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Abstract
structure-function relationships have traditionally

Computational analyses of protein
been based on sequence homology, fold family anal-
ysis and 3D motifs/templates. Previous structure-
based approaches characterize and compare active
sites based on global shape and electrostatic prop-
erties. But, these methodologies are unable to
capture similarities between diverse active sites
that span multiple fold families despite catalyzing
the same reaction (convergent evolution). In this
work, we extend previous feature-based analyses of
active sites by defining a system of localized geo-
metric and electrostatic descriptors that identify
localized patterns of protein-ligand interactions.
Singular Value Decomposition is used to identify
linear combinations of features with mazrimum in-
formation content which are then used to compute
the class conditional probability density distribu-
tion of active sites using kernel density estima-
tion. We successfully tested our algorithm on a
database that contained examples of adenine, cit-
rate, nicotinamide, phosphate, pyridoral and ri-
bose binding proteins with over 75% accuracy.

Keywords: Active Site Analysis, SVD, Localized
Stereochemical Features

1 Introduction

The binding affinity between a protein and its cog-
nate ligand is determined by their steric and chemi-
cal complementarity [16], [19]. Yet, modelling bind-
ing site patterns and using them to predict cognate
ligands remains challenging. Amongst proteins that
catalyze the same reaction, there exists a large diver-
sity in sequence as well as architecture/fold. Auto-
mated function prediction algorithms that rely solely
on sequence homology or fold family similarity have
been unable to capture the diversity amongst ac-
tive sites. 3D templates/motifs ([1], [5], [22], [24])

that capture the patterns within the active site in
the form of identities and relative orientations of
the amino acids lining the active site pocket have
also had difficulties addressing this diversity. Vari-
ous studies, including those of adenine active sites
[8], the active sites of the DJ-1 superfamily (which
consists of kinases involved in the biosynthesis of
thiamine) [28] and the active sites of (-carbonic
anhydrase from diverse bacterial species [17], have
all shown that overall shape and electrostatic com-
plemetarity between active site and ligand is always
maintained despite substantial differences in specific
residue identities and placements.

An analysis of diverse active sites binding the
same ligand that goes beyond specific residue place-
ments and fold analyses is essential in order to bet-
ter understand and capture the underlying geomet-
ric and chemical interaction patterns. While com-
putationally rigorous Docking algorithms ([20], [13]
etc.) seek to identify high-affinity protein-ligand
complexes by maximizing favorable chemical inter-
actions and minimizes steric conflicts, they are not
always capable of identifying the correct substrate
since accuracy of force fields and scoring functions
used in these algorithms are still under debate.

A more computationally-efficient approach capa-
ble of capturing patterns within diverse active sites
binding the same ligand was developed based on the
extraction of descriptive features from active sites
[11], [4]. These features allowed for broader similar-
ities between diverse families of protein active sites
to be identified since they did not depend on pre-
cise location of residues within the active site. But
most of the previous feature-based approaches have
used globally computed features that do not cap-
ture the spatial variations of chemical and geometric
properties within an active site and therefore they
cannot be used with great accuracy to distinguish
between active site clefts belonging to two different
ligands. Additionally, previously used features com-



pletely lack geometric information (other than over-
all active site volume or depth) adding to the dif-
ficulties in their use for functional analyses. FFEA-
TURE [2], [3] incorporated some geometric infor-
mation into their analysis of active sites by defining
distributions of residue properties in radial shells to
capture the differences in protein microenvironments
between protein active sites and non-sites. They
succesfully used this system to identify common bio-
chemical properties within the serine protease active
sites and calcium binding sites.

In this paper, we extend previous feature-based
approaches and introduce a new system of fine-
grained features (shape and electrostatic descrip-
tors) that describe active sites, allow for substrate
recognition and discriminate between active sites
that bind different ligands. These features make
a compromise between highly-specific 3D templates
and general higher-level features. In particular, we
capture geometric information through features such
as the three eigenvalues of the coordinate variance-
covariance matrix (representing the three dimen-
sions of an active site), concavity, curvature and
finer-grained features representing a width-profile
across a profile axis etc. Additionally, we incor-
porate spatial distribution of electrostatic informa-
tion about the site in the form of features based on
pairwise distances between different types of groups
lining the site (positive, negative, hydrophillic, hy-
drophobic etc.). These features encode information
about local geometry and electrostatic properties
necessary for discriminating ligand-binding, without
relying on specific contacts at specific coordinates.
Singular Value Decomposition is used to identify
the linear combination of features that best capture
the similarity between diverse active site patterns
and reduce the dimensionality of the feature vec-
tors. The feature vectors in the reduced dimension
SVD space are then used to classify each active site
based on the ligand it binds. To this end, kernel
density estimation combined with Bayes Theorem
is used to find the posterior probability of the vari-
ous classes for each active site and the native ligand
is identified as the class with the highest posterior
probability. We show that our methodology is able
to identify the underlying binding pattern between
diverse active sites binding the same ligand without
relying on residue identities/placements, secondary
structure information etc when tested on 6 classes of
ligands: adenine, citrate, nicotinamide, phosphate,
pyridoxal and ribose. Our methodology recognized
the correct ligand with over 75% accuracy in each
ligand class.

2 Methods

In this section, we will describe the definition of the
active site surface, the active site characterization
based on a combination of global and local geometric
and electrostatic features and the algorithms used to
classify active site surfaces based on these features.
We will also discuss the methodology used to apply
the analysis to apo-proteins and will finally describe
the construction of the fragment database.

2.1 Molecular Surface and Active
Site Surface Generation

For each of the examples in our database, the pro-
tein coordinates were used to compute a molecular
dot surface similar to the solvent-accessible surface,
defined by Richards [23] and later implemented by
Connolly [6], using Calcsurf, an in-house program.
Calcsurf simulates the contacts a water molecule
(probe sphere of radius 1.4A) would make with the
protein molecule. Considering the radius of the wa-
ter molecule and the Van der Waals radii of protein
atoms, a grid representing the dot molecular surface
is drawn at a distance equal to the sum of these two
radii from the protein molecule. The grid points are
spaced 1A apart allowing a fine-grained representa-
tion of the solvent-accessible surface. In the case
of proteins where the active site is at the interface
of multiple chains, the molecular surface was drawn
over all the chains that participate in the active site
creation thus allowing for the analysis of such active
sites. This molecular surface was then used to de-
fine the active site surface for a protein as all those
atoms of the molecular surface which lay within 3A
of any non-H ligand atom. This active site surface is
used in subsequent geometric and electrostatic fea-
ture calculations.

S={a; | |lai — bj|| < 34;for any b; € Ligand} (1)

2.2 Feature Descriptions

The global shape features used to describe the active
site surface, S, are as follows:

e The eigenvalues of the coordinate variance-
covariance matrix are used to define the spread
of the pocket in three dimensions. The eigen-
values A1, A2 and A3 of the variance-covariance
matrix C' are calculated using the following
equation:

IC = \| =0 2)



The eigenvector corresponding to the largest
eigenvalue is defined as the direction defining
the profile axis, v and is used in localized
feature computations.

The local undulations in the surface are mea-
sured by computing the average distance be-
tween a active site surface atom and its clos-
est n protein atoms. To maintain locality n
is chosen to be a relatively small number, in
this case, 3. These local undulations are then
averaged to yield the surface concavity metric.
This metric allows us to distinguish between
an active site that is uniformly smooth and one
that has many local undulations on its surface.

Ma)= > -t @)

In equation 3, b; is the 4" closest protein atom
to active site surface atom a; and A = |S|.

The curvature of a pocket defined as the
spread of the pocket around its center of mass
(Cm(S)) (metric used in [25]).

K(s) = &2 (5)
where
A PR
,up — Zi:l HG“ZA Cm(S)” (6)
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are the mean and standard deviation of the
spread of the active site surface atoms around
the center of mass of the site and C,, (S) refers
to the center of mass of the active site.

3D moment invariants which are descriptors of
geometric shape that are invariant to rotation
and translation [26]. These invariants are cal-
culated as follows:

J1 = 200 + pozo + Hoo2
Ja = p200ft020 + H200f4002
+H0201002 — 310 — Mio1 — M1
J3 = H200/0201002 + 2/4110 4101 011
—NOOQﬂ%m - Hozoﬂ%m - N200H%11
(8)
where

Hpgr =Y ) Y (=T (y=7)"(z=2)" (9)

and where T, ¥ and Z are the coordinates of
the center of mass of the active site surface.

Cross sectional features are used for a finer-grained
characterization of the active site shape profile along
the profile axis. The axis acts as a local frame of
reference and places all the examples in canonical
positions and the features then capture the spatial
variations in shape.

e Cross sections of the pocket at equal spac-
ings (1A) from the center of mass, C,,(S),
and along the profile axis are considered. The
distance between any two active site surface
atoms in the cross-section is computed and av-
eraged. The cross-section of active site surface
S at distance r from the center of mass is de-
fined as the set of vertices:

Q(S,r) ={a; € Sla;p, L v} (10)

where v defines the profile axis and p, is a
point on the profile axis that is 7 A away from
the center of mass C,,(s); ||[pr — Cm(9)| = r.
Now the cross-sectional descriptor of the active
site surface at a distance r can be described as
the average pairwise distance among vertices
in the cross-section:

M,
Zi:l,j:l [

MT(MT‘ - 1)/2

Q(S,r) = (11)
for ¢;, ¢; € (S, r) where M, is the total num-

ber of active site surface atoms in the cross-
section Q(S, 7).

The electrostatic features capture the spread of
charge and hydropathy across the active site surface
based on the electrostatic potential across the active
site surface. The electrostatic potential at each ac-
tive site surface atom is based on the partial charges
of all the protein atoms. The partial charges used
were the same as the ones used by AMBER [7] in
their computation of the molecular mechanical force
field to compute interaction energies. The potential
on an active site surface atom a; due to a charge g;
placed at a distance d; from it is given by:

N
qj
i) = 12
V(as) ; Imeod; (12)

where N is the total number of protein atoms.
While, in this study we use the Coulomb equation



for potential calculations and do not consider the ef-
fects of solvent, this method can be extended using
Poisson-Boltzmann solvers such as Delphi [15].

Based on the atom types used in [18], each protein
atom was categorized as hydrophobic, hydrophillic
or charged. This definition was then extended to de-
fine the hydropathy of the active site surface atoms
based on the majority classification of its n closest
protein atoms. Once again, in order to capture lo-
cal information, a small number of closest neighbors
(n = 3), is used. The equation used to categorize
the hydropathy (Y) of an active site surface atom a;
is as follows:

Y (a;) = majority(Y (p;)),j=1:n  (13)

where p; is the jth closest protein atom to a; where
Y (p;) € {H, P, C}. The features used to capture the
chemical nature of the active site based on the previ-
ous definitions of charge and hydrogen bond propen-
sity are as follows:

e The global hydropathy features of the surface
S measuring hydrophobicity Yz, hydrophillic-
ity Yp and charge Yo are computed as follows:

23'4:1 Yz (aj)

Yx(5) = 2 (14)
Yolaj) = 1 ifY(a;) =X (15)
0 otherwise

Pairwise distances between positive, negative and
neutral potential points are calculated in order to
capture the spatial distribution of potentials while
maintaining rotation-invariance.

e Distribution of potentials across the active site
surface: These features calculates the percent-
age of the active site surface occupied by pos-
itive, negative and neutral potential points re-
spectively. The electrostatic nature of each ac-
tive site surface atom is defined as follows:

E(ai) = P if V(al) Z ¢1
(0] otherwise

where ¢; is set to 0.5 and ¢, is set to -0.5
based on empirical observations of the varia-

tion of potentials in the example active site
pockets. The electrostatic separation features
of the active site surface S measuring spread of
positive potentials Ap, spread of negative po-
tentials Ay and the spread of neutral poten-
tials Ao (by a given distance, r) are calculated

as follows:
Ax(S;r) = s Js “ricréz(j;‘;.;((aiaaj) (17)
where
ur(ai,aj)z\/12_7Tefé<rfl\arajn>2 (18)
ox(ai,a;) = 1 if E(a;) = E(a;) =X
0 otherwise

(19)
where X € {P, N, O} and A(S;r) gives the
average electrostatic property match between
all pairs of points on S (double integral) sepa-
rated by a given distance, r (weighted by the
Gausssian kernel u).

There are a total of 37 features: 16 geometric fea-
tures and 21 electrostatic features:

(A3, TG, Jh. 3, (1),
Yu,Yp,Yo,Ap(r2), An(r2), Ao(r2))
(20)

d(x) =

where r; = 2...94 and 7o = 4...9A.

2.3 Feature Selection and Active Site
Classification Using Kernel Den-
sity Estimation

Given a test active site whose cognate ligand is to
be identified, we first compute the features described
in Section 2.2. The posterior probability of each lig-
and class given the observed test vector is then com-
puted using Kernel Density Estimation. A Product
kernel of D single-dimensional Gaussian kernels [9]
is used to describe the spread of feature vectors in
each ligand class in our database. This probability
distribution is given by

N 1 D i
23:1 Rihohs.. [Tz K(—Ihf )

Pxpe(x|e) = N
(21)
x—a) 1 ,;(mfmj)z
K = 2 7 22
( o ) NCET (22)

where hg gives the optimal bandwidth of each of
the Gaussian kernels and is determined using hopr =
0.9AN~5 where N is the number of examples in
the class being considered. A is defined as A =
min(o, %) where IQR is the Interquartile Range
for that particular dimension and o is the sample

deviation.



Assuming equal prior probabilities for all ligand
classes, this probability density function can be used
to estimate the likelihood of a class C; given a test
feature vector (®(x)) as (P(C;| ®(x)). Each feature
vector is classified as belonging to the class with the
highest log likelihood. Additionally, this probability
can also be used as an indicator of confidence in the
class prediction based on the feature analysis.

Since all of the features need not have information
equally relevant to classification, it is necessary to se-
lect the most relevant features before estimating the
probability density function. In this study, we use a
standard machine learning approach, Singular Value
Decomposition [27], to reduce the dimensionality of
our feature vectors. SVD projects the feature vec-
tors onto the directions with maximum variability
within the data and helps to increase the accuracy
of classification of active sites.

Given a m X n matrix M that contains the fea-
ture vectors for the training data (such that m is the
number of features and n is the number of training
examples), the Singular Value Decomposition of M
is given by:

M=UxvT (23)

where U and V are unitary matrices that contain
basis vectors describing the principal directions of
variation in M. The matrix ¥ contains the singular
values of M which are weights for each of the di-
rections of variation (right singular vectors in V.)
The directions of variation are linear combinations
of features from the feature space. The projection of
training data onto SVD space helps to improve sepa-
ration among clusters belonging to different ligands
by emphasizing directions of high variation between
classes. Additionally, in this space feature vectors
that do not contain any information content have
very low singular values (close to 0) and can there-
fore be ignored. In our case, the transformed axes
corresponding to the top 6 singular values were cho-
sen for further computations.

The test example ¢ is projected onto the lower-
dimension SVD space as follows:

dsvd = qTUZ?l (24)

Estimating the probability density functions in this
reduced-dimension SVD space helps increase the
classification accuracy.

2.4 Analysis of Active Sites in Apo
Structures

The analysis described above depends on the knowl-
edge of the active-site shape based on ligand coor-

dinates. Since the ligand identity is unknown in the
case of a test active site, it is necessary to extend the
present analysis to clefts on the surface of an unli-
ganded protein. This extension will introduce slight
variations into the active site shape descriptors and
the feature-based analysis has to be robust enough
to deal with these inaccuracies. To increase the gen-
erality of our approach, we recreated our database
to contain uniform-radius active sites. These active
sites were created by first choosing a surface vertex
closest to the ligand center as the center of the active
site. All surface vertices within a chosen radius were
then considered to be part of the active site. The
choice of the radius depends on the statistical anal-
ysis of the fragment pockets in our database (anal-
ysis of the average distance of an active site vertex
from the center of the ligand). For example, the
average distance of an active site vertex from the
center of phosphate was found to be 4A while this
distance was 5A in the case of the other 5 ligands in
our database. This definition of the active site as a
pocket of a uniform chosen radius, introduces vari-
ations in active site shape absent from our earlier
definition of the active site pocket based on contact
with the ligand. These uniform-radius active sites
form the training set during future classification of
active sites of unliganded proteins.

2.5 Protein-Ligand Complex Database

A list of proteins complexed with the ligands of inter-
est (adenine, citrate, nicotinamide, phosphate, pyri-
doxal and ribose) were obtained from the PDBSe-
lect90 [14] list. This was done to ensure that the
dataset was non-redundant with sequences with at
most 90% identical. The third column in Table 1
shows the average homology of the examples of each
fold to the other members of the ligand family. The
average homology within each class is less than 30%
in all cases. The second column in Table 1 lists the
number of diverse fold families within each ligand
class (based on the SCOP fold classification by [21].
This table shows that we have a diverse dataset con-
taining examples belonging to various fold families
with very low sequence homology to each other. No
additional resolution thresholds were applied during
database creation (database consists of medium-low
resolution structures). In order to maintain class-
balance between our six ligand classes, 55 examples
of each class were chosen to form the database. The
one exception was the citrate dataset which contains
only 16 examples. The dataset contains only those
cases where the ligand is bound in the active site



and cases where the ligand was bound on the sur-
face (e.g. as solvent molecules) were excluded. The
protein atoms were separated from the ligand atoms
and water molecules were removed in each case and
care was taken to ensure that only a single active
site of a given protein-ligand complex was consid-
ered (when multiple chains of a protein all bound to
the same ligand).

3 Results and Discussion

In this section, we examine the ability of our local-
ized stereochemical features to discriminate between
active sites that bind adenine, citrate, nicotinamide,
phosphate, pyridoxal and ribose. These 6 ligands
were chosen since all of them display a wide varia-
tion in their active sites. We will also examine the
effects of using shape/electrostatic features alone as
well as the effects of the choice of a uniform-radius
for the active site definition on the overall classifica-
tion accuracy.

The variation of the largest eigenvalue for the six
different ligand classes seen in Panel (a.) of Figure 1
shows that the pyridoxal active sites have the largest
values ranging from 7.5 to 15.5A and the phosphate
active sites have the smallest values (3.5A to 8.5A).
The variation of the cross-sectional shape feature at
4A for the six ligands seen in Panel (b.) of Fig-
ure 1 shows that the phosphate active sites have the
largest variation in cross-sectional feature values at
4A while the citrate active sites show the least vari-
ation.

The efficacy of our feature-based method was
tested by a leave-one fold family out experiment.
In this experiment, each fold family within a ligand
class was used as test set and the rest of the exam-
ples were used a training data. For example, in order
to test the accuracy of features to classify the citrate
synthase family, it was completely removed from the
class of citrate-binding examples. This new subset of
citrate-binding sites was then used in training. The
probability distribution obtained from kerenel den-
sity estimates (based on feature-vectors in reduced
SVD space) were then used to classify citrate syn-
thase active site surfaces as citrate-binding. The ac-
curacy of this approach (using active site surfaces
defined by contact with known ligand) for all the 6
ligands is shown in the fourth column of Table 1.
The confusion matrix in Table 2 shows the misclas-
sification between classes. The greatest confusion is
between the citrate and the pyridoxal sites (13%),
perhaps because of the similarities in size. These
tables show that the classification accuracy of the
feature-based approach is greater than 75% in the

case of all the 6 ligands considered. In our dataset,
the phosphate binding sites stand out due to their
smaller size and this is reflected in the higher classifi-
cation accuracy (91%). The high accuracy (81%) in
the case of citrate binding sites is also encouraging
since this indicates the possibility of accurate classi-
fication even in the case of ligands with fewer known
binding patterns (only 16 examples as opposed to 55
examples of every other class). These results show
that despite the diversity in fold families as well as
low homology between the members within a ligand
class, the feature-based approach presented in this
paper is able to identify the commonality between
diverse active sites binding the same ligand. This
recognition of similar active sites therefore goes be-
yond similarity due to sequence homology or fold
family similarity.

Our algorithm uses novel local geometric descrip-
tors of active sites capable of capturing some spatial
information about the pocket shape and electrostatic
nature, and we have argued that it is essential to
combine fine-grained characterizations of both shape
and chemistry in order to truly capture binding site
patterns among diverse active site surfaces. This hy-
pothesis was tested by examining the classification
accuracy in two experiments, one using just the geo-
metric features and the other using just the electro-
static features to describe the active sites belonging
to various ligand classes (using known ligand coor-
dinates for active site surface definition). The sizth
and seventh columns of Table 1 show that in the
case of all ligand classes there is a 30% or greater
drop in classification accuracy when only geomet-
ric or only electrostatic features are used except in
the case of phosphate binding examples. When only
geometric features are used, there is a clear distinc-
tion between active sites that bind phosphate and
those that do not, leading to a 100% accuracy in
the classification of phosphate binding sites. Despite
this anomaly, these results clearly show that neither
shape nor electrostatic descriptors alone are suffi-
cient to describe the active site patterns and that
it is necessary to combine these features for an in-
creased accuracy in active site recognition.

Finally, as described in Section 2.4, uniform-
radius pockets were created for each of the 6 lig-
ands. The leave-one fold family out analysis was
performed on these pockets to verify that our algo-
rithm could accurately classify these feature vectors
(noisy but more similar to real-world application).
The fifth column in Table 1 shows that despite a drop
in classification accuracy with these uniform-radius
features, the feature-based approach is still able to
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Figure 1: The variation of the largest eigenvalue of the coordinate covariance matrix (panel a) and the variation of cross-
sectional feature at 4A for the uniform-radius active sites belonging to the six ligand classes.

capture the binding patterns associated with the 6
ligands with an accuracy greater than 60% in almost
all cases (for citrate binding sites the accuracy drops
to 56%). While this is a reduction in accuracy, this
accuarcy is still considerably higher than the ones
obtained with either shape or electrostatic features
considered alone.

4 Conclusions

This paper presents a new approach to active site
analysis that goes beyond traditional sequence ho-
mology/fold classification and 3D residue templates.
We use a feature-based analysis that extends pre-
vious global features with more fine-grained fea-
tures that capture spatial distribution of shape and
charge. There exists a great diversity amongst active
sites that bind the same ligand and it is necessary
to account for this diversity during functional anal-
ysis. The sterochemical properties captured by the
features are able to capture this diversity without
relying on any sequence or secondary structure in-
formation.

The use of fine-grained features accurately identi-
fied the native ligand for various active site surfaces
with upwards of 75% accuracy in almost all cases.
This accuracy was maintained even when all exam-
ples of the fold families of the test cases were absent
during training. This is promising since it allows
for the possibility of identification of heretofore un-
known binding folds using our methodology. This
study has also shown the importance of incorporat-
ing both electrostatic and shape features for active
site analysis.
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