance between boundaries (upstream

or downstream) is550bp (i.e. ji� kj þ jj� lj550). We identi-
fied 95 known domains that were mostly devoid of transposon

insertions internally, but for which insertions were observed at

TA sites right near the boundaries (shown in Supplementary
Table S2). Many of these constitute essential single-domain pro-

teins, although several occur in larger multi-domain proteins

with both essential and non-essential regions. To identify genes

that contain both essential and non-essential domains, we se-
lected a subset of genes that are labelled as essential by our

Bayesian analysis, but for which there is still a relatively large

(i.e. #TAs44) area remaining containing an insertion frequency
that is not significantly essential (i.e. P-value of 40:05) accord-
ing to the cumulative binomial distribution. This gave a set of 36

genes (presented in Supplementary Table S3) that represent inter-

esting cases where there is a combination of both essential and
non-essential regions.

Among the genes that our method identifies as having both
essential and non-essential domains are Rv3910 and Rv0018c.

These two genes have been shown to be essential for growth in

mycobacteria and are involved in regulating cell wall (peptido-
glycan) synthesis. Rv3910 encodes for two C-terminal protein

domains (an intracellular pseudokinase and an extracellular

sugar-binding domain) and an N-terminal MviN-like domain,

which is required for the late stages of peptidoglycan biosynthesis
(Fig. 4). MviN proteins have been proposed to be involved in the

export of the lipid-II precursor, and this Mtb orthologue is

Fig. 4. Insertion pattern for Rv3910. The essential MviN domain is

shown in red, whereas the non-essential extracellular and intracellular

domains are shown in yellow

Table 3. Statistics for Pfam domain predictions

Category Total Average

Domains Length TA sites Overlap

Non-essentials 3240 464.45 7.47 0.28

Uncertain 512 457.90 6.30 0.47

Essentials 1126 518.78 8.31 0.89

701

Bayesian analysis of gene essentiality

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article-abstract/29/6/695/184050 by Texas A&M
 U

niversity user on 29 June 2019

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt043/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt043/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt043/-/DC1


regulated by a phosphorylation-dependent interaction with
FhaA (Rv0020c) (Gee et al., 2012). Insertions in Rv3910 are
found only in the C-terminal domains, but not the N-terminal

membrane domain, implying only the latter domain is necessary
for growth (pðZi ¼ 1Þ ¼ 1:00Þ), based on a run of 34 consecutive
non-insertions within its essential domain, spanning 1439nt, as

significant. This has been confirmed experimentally by Gee et al.
(2012). Rv0018c (PstP: serine/threonine phosphatase) contains
an essential catalytic domain within its N-terminus (Fig. 5),

and it has been shown to dephosphorylate Rv0020 (FhaA) coun-
teracting phosphorylation by PknB (Pullen et al., 2004). It con-
tains a run of 12 consecutive non-insertions in the N-terminal

catalytic domain, spanning 695 nt, which our method identifies
as significant [pðZi ¼ 1Þ ¼ 0:999Þ].

4 DISCUSSION

The availability of next-generation sequencing data for analysing
transposon mutagenesis libraries necessitates a new method cap-
able of analysing the high-resolution data and determining es-

sentiality. We developed a Bayesian statistical model that can be
used to analyse this data and make rigorous predictions about

the essentiality of individual genes, as well as identify stretches
of non-insertions indicative of essential domains. Using this
method, we have analysed sequence data from a library of mu-

tants of M.tuberculosis bacteria and found high concordance
with previous results.
The key insight in our method is the use of the Gumbel dis-

tribution to assess the statistical significance of runs of
non-insertion that are significantly longer than expected, and,
therefore, indicative of essential regions. By highlighting these

essential regions, our method can help identify essential domains
within genes that might otherwise be missed by characterizing the
proportion of insertions alone. An approach based on analysing

the size of insertion gaps was suggested by Christen et al. (2011);
however, they used a simpler exponential model for assessing
statistical significance. Using our method, we found multiple

genes with essential domains that match Pfam predictions of
domains, and whose essentiality is supported in the literature

(e.g. Rv0018c and Rv3910). Moreover, because our method de-
pends on consecutive sub-sequences of TA sites lacking inser-
tions, and not on the simple presence or absence of insertions

within a gene, our method is not sensitive to insertions at the N-
or C- terminus of a gene, which essential genes have been shown
to occasionally tolerate (Akerley et al., 1998; Christen et al.,

2011; Smith et al., 1996).

Although previous analyses have used deep-sequencing data

to determine essentiality, these have relied on ad hoc criteria to

ignore insertions at the N- or C- terminus or have made assump-

tions about parameters to quantify the confidence of their essen-

tiality predictions. However, by using a Bayesian statistical

framework, our method can simultaneously estimate model par-

ameters and posterior probabilities of essentiality without requir-

ing a priori estimates of these unknown variables.
Although our method can successfully determine regions in

the genome that contain unusually long gaps lacking any inser-

tions, it does not take the number of reads observed at each site

into account (i.e. read counts). Our binary interpretation of the

insertion data is based on mere presence or absence of reads, and

it ignores any potential information that the number of reads

mapping to a particular site might bear. An alternative approach

based on quantifying read counts within genomic regions might

yield biologically relevant information on essentiality. For

example, in another article (Zhang et al., 2012), a model was

developed that calculates significance scores for sums of read

counts at TA sites using a non-parametric test. This approach

yields qualitatively similar results to our model in terms of which

genes are classified as essential and non-essential. One advantage

of an approach based on read counts is that it could potentially

detect genes whose disruption leads to growth defects, in that

slower-growing mutants might produce fewer (but non-zero)

read in a disrupted gene compared with the expected value.

This was exploited to infer genes that play a role in cholesterol

catabolism by Griffin et al. (2011). On the other hand, a single

overamplified TA site in a region (with an excess of reads be-

cause of polymerase chain reaction bias) could lead to misinter-

pretation, whereas our model would be less sensitive to this kind

of noise.

The method we have presented can be used to assess essenti-

ality of genes, as well as intergenic (e.g. regulatory) regions and

assign statistical confidence scores, in any organism, provided a

transposon mutant library can be constructed and sequenced.

Although mutant libraries analysed were constructed using the

Himar1 transposon, this method could be used to analyse

libraries constructed using the Tn5 transposon, where every

nucleotide is a possible insertion site (Langridge et al., 2009).

By sampling the probability of non-insertion from its posterior

distribution, we can calculate estimates of essentiality for a

diversity of mutagenesis experiments.
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