
Multi-Agent Belief Reasoning in a First-Order
Logic Back-Chainer

Technical Report

Arnold Binas and Thomas R. Ioerger
{a0b1767, ioerger}@cs.tamu.edu

September 14, 2004

Abstract

This report gives a brief overview of and a few pointers on belief
reasoning for multi-agent systems. The modeling of beliefs is usually
done in terms of modal logics which are fairly costly to reason in. We
introduce our novel, more practical approach to belief reasoning in a
first-order back-chaining system such as Prolog. At the end of the
report, we justify the approach by relating some of its properties to
those of weak-S5, a common modal belief logic, before concluding with
a real-world example illustrating the approach.

1 Introduction

Reasoning about other agents’ beliefs is widely recognized as an im-
portant necessity in multi-agent systems. The motivations for such
a capability are fairly obvious. Knowing or reasoning about others’
beliefs can benefit an agent both in competitive and cooperative envi-
ronments. In competitive environments, knowledge about the beliefs
of competitors enables an agent to anticipate their actions, which, in
turn, helps it in determining its own actions. In a cooperative en-
vironment, anticipating teammates’ actions can save communication
time and enhance collaboration [5, 8].

A good amount of work has been published on belief reasoning for
multi-agent systems. However, the vast majority of this work models
beliefs in modal logics, which are very powerful and expressive but
at the same time very costly to reason in. For example, Halpern and
Moses [3] show that determining entailment even in S5, a common
modal logic for knowledge, has PSPACE-complexity. Two prominent
examples of work modeling belief in modal logics are [2] and [6]. In [2],
Cohen and Levesque develop a model of intention based on two sep-
arate modalities, beliefs and goals. The authors define the intentions
of an agent in terms of its persistent goals and persistent goals in
terms of its beliefs and goals. In [6], Rao and Georgeff introduce a
full belief, desire, and intention (BDI) architecture based on three dis-
tinct modalities. In this context, desire is synonym for goal. Rao and
Georgeff describe a formalism that enables agents to reason about the
future via a branching model of time. For the abovementioned reasons
of complexity of contemporary techniques, we propose a practical ap-
proach to belief reasoning that, at the expense of some expressiveness,
enables agents to efficiently reason about other agents’ beliefs.

In this report, we will introduce our approach to approximating
belief reasoning in a first-order logic back-chaining system and demon-
strate its usefulness. We then discuss how beliefs are commonly rep-
resented in a modal logic and tie this approach to our representation
before formally establishing the properties of our approach. A more
complex example of belief representation and reasoning in the new
approach and a summarizing discussion conclude the report.

2 Belief Reasoning in FOL

In this section, we describe an approach to practical belief reasoning
via back-chaining in first-order logic. The approach is motivated by
the complexity of conventional belief reasoning based on modal logic.
In [3], Halpern and Moses show that deciding satisfiability of a modal
logic formula is NP-complete for a single agent and even worse for
multiple agents. We introduce our representation with the help of
some examples in Prolog, although, of course, the approach also works
in any other first-order back-chainer.

In order to reason about the beliefs of others from the perspective
of an individual agent, we must be able to specify the belief context
as well as the beliefs. The belief context refers to which agent’s be-

2

liefs are considered. Beliefs themselves are generally believed facts.
Believed rules are expressed as rules about believed facts in a certain
belief context. In Prolog, the belief operator is modeled as a predicate
with two arguments, the belief context and the belief itself. Rules
can operate within a context or bridge between contexts. The belief
context is specified as a list of agent identifiers in reverse order.

Let us discuss the details of the representation by the means of an
example. Consider the following Prolog statement.

bel([bill,steven], light on(kitchen)).

bel is the belief predicate, taking two arguments. The first is a list
specifying the belief context. The second is the believed fact, i.e. that
the light is on in the kitchen. So in this case, Steven believes that Bill
believes that the light is on in the kitchen, which is equivalent to the
following modal expression.

Bsteven Bbill light on(kitchen)

Note the reverse order of “believers” in the Prolog list specifying the
belief context. The reason for listing believers in reverse order is that it
is easy to extract the first member of a list, in our case the immediate
believer of the fact in the second argument of the belief predicate.
We are thus taking advantage of unification on the first argument and
Prolog’s list notation to extract a particular believer. For example,
[X|Y] unifies with [bill, steven] with X bound to bill and Y bound
to the rest of the list, in this case [steven].

Note how this representation enables one agent to model the men-
tal states of others. I.e., all facts and rules that one agent believes
another agent has in its knowledge base form a model of that knowl-
edge base as seen from the believing agent. Since each agent separately
reasons about its own and others’ beliefs, or models of their knowledge
bases, we need some way of referring to the owner of the knowledge
base, i.e. the agent that does the reasoning. This is accomplished by
using the special identifier self. For example, the agent believing p
would look like this:

bel([self], p).

while John believing that the agent believes p would be expressed as
follows.

bel([self,john], p).

3

So far, we are able to express facts that a certain agent believes,
or that it believes that another agent believes, etc. In order to reason
about these facts, however, we must also be able to represent believed
rules such as in the following example.

bel(X,P) ∧ bel(X,Q) ∧ bel(X,P ∧Q→ R) |= bel(X,R)

This turns out to be somewhat trickier since we cannot wrap the bel
operator, represented as a predicate, around a Prolog rule and still
expect Prolog to do the inferences within a certain belief context.
The following pseudo Prolog statement illustrates this observation.

bel([bill], (r :- p, q)). % not a valid Prolog statement

The specific rule that p and q imply r can clearly not be placed in-
side the argument list of the bel predicate. To see how we can get
around this dilemma, reconsider the following simple rule from the
above example.

P ∧Q→ R

If an agent believes this rule to be valid, it should be able to in-
fer believing R when it believes both P and Q. It turns out that
we can distribute the belief predicate over implications, conjunctions,
and arbitrary combinations thereof. In our example, we arrive at the
following rule, solving our dilemma with rules embedded in a Prolog
predicate.

bel(X, r) :- bel(X, p), bel(X, q)

where X is a list of agents. We will formally show in Section 4 that
this rule linking different beliefs in fact amounts to believing a rule
itself for practical applications. For now, we will rely on our intuition
to see why this works by looking at the inference process in the follow-
ing way. While with one belief operator wrapped around the whole
rule, any inferences would be made within a certain belief context,
distributing the operator over the rule can be thought of as the in-
ference being made separately and the result being placed back into
the original belief context. Note that by using the variable X for the
belief context, the rule above becomes common belief, i.e. everybody
believes that P ∧Q→ R and everybody believes that everybody else
believes that P ∧Q→ R, etc. At the same time, it becomes common
knowledge that everybody believes P ∧ Q → R, etc. In addition to
enabling the expression of common rules within a given context, this

4

technique also opens a way to reason across different belief contexts.
For example, as the self agent we might think that John considers us
to be very trustworthy and therefore believe that John believes every-
thing that we believe he believes we believe. In our approach, this can
be expressed as the following Prolog rule. Recall that belief contexts
are given in reverse order in the Prolog lists.

bel([john,self], p) :- bel([self,john,self], p).

In the following, more complex example, the inference crosses mul-
tiple believe contexts.

bel([X|Y], light on(kitchen)) :-

bel([X|Y], in(X, kitchen)), bel(Y, light on(kitchen)).

To illustrate, let us look at the following instantiation of this rule
(though it would, of course, rarely be stated like this in a knowledge
base). a believes that b believes that c believes the light is on in the
kitchen if a believes that b believes that the light is on in the kitchen
and that c believes that it is in the kitchen.

bel([c,b,a], light on(kitchen)) :-

bel([c,b,a], in(c, kitchen)),

bel([b,a], light on(kitchen)).

Note that the reverse order of belief context members is essential to
being able to express such rules. In the above example, we need to
exclude c from the belief context in one occasion, which we can do by
unifying [X|Y] with [c,b,a] and extracting c as X. Extracting c by
itself would not have been possible by expressing the chain of believers
in their original order [a,b,c].

We are now in a position to express beliefs in different contexts
and reason about them. We can also reason across different belief
contexts. In reasoning about beliefs, however, it is important that we
can distinguish between believing something, say p, to be false and
not having a belief about p at all. The latter case amounts to p being
unknown to an agent. In Prolog, a query about the negation of a fact
succeeds if the fact is not in the knowledge base. I.e., the absence of
a fact is treated as the fact being false. Intuitively, one could regard
the absence of a fact either as it being false or unknown. In our rep-
resentation of beliefs, we need to be able to distinguish between these

5

two cases since there will be many situations where one agent simply
has no information about what another believes. Therefore, we can-
not simply rely on Prolog’s default. To better see why, consider the
following query, assuming that the knowledge base does not contain
the fact bel([john], p).

| ?- not bel([john], p).
yes

This query succeeds in Prolog. But what does this result mean? It
means that John does not believe p but does not say anything about
whether John believes p to be false or whether he just does not know
the state of p, i.e. regards it as unknown. To solve this problem, we
propose two special functions and a default rule. First, we introduce
a function false and a function unk for unknown. These functions
are to be used within a belief context as in the following example.

bel([bill], false(p)).

bel([bill], unk(q)).

The default rule achieves a similar behavior within belief contexts as
Prolog’s treatment of false facts and looks as follows.

bel(X, false(Y)) :- not bel(X, Y), not bel(X, unk(Y)).

Or in English, everything within a certain belief context is regarded as
believed false if it is neither believed nor explicitly believed unknown
in that context. Therefore only unknown facts have to be explicitly
stated; beliefs that a fact is false are derived from the lack of explicit
belief and unknowness. It could, of course, also be done the other
way around, with “false” being explicit and “unknown” the default, if
desired.

3 Modal Logic for Belief

In this section, we briefly introduce the commonly taken approach of
modeling agents’ beliefs in a modal logic. We first review the basics
of modal logics, their axiomatizations and semantics, before drawing
the connection to belief reasoning.

6

3.1 Modal Logic

Modal logics operate on top of standard propositional or first-order
logic by introducing one or more modal operators. We will discuss nor-
mal modal logics, on which most modal logics are based. The syntax of
normal modal logic is the syntax of its underlying logic (propositional
or first-order) plus a few rules to define the syntax of modal opera-
tors. If φ and ψ are formulae (in the sense of the underlying logic),
then so are ¬φ, φ ∨ ψ, �φ, and ♦φ. The symbols � and ♦ are read
necessarily and possibly, respectively, and are the modal operators.
We will see later that one can be defined in terms of the other and
there is therefore only one unique modality in normal modal logics.
The semantics of modal operators are captured in the possible-worlds
model first introduced by Hintikka in [4]. In possible-worlds seman-
tics, a state is characterized by a number of accessible possible worlds.
Each such world represents a state of the propositional (or first-order)
formulae in the theory. What propositional states (worlds) are acces-
sible then determines the truth value of the modal formula. What
kinds of worlds are accessible, in turn, depends on the current state as
determined by the interaction of all facts and rules in the knowledge
base.

We are now ready to define the semantics of the necessarily and
possibly operators. The formula �φ is true if and only if φ is true in
all accessible worlds given the current state. Or, more formally,

〈M,w〉 |= �φ if and only if ∀w′ ∈W if (w,w′) ∈ R then 〈M,w′〉 |= φ,

where M is a model, w and w′ are worlds, W is the set of all pos-
sible worlds, and R is the accessibility relation of the � operator [7,
page 272]. For example, �raining is true iff it is raining in all acces-
sible possible worlds. As mentioned above, what worlds are accessible
depends on the current state of the world. Likewise, the formula ♦ψ is
true if and only if ψ is true in at least one accessible world in the cur-
rent state. Now we can actually see how one of the two normal modal
operators can be defined in terms of the other. Consider a situation in
which ♦φ is true. That is, in some, but not necessarily all, accessible
worlds, φ is true. Another way of describing the same situation is to
say �¬φ is false or ¬�¬φ is true, leaving room for accessible worlds
in which φ is true. Therefore we can write

♦φ⇔ ¬�¬φ,

7

which is equivalent to the statement

�φ⇔ ¬♦¬φ.

Properties of the accessibility relation correspond to axioms that
are an alternative way of stating the characteristics and effects of the
modal operators. Let us look at five axioms, any combination of which
can be assumed for a normal modal logic (Table 1).

Table 1: The five axioms of normal modal logics

Name Axiom Accessibility Relation Property

K �(φ→ ψ) |= (�φ→ �ψ)
T �φ |= φ Reflexive
D �φ |= ♦φ Serial
4 �φ |= ��φ Transitive
5 ♦φ |= �♦φ Euclidean

As stated above, each axiom corresponds to a property of the accessi-
bility relation in the possible-worlds model. The correspondences are
listed in Table 1 along with the axioms and the reader can convince
herself or consult more elaborate introductions to modal logics (such
as [1]) to see why these correspondences are true.

3.2 Knowledge and Belief for a Single Agent

Different combinations of these axioms give different modal logics.
The classic modal logic with the necessity and possibility operators
results from a combination of all five axioms, K, T , D, 4, and 5 and is
also known as S5. We will briefly examine this logic, as it and a weaker
form of it are of major importance to reasoning in multi-agent systems.
In S5, the � operator can be used as an operator knows, resulting in
a logic of knowledge (or epistemic logic) for an agent. In a logic of
knowledge, the ♦ operator has no defined meaning and we write all
occurrences of it in terms of the � operator as seen above. The first
axiom, K, now means knows (φ → ψ) |= knows φ → knows ψ. I.e.,
if an agent knows that φ implies ψ, then it automatically knows ψ if
it knows φ. In terms of our logic of knowledge, this, of course, makes
a lot of sense. The next axiom, T , is perhaps the most distinguishing
in our logic of knowledge, as we shall see in a moment. It states that

8

Kφ |= φ, or if an agent knows φ then φ must be true. We would not
call it knowledge if an agent could “know” something without it being
true. The D axiom, in terms of only the � operator, states that the
agent cannot know not φ if it knows φ. In other words, the D axiom
ensures consistency of knowledge. Axiom 4, also known as positive
introspection, states that an agent who knows φ also knows that it
knows φ. Writing axiom 5 in terms of only the � operator (meaning
“knows” in our logic) results in the following statement.

not knowing ¬φ entails knowing that one does not know φ

In other words, an agent reasoning in S5 is aware of its own lack of
knowledge. This property is known as negative introspection. It should
be stated that S5, based on the five axioms mentioned, is equivalent
to KT5 as the D and 4 follow from the remaining three.

Modifying the axiom base slightly by removing the T axiom results
in a modal logic of belief (or doxastic logic). This logic, based on the
axioms K, D, 4, and 5, is called weak-S5 and resembles S5 in all ways
except that it does not enforce the T axiom. Recall that the T axiom
states that everything known must be true. In our logic of belief, the
� operator means believes and the T axiom would amount to saying
everything believed must be true. This is clearly not our perception
of belief, therefore the T axiom is not part of the belief logic. The D
axiom suits our purpose better, as it states that

Bφ |= ¬B¬φ

where we have again substituted the definition of the ♦ operator in
terms of the � operator (or B for “believe” in this case). Therefore,
in weak-S5, an agent is able to believe anything as long as it does not
also believe the opposite, ensuring the consistency of beliefs.

While the possible-worlds model along with its corresponding ax-
iomatization is a very elegant way of defining semantics for modal
logics, there is one important drawback known as the logical omni-
science problem. The problem is that agents employing modal logics
are implied to be perfect reasoners by the axioms, i.e. they are log-
ically omniscient [7, page 276]. For reasons discussed in more detail
in [7], a modal belief logic has the following disadvantages (from [7,
page 277]):

• agents believe all valid formulae;

• agents’ beliefs are closed under logical consequence;

9

• equivalent propositions are identical beliefs; and

• if agents are inconsistent, then they believe everything.

However, the modal logic weak-S5 is still a very useful approxi-
mation of belief as in practice. All agents are necessarily bounded
reasoners, which are limited to tractable inferences and therefore can-
not possibly be logically omniscient.

3.3 Knowledge and Belief for Multiple Agents

The modal logic for belief that we have built up in this section so far
is able to describe and reason about the beliefs of a single agent. In
a multi-agent system, however, we want to be able to reason about
the beliefs of several agents. A simple extension serves this purpose.
If there are n agents, we introduce n indexed belief operators Beli,
one for each agent (sometimes called a multi-modal logic). Each of
these operators has its own accessibility relation of possible worlds.
The resulting new logic is capable of reasoning about the beliefs of
as many agents as desired. Note that, again, the T axiom makes
an important distinction between a multiple-agent logic of knowledge
versus one for belief. Assuming the T axiom,

Ka Kb φ |= Ka φ,

results in agent a knowing everything it knows agent b knows. This
property is known as the transmissibility of knowledge. We clearly
do not want belief to be transmissible as well, meaning that agent a
would believe everything that it believes agent b believes. Therefore,
again, we do not assume the T axiom in our (multi-)modal logic of
belief.

In the following section we will justify our first-order logic approach
to belief reasoning, presented in Section 2 of this report, on the basis
of the weak-S5 modal logic for belief.

4 Properties of the Representation

In Section 2 we have used several properties of our belief representation
approach without proving their validity. In this section, we formally
derive these properties and discuss limitations of the representation.

10

4.1 Decomposition Lemmas

Properties of major importance are the decomposition lemmas that
enable us to express believed rules in Prolog:

BaBb . . . Bn(φ ∧ ψ) = Bel(X,φ ∧ ψ) |= Bel(X,φ) ∧Bel(X,ψ)
BaBb . . . Bn(φ→ ψ) = Bel(X,φ→ ψ) |= Bel(X,φ) → Bel(X,ψ),

where X is an arbitrarily nested belief context (believers a . . . n).
These are the very properties that enable us to model belief reason-
ing in a first-order back-chainer. We will prove these statements in
two steps. First, we will show that a believed conjunction or implica-
tion can be decomposed into a conjunction or implication about two
beliefs in a singular belief context. Then we will show how such a de-
composition can be applied iteratively to decompose believed rules in
arbitrarily nested belief contexts. Note that we look at Bel as a modal
operator in this treatment as our goal is to reduce it to a first-order
predicate for use in Prolog.

The decomposition of conjunctions in a singular belief context can
be verified via the possible-worlds model of the Bel operator’s seman-
tics. Note that we borrow Prolog’s list notation to specify the belief
context. While it is singular for now (i.e. one believer agent A, nesting
one level deep), this notation will help us in proving Lemma 3 when
we have to deal with arbitrarily nested belief contexts.

Lemma 1—Decomposition of Conjunctions in a Singular Be-
lief Context. Bel([A], φ ∧ ψ) |= Bel([A], φ) ∧Bel([A], ψ).

Proof. Let M be a model, w and w′ worlds, W the set of all possible
worlds, and RA the accessibility relation for agent A’s belief operator.

〈M,w〉 |= Bel([A], φ ∧ ψ)
⇔ ∀w′ ∈W · if (w,w′) ∈ RA then 〈M,w〉 |= φ ∧ ψ
⇔ ∀w′ ∈W · if (w,w′) ∈ RA then 〈M,w〉 |= φ ∧ 〈M,w〉 |= ψ

⇔ Bel([A], φ) ∧Bel([A], ψ).

Therefore, a conjunction believed in a singular belief context can be
decomposed into a conjunction of individual beliefs, each in the same
singular belief context.

11

We now need to verify that the same kind of decomposition also
holds for believed implications.

Lemma 2—Decomposition of Implications in a Singular Be-
lief Context. Bel([A], φ→ ψ) |= Bel([A], φ) → Bel([A], ψ).

Proof. This is the K axiom with A’s belief operator substituted for
the � operator: �(φ→ ψ) |= �φ→ �ψ.

By similar reasoning, the results in Lemmas 1 and 2 can be combined
to decompose complete believed rules consisting of conjunctions and
implications.

It remains to be shown how rules that are believed in nested belief
contexts can be reduced to the case of a singular context. As an exam-
ple, we will demonstrate a proof for decomposing the simple believed
rule φ ∧ ψ → χ. The result also holds for arbitrary combinations of
conjunctions and implications by similar reasoning.

Lemma 3—Decomposition of Rules in Nested Belief Con-
texts. Bel(X,φ ∧ ψ → χ) |= Bel(X,φ) ∧ Bel(X,ψ) → Bel(X,χ),
where X is a belief context specified by a chain of n believers.

Proof. This result is proved by induction on the depth n of the belief
context X.

Basis
Bel([A], φ ∧ ψ → χ) |= Bel([A], φ) ∧Bel([A], ψ) → Bel([A], χ),
where [A] is a belief context of depth n = 1, i.e. an individual agent.
The base case is true by a combination of the results in Lemmas 1
and 2 as discussed above.

Inductive Hypothesis
Assume the lemma holds for k − 1 believers (i.e. nesting k − 1 levels
deep). We now have to show that it holds for k believers.

Proof of Inductive Step
Let [H|T] be the nested belief context. Recall that the belief context
is specified in reverse order, i.e. H is the immediate and individual
believer of the rule and T is a list of the chain of all outer believers.

12

Then

Bel([H|T], φ ∧ ψ → χ)
= Bel(T,Bel([H], φ ∧ ψ → χ))
= Bel(T,Bel([H], φ) ∧Bel([H], ψ) → Bel([H], χ))
= Bel(T,Bel([H], φ)) ∧Bel(T,Bel([H], ψ)) → Bel(T,Bel([H], χ))
= Bel([H|T], φ) ∧Bel([H|T], ψ) → Bel([H|T], χ).

On line 4 we apply Lemmas 1 and 2, the equality on line 5 uses the
iductive hypothesis. Note that this argument also holds if the original
rule already is a rule about beliefs. In this case, the “new” believer H
is simply added to their respective belief contexts.

Conclusion
Therefore, a rule believed in a nested belief context can be expressed
as a rule about beliefs with equally deeply nested belief contexts.

4.2 Limitations

Of course, the representation of what is really a modal logic in a
first-order back-chainer also comes at some cost (due to the tradeoff
between expressiveness and tractability). First, the representation
is clearly only capable to handle conjunctive rules; the decomposition
lemmas cannot be applied to disjunctions like Bela Belb p∨q. Another
notable restriction of the approach is that negative beliefs can only
be represented in the deepest level of belief. To illustrate this fact,
consider the following expression.

Bela ¬Belb Belc φ

The above is not expressible in our approach due to the Prolog list
representation of nested believers. In our approach, negative beliefs
are expressed using the false function, which can only act on a fact
believed to be false. The belief context is captured in the list in the
bel predicate’s first argument and individual elements of it are thus
not accessible to negation. However, note that the deepest level of
belief can still be negated, i.e. a fact can be believed to be false in a
given belief context. According to our representation of belief contexts
introduced in Section 2, the Prolog statement

bel([c,b,a], false(p)).

13

denotes
Bela Belb Belc ¬p.

Also expressible in our representation is the following.

Bela Belb ¬Belc p.

a believes that b believes that c does not believe p. Recall that the
default rule we introduced in Section 2 states that everything neither
believed nor believed unknown is believed to be false. Therefore, we
can express the above example in Prolog as follows.

bel([c,b,a], unk(p)).

If a believes that b believes that c believes p to be unknown, then,
by the meaning of the unk function, a believes that b believes that c
does not believe p.

5 An Example

In this section, we illustrate our approach to practical belief reasoning
by the means of a more thorough example. The example demonstrates
the most important properties and capabilities of the representation
introduced in this report. It involves three agents who are situated in
a partially competitive and partially cooperative environment. The
following subsections discuss the situation first in general and then in
terms of concrete Prolog rules and queries demonstrating the workings
of belief reasoning in a first-order logic back-chainer.

5.1 The Situation

The example considered here is a give-and-go situation in a soccer
game. Two players of the attacking team, one of which is in possession
of the ball, have a defender of the opposing team between them and
the goal and want to shoot the ball into the goal (Figure 1). Depending
on what action the defender takes (guard the player without the ball
or attack the player with the ball), the attacking player with the ball
must either directly go for the goal and shoot or initiate the give-and-
go play by passing the ball to its teammate. Once the play is initiated
the player receiving the pass must either shoot or pass the ball back,
again depending on the actions of the defender.

14

Figure 1: A give-and-go situation in soccer

5.2 A Prolog Model of the Situation

We will use the functions in Table 2 to describe actions and states of
the world.

Table 2: Prolog functions for the soccer domain

Function Meaning

ball(X) X is in possession of the ball
move(X,Y) X moves towards Y
stay(X,Y) X stays by Y, i.e. no movement detected
shoot(X) X shoots the ball/moves to shoot
pass(X,Y) X passes the ball to Y

receive(X,Y) X receives pass from Y
do nothing(X) X does nothing

Any agent can access this information as it is assumed to be di-
rectly observable in the soccer domain. The states and actions listed
in Table 2 can therefore be considered to be common knowledge. As
discussed throughout this report, the predicate bel is used to describe
beliefs. We can now describe the formation of beliefs based on obser-
vations. For example, if Player A has the ball and the defender is
approaching him, Player A would form the following three beliefs,
where A and B are the attacking players and D is the defender on the
opposing team.

15

• A believes that D believes A is going to shoot (why else should
D approach him).

• A believes that B believes A is going to pass the ball to him (both
players assume they are playing the same play, i. e. give-and-go).

• A believes that B is ready to receive the ball from him (by the
same argument as above).

Note that each of these formed belief rules assumes common knowl-
edge of the state of the world and the actions by the other agents
involved. Figure 2 lists belief formation rules for all the possible sit-
uations described in Section 5.1. Note that, in this example, we are
not using the self identifier to refer to a specific agent doing the rea-
soning. Instead the variable A is used to keep the rules general. While
the variable name A is used to aid understanding of the rules from the
perspective of player A, through unification, the rules can be used by
any agent on the attacking team. The self reference is thus implicitly
used once unification ties a rule to its owner.

Figure 2: Prolog rules for belief formation
% D moves towards B and A has the ball

bel([D,A], pass(A,B)) :- move(D,B), ball(A).

bel([B,A], shoot(A)) :- move(D,B), ball(A).

bel([A], do nothing(B)) :- move(D,B), ball(A).

% D moves towards A who has the ball

bel([D,A], shoot(A)) :- move(D,A), ball(A).

bel([B,A], pass(A,B)) :- move(D,A), ball(A).

bel([A], receive(B,A)) :- move(D,A), ball(A).

% D stays by A and B has the ball

bel([D,A], pass(B,A)) :- stay(D,A), ball(B).

bel([B,A], do nothing(A)) :- stay(D,A), ball(B).

bel([A], shoot(B)) :- stay(D,A), ball(B).

% D moves towards B who has the ball

bel([D,A], shoot(B)) :- move(D,B), ball(B).

bel([B,A], receive(A)) :- move(D,B), ball(B).

bel([A], pass(B,A)) :- move(D,B), ball(B).

16

Once the agent has beliefs about what is going on as well as about
the other agents’ beliefs, it can take actions based on these beliefs. In
a more complex example, intermediate layers of deliberation could be
used, such as desires and intentions. We will, however, limit ourselves
to beliefs in this report. Consider Figure 3 which lists Prolog rules for
acting based on the beliefs just formed. The first rule, for instance,
states that A should shoot if it believes the following three things.

• A believes that D believes that A will pass the ball to B.

• A believes that B believes that A will shoot.

• A believes that B will do nothing.

Figure 3: Prolog rules for acting on beliefs
shoot(A) :- bel([D,A], pass(A,B)), bel([B,A], shoot(A)),

bel([A], do nothing(B)).

pass(A,B) :- bel([D,A], shoot(A)), bel([B,A], pass(A,B)),

bel([A], receive(B,A)).

do nothing(A) :- bel([D,A], pass(B,A)), bel([B,A],

do nothing(A)), bel([A], shoot(B)).

receive(A,B) :- bel([D,A], shoot(B)), bel([B,A], receive(A)),

bel([A], pass(B,A)).

The reader may have noticed that, in this example, the beliefs are
merely a layer between the observed world state and the actions taken.
However, this is exactly what beliefs are meant to be. In theory, every
world state could be directly mapped to corresponding actions. This,
of course, is practically impossible in large domains, and beliefs are one
approach to simplify the mapping from world states to actions by one
or more intermediate layers. Thus, while in our particular example
(due to its simplicity), beliefs do not seem to bring any gain over
mapping world states directly to actions, this is not true in general.
The purpose of this example is merely to show how belief reasoning
can be approached in first-order back-chainer such as Prolog.

17

5.3 Reasoning About the Situation

Having modeled the give-and-go situation of a soccer game in Prolog,
it is time to check if the belief-based decision making actually works.
As an example, let us look at the situation where A has the ball and
D moves towards B. From the Prolog rules developed above, A should
go for the goal and shoot. Asserting ball(a) and move(d,b) and
querying for shoot gives

| ?- shoot(X).
X = a ?
yes

This is what we expected. Behind the scenes, of course, the back-
chaining mechanism also derives other, intermediate facts along the
way. Let us follow Prolog along one branch in proving our query
shoot(X). Prolog starts by finding a rule with our query as the conse-
quence and tries to prove all of its antecedents. In our example, there
is one such rule.

shoot(A) :-

bel([D,A], pass(A,B)),

bel([B,A], shoot(A)),

bel([A], do nothing(B)).

When trying to prove the first antecedent, Prolog back-chains on the
following rule, whose consequence follows immediately from the two
facts we initially asserted.

bel([D,A], pass(A,B)) :- move(D,B), ball(A).

Thus, Prolog derived bel([D,A], pass(A,B)) as an intermediate
fact. The other antecedents of the shoot rule are proven similarly.

In more complex domains, it is often useful to infer new beliefs
from existing ones before deciding for an action. In the case where
Player D approaches Player A who has the ball, for example, Player A
might infer from his belief that Player B believes A is going to pass
the ball to him, that Player B also believes that A believes B is ready
to receive the pass:

bel([A,B,A], receive(B,A)) :- bel([B,A], pass(A,B)).

18

One can also imagine situations in which a soccer agent bases its
action or non-action on the believed falseness or unknowness of facts.
Consider Player A having the ball and Player B being guarded by the
defender. In this situation, Player B might have the belief that A will
not pass the ball to him, or

bel([B], false(pass(A,B))).

Player A, in turn, could be aware of B’s belief and basing his decision
not to pass, i.e. to shoot, on B’s belief that he will not pass the ball.
Such a rule would look as follows.

shoot(A) :- bel([B,A], false(pass(A,B))).

6 Conclusion

In this report, we have argued for the need of efficient belief reason-
ing techniques for practical purposes. We have introduced such a
technique for a first-order logic back-chainer and illustrated it by the
means of stand-alone rules and a more thorough, real-world exam-
ple in Prolog. Furthermore, we have shown where the ideas for the
approach come from by reviewing contemporary belief reasoning tech-
niques in modal logic. We also proved the most essential properties of
our representation as well as showed some of its weaknesses.

In the future, we will further investigate the potential of this tech-
nique and hope to be able to extend it by goals and intentions in
the spirit of BDI. Another area we plan to investigate with regards
to possibilities for further development of the approach is prioritized
belief updating in cooperative environments.

References

[1] Brian F. Chellas. Modal Logic: An Introduction. Cambridge Uni-
versity Press: Cambridge, 1980.

[2] Philip R. Cohen and H. J. Levesque. Intention is choice with
commitment. Artificial Intelligence, 42:213–261, 1990.

[3] J. Y. Halpern and Y. Moses. A Guide to Completeness and Com-
plexity for Modal Logics of Knowledge and Belief. Artificial Intel-
ligence, 54:319–379, 1992.

19

[4] J. Hintikka. Knowledge and belief: an introduction to the logic of
two notions. Cornell University Press: New York, 1962.

[5] Thomas R. Ioerger. Reasoning about Beliefs, Observability,
and Information Exchange in Teamwork. In 17th International
Conference of the Florida Artificial Intelligence Research Society
(FALIRS’04), 2004.

[6] Anand S. Rao and Michael P. Georgeff. Modeling rational agents
within a BDI-architecture. In Proceedings of the 2nd International
Conference on Principles of Knowledge Representation and Rea-
soning (KR’91), pages 473–484, 1991.

[7] Michael Woolridge. An Introduction to Multiagent Systems. John
Wiley & Sons, Inc., 2002.

[8] R.A. Volz Yu Zhang, T.R. Ioerger and J. Yen. Decision-theoretic
approach for designing proactive communication in multi-agent
teamwork. In ACM Symposium on Applied Computing, special
track on Agents, Interactions, Mobility, and Systems, pages 64–
71, Nicosa, Cyprus, March 14–17 2004.

20

