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Sequencing of transposon-mutant libraries using next-generation sequencing (TnSeq) has be-

come a popular method for determining which genes and non-coding regions are essential for
growth under various conditions in bacteria. For methods that rely on quantitative comparison

of counts of reads at transposon insertion sites, proper normalization of TnSeq datasets is vitally

important. Real TnSeq datasets are often noisy and exhibit a signi¯cant skew that can be
dominated by high counts at a small number of sites (often for non-biological reasons). If two

datasets that are not appropriately normalized are compared, it might cause the artifactual

appearance of Di®erentially Essential (DE) genes in a statistical test, constituting type I errors

(false positives). In this paper, we propose a novel method for normalization of TnSeq datasets
that corrects for the skew of read-count distributions by ¯tting them to a Beta-Geometric

distribution. We show that this read-count correction procedure reduces the number of false

positives when comparing replicate datasets grown under the same conditions (for which no

genuine di®erences in essentiality are expected). We compare these results to results obtained
with other normalization procedures, and show that it results in greater reduction in the number

of false positives. In addition we investigate the e®ects of normalization on the detection of DE

genes.
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1. Introduction

Sequencing of transposon-mutant libraries using next-generation sequencing

(TnSeq) has become a popular method for determining which genes and non-coding

regions are essential for growth under various conditions in bacteria.1 Brie°y, a

transposon-mutant library is made by transfecting in a vector carrying a transpos-

able element, such as the Himar1 transposon,2,3 which can insert at random locations

throughout the genome (Himar1 can insert randomly at any TA dinucleotide). Each

mutant in the library has an insertion at a single location, but the goal is to construct

a saturating library where nearly all of the potential insertion sites are represented.
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When grown under selective conditions, mutants with transposon insertions in es-

sential regions will fail to survive. The abundance of the remaining insertion sites can

be determined by using PCR to amplify the junctions between the transposon

and the surrounding genome,4 and the position of each insertion can be e±ciently

determined using a next-generation sequencer such as an Ilumuna HiSeq. This ex-

periment typically yields several million reads, and the number of reads associated

with each TA site is tabulated. While TA sites in non-essential regions have sto-

chastically varying read counts, essential genes and non-coding regions (such as

tRNAs, rRNAs, and sRNAs) can be identi¯ed as regions where the TA sites are

uniformly devoid of insertions (i.e. read counts are 0).5–8

Determining which genes in an organism are essential is a di±cult problem. The

primary challenge is in lower-density datasets, where the fraction of TA sites

represented in the library could be in the 20–30% range. The lower the density of the

dataset, the more di±cult it is to determine whether a region lacks insertions due to

essentiality, or just due to random statistical °uctuations. In addition, not all TA

sites in an essential gene must lack insertions, as insertions can sometimes be tol-

erated in the N- or C-terminus of an essential gene, or in non-essential domains or

linkers between domains.9,10 For methods that rely on comparing read counts, the

variability of the data poses an additional problem.11

To address these challenges, several statistical methods have been proposed for

quantifying the signi¯cance of essential genes. One method ¯ts a Negative Binomial

(NB) distribution to the insertion counts in each gene, and uses this to determine a

p-value for signi¯cance of sparse regions.12 The length of \gaps" or consecutive TA

sites lacking insertions has also be used to quantify the signi¯cance of essential

regions using the Extreme Value distribution.13 Hidden Markov Models have also

been developed for analyzing TnSeq data.14,15 For comparison between growth

conditions, the sum of read counts in a gene has been compared between conditions

using a non-parametric test to identify regions with statistically signi¯cantly

depressed insertions.11

For methods that rely on comparison of read counts, proper normalization of

TnSeq datasets is vitally important. If two datasets that are not appropriately scaled

are compared, it might cause the appearance of Di®erentially Essential (DE) genes in

a statistical test, constituting type I errors (false positives). Several methods for

normalizing TnSeq datasets have been proposed. Most of these methods rely on a

linear transformation of the data, whereby the read counts in a dataset are scaled by

a constant factor. The simplest of these is to normalize datasets such that their read

counts have the same mean (e.g. by dividing by the total read count). Other methods

like Relative Log Expression (RLE)16 and Trimmed Mean of M-values (TMM)17

have been proposed, both of which were initially developed for normalizing RNA-Seq

datasets. These methods as well as others mentioned here are described in more

detail in Sec. 2.2. Another approach is to ¯t a NB distribution (or a Zero-In°ated

Negative Binomial (ZI-NB) to help account for an abundance of empty sites) and

scaling by the estimated means of the model. While scaling read counts linearly is the
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most common procedure, other methods which use a nonlinear transformation have

been proposed. These include Quantile Normalization (QNM)18 which estimates

empirical quantiles and then ¯ts the datasets to match, and simulation-based nor-

malization like the one used by ARTIST15 which simulates a \control" dataset with

similar statistical properties to an experimental dataset by sampling from a multi-

nomial distribution.

One signi¯cant limitation of methods that linearly transform datasets is that they

are susceptible to large spikes in read counts. Because these methods multiply read

counts by a constant scalar value, they cannot reduce large outliers without also

a®ecting small read counts which are more common. Even if the datasets share the

same mean, for instance, any skew in distribution of read counts itself would still be

present.

The distribution of read counts in most TnSeq datasets resembles a Geometric-

like distribution, in that read counts at most sites are small (i.e. 1–50), with a

(rapidly) decreasing probability of sites with large counts. Ideally, a normalization

method would improve detection of conditionally essential genes between conditions

by eliminating any skew and making the datasets more closely ¯t this Geometric-like

distribution.

In this paper, we propose a novel method that corrects for the skew of read-count

distributions observed in many TnSeq datasets by ¯tting them to Geometric dis-

tribution with a variable probability parameter modeled by a Beta distribution

(which we call a Beta-Geometric distribution). We show that the Beta-Geometric

Correction (BGC) procedure reduces the number of false positives when comparing

replicate datasets grown under the same conditions (for which no genuine di®erences

in essentiality are expected). These results are comparable to those results obtained

with other normalization methods, and we show the BGC procedure produces the

largest reduction in false positives. In addition we explore the e®ects of BGC on the

detection of DE genes.

2. Beta-Geometric Correction Normalization Method

The most common method for normalization is to divide the read counts at each TA

site by the overall number of reads in a dataset, which will factor out gross di®erences

due to the amount of data collected, analogous to the calculation of RPKMs in RNA-

Seq.20 A re¯nement of this approach that is speci¯c to TnSeq is to scale the read

counts to have the same mean over non-zero sites (which we call \Non-Zero Mean

Normalization" or NZMean), since di®erent datasets can have widely varying levels

of saturation, and distributing the same number of reads over fewer TA sites will

naturally in°ate the mean read count among them.

Despite these attempts at normalization, TnSeq datasets can still display quite

di®erent statistical patterns. In practice, some datasets appear \well behaved",

where the distribution of read counts tends to resemble a Geometric distribution

(where small read counts are most abundant, while sites with high counts are much
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rarer), while other datasets are skewed, with a few highly over-represented sites

dominating the read count distribution. One justi¯cation why the distribution of

read counts in (well-behaved) datasets might be expected to appear Geometrically

distributed could be due to competition between the mutants in the population of

clones in the library. The abundance of the di®erent clones in the population will

vary, re°ecting di®erences in growth rates. In the Motomura model of species

abundance,? competition leads to a geometric series that describes the abundance of

the species in the population, where the most ¯t individual has the highest abun-

dance, and less ¯t individuals have exponentially decreasing abundances, with the

majority of the population having very low abundance. TnSeq, by sequencing reads

from this culture, is in essence obtaining a sample of read counts in roughly the same

proportion as the underlying population. Some models of abundance of populations

use a NB distribution instead. However, because the Geometric distribution is a

limiting case of the NB distribution, standardizing to a Geometric distribution can be

seen as standardizing to an equivalent NB, with size parameter r ¼ 1.

The resemblance to Geometric distribution can be observed in four representative

datasets shown in Fig. 1(a). The skew away from an ideal Geometric, especially at

high counts, can be seen better on a log scale (Fig. 1(b)). These datasets are from a

Himar1 Tn-mutant library in M. tuberculosis, where A1 and A2 are two replicates

grown in vitro, and B1 and B2 representing in vivo datasets (where the library has

been passaged through a mouse). Each dataset has 2 to 5 million reads distributed

over 74,602 TA sites in the H37Rv genome. Datasets A1 and A2 appear to ¯t a

Geometric distribution more closely than B1 and B2, which show greater skew. This

can also be seen on a QQ-plot (quantile-quantile), where B1 and B2 veer farther

away from the 1:1 diagonal than the in vitro datasets. Indeed, B1 and B2 have

(a) (b)

Fig. 1. (a) Histogram of non-zero read counts obtained from M. tuberculosis Tn-mutant libraries. A1, A2
are replicates grown in vitro, and B1 and B2 are replicates grown in vivo. The black line represents a

Geometric ¯t. (b) Histogram of read counts on a log scale.
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extremely high counts at a few individual sites (with maximum read counts of 6009

and 16,146 respectively), compared to maximum counts of 1693 and 1175 in the A1

and A2 datasets.

The e®ect of the skew observed in datasets like B1 and B2 (which is a common

phenomenon in TnSeq) is that it can bias the statistical analysis of essential regions,

especially for methods that depend quantitatively on the read counts. Certainly, for

genes containing TA sites with high spikes in read counts, they will appear ex-

ceedingly non-essential, and it could make the gene appear DE in other conditions.

Simultaneously, the spikes in read counts at some TA sites will suppress the apparent

level of reads at other sites, potentially making them appear relatively more essential.

Figure 3 illustrates how the insertion patterns of a skewed dataset might look, before

Fig. 2. QQ-plot of the raw read counts for dataset B2, and the theoretical Geometric quantiles.

Fig. 3. Example of insertion pattern in before and after adjusting spikes in read counts. Unusually large
read counts can cause regions to appear to be DE, arti¯cially de°ating counts at other sites below the mean

(dashed line). Using a nonlinear transformation, large spikes are decreased while low counts are increased,

adjusting them to be more in line with each other.
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and after adjusting for the skew using the method proposed in this paper. Note that

due to the nonlinear nature of this transformation, high counts are signi¯cantly

reduced, while su±ciently small read-counts increase.

We propose a novel method for correcting for this skew in read-count distribu-

tions by ¯tting each dataset to a modi¯ed distribution called a Beta-Geometric

distribution (Eq. (1)), and using this to adjust the observed read counts so they more

closely ¯t a Geometric. The Beta-Geometric distribution is like a Geometric distri-

bution but with a variable, instead of constant, parameter p, where the variation in p

is modeled by a Beta distribution. This approach is based on the observation that

skewed TnSeq datasets actually appear to ¯t not a single Geometric with a single

Bernoulli parameter, p, but the weighted sum of multiple Geometric distributions

with di®erent values of p. As weights on p, we choose the Beta distribution, with

parameters � and � set so that the peak is around p. The Beta distribution has an

extra degree of freedom representing dispersion around p (see Fig. 4). This re°ects a

generative model in which individual clones in the Tn-mutant library have di®erent

growth rates, some growing slightly faster and some slightly slower than wild-type

cells, depending on the location of the transposon insertion in their genome. This

variability in growth rates will smear out the apparent abundance of read counts

after selection (i.e. several rounds of doubling in selective conditions). In this model,

the spikes in read counts would come from clones that had higher-than-average

growth rates, for whatever reason (biological or random):

pdf ðc; �; �Þ ¼
Z 1

0

Beta ðpj�; �Þ �Geometric ðcjpÞ dp: ð1Þ

(a) (b)

Fig. 4. (a) Example of a Beta distribution with � ¼ 0:05 and � ¼ 40. (b) Histogram of counts from a
regular Geometric distribution (p ¼ 0:05, black curve), and a Beta-Geometric distribution (� ¼ 0:05,

� ¼ 40, red).
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2.1. Parameter estimation

Given a set of read counts, Yi, at n TA sites for i 2 1; 2; 3; . . . ;n, we assume read-

counts are Geometrically distributed, with a variable parameter, p, governed by the

Beta distribution:

Yi � GeometricðpÞ;
p � Betað��; �ð1� �ÞÞ;

where the Beta distribution is parameterized using � and �, such that � represents

the mean of the parameter p, and � can be thought of as analogous to a \sample

size", e®ectively proportional to the inverse of the variance.

We seek to estimate the parameters � and � that minimize the sum of squared

errors (�) between the observed read counts and the quantiles of the distribution:

�ðX; �; �Þ ¼
XN

i

X 0
i � F �1ðqi; piÞ

� �
2

¼
XN

i

X 0
i �

logð�qi þ 1Þ
logð1� piÞ

� �
2

¼
XN

i

X 0
i �

logð�qi þ 1Þ
logð1� ���1

��2 Þ

 !
2

: ð2Þ

Here, X 0 represents the read counts in ascending order, F �1 represents the quantile

function of the Geometric distribution, and qi 2 ½0; 1� represents the quantiles.

To facilitate the parameter estimation, the parameter � is estimated as � ¼
ðPN

i XiÞ�1, which is the maximum likelihood estimate of the Geometric distribution.

The remaining parameter, � is found by determining the root of the gradient. The

gradient with respect to � is de¯ned as follows (derivation is included in Appendix A):

@�

@�
¼
PN

i 2ð2�� 1Þ logð1� qiÞ logð1� qiÞ �Xi log
���þ��1

��2

� �� �
ð�� 2Þðð�� 1Þ�þ 1Þlog3 ���þ��1

��2

� � : ð3Þ

The root of this gradient has an analytical solution:

� ¼
2� exp

PN

i
log 2ð1�qiÞPN

i
Xi logð1�qiÞ

" #
� 1

exp

PN

i
log2ð1�qiÞPN

i
Xi logð1�qiÞ

" #
þ �� 1

:

Once parameters � and � have been estimated, capturing the skew in the dataset, the

original read counts are corrected bymapping each of them to the equivalent quantile in

an ideal Geometric distribution as follows:

c 0 ¼ F �1ðQðc; �; �Þ; pÞ; ð4Þ
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where Qðc; �; �Þ is the quantile function (CDF, obtained by sampling) for the Beta-

Geometric, and F �1ðq; pÞ is the inverse of the quantile function for the Geometric

distribution.

2.2. Other normalization methods

In Sec. 3, we compare BGC to ¯ve other normalizations methods that have been

proposed in the TnSeq and RNA-Seq literature.16,19 Because of the similarities be-

tween RNA-Seq and TnSeq procedures, as well as their dependence on normalizing

count-data obtained from sequencing reads, methods used for normalizing RNA-Seq

data serve as a good starting point for comparison. We include two of the most

popular methods from the RNA-Seq, and as well as other methods more speci¯c to

TnSeq analysis. We brie°y describe each method before presenting results.

2.2.1. Relative log expression

One of the more popular normalization methods used in the RNA-Seq literature is

RLE. This normalization was proposed by Anders and Hubers and used in their

DESeq method for detection of di®erential expression.16 For each sample being

normalized, RLE calculates a size-factor meant to make datasets comparable re-

gardless of their sequence depth. The factors are calculated as follows:

ŝj ¼ median
i

kijQm
v¼1kiv

� �1=m ; ð5Þ

where sj represents the scaling factor for the jth sample, and kij represents the counts

at the ith position of the jth sample. The denominator is the geometric mean across

all m replicates, and the median over all sites (which is more robust to outliers than

the mean) is taken as a scale factor for each dataset. Read counts are then normalized

by dividing them by this size-factor, rendering them comparable.

2.2.2. Trimmed mean of M-values

Another normalization method used in RNA-Seq is the TMM method. This method

was developed by Robinson and Oshlack,19 and estimates log-fold changes in ex-

pression and absolute expression:

Mg ¼ log2
Ygk=Nk

Ygk 0=Nk 0
; ð6Þ

Ag ¼
1

2
log2ðYgk=Nk � Ygk 0=Nk 0 Þ; ð7Þ

where Ygk represents counts at the gth counts in the kth sample, and Nk represents

the total reads in that sample. The values of Mg are trimmed by 30% while the

samples of Ag are trimmed by 5%. Finally the normalization factors are calculated by
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taking a weighted mean of the remaining Mg (after trimming) as follows:

log2ðTMM
ðrÞ
k Þ ¼

P
g2G � wr

gkM
r
gkP

g2G � wr
gk

; ð8Þ

where

Mr
gk ¼ log2

Ygk=Nk

Ygr=Nr

ð9Þ

and

wr
gk ¼

Nk � Ygk

NkYgk

þ Nr � Ygr

NrYgr

: ð10Þ

2.2.3. Negative binomial

The NB distribution is frequently used to model count data,12,16 particularly for data

that may exhibit over-dispersion. TnSeq datasets, however, contain an overabun-

dance of sites with read counts of zero, representing either locations which are es-

sential for growth or which were not sampled in the construction of the mutant

library. Those libraries with a low saturation might make the mean read count look

arti¯cially low. Ideally, the mean read count would be calculated for all non-essential

sites, however it is di±cult to separate those sites which are essential from those sites

that are non-essential but missing from the library. One way to account for an

excessive number of zeros, and thus attempt to separate essential sites from non-

essential ones, is to use a zero-in°ated model. In order to examine the in°uence

of zeros in normalizing datasets, we compared against a (ZI-NB) model, which is a

2-component mixture model. The parameters were estimated by minimizing the log-

likelihood of the following model:

P ðXiÞ ¼ �þNB ðXi; r; pÞ; Xi ¼ 0; ð11Þ
P ðXiÞ ¼ ð1� �Þ � NB ðXi; r; pÞ; Xi > 0; ð12Þ

where � represents the probability of observing a zero outside of the NB distribution,

and r and p are the shape parameters of the NB distribution. For each sample, the

estimated mean of the NB distribution (i.e. pr
1�p) is used as its scaling factor.

2.2.4. Multinomial simulation normalization

Recently, Pritchard et al. proposed using simulation-based normalization to e®ec-

tively simulate a control sample with a multinomial distribution in order to mimic

the saturation (loss of library diversity) observed in the given experimental samples.

This simulation method was used as part of the ARTIST pipeline for analyzing

TnSeq datasets.15

Because this method is based on simulating samples from a multinomial distri-

bution, it is capable of generating an arbitrary number of control samples.
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To compare with the other normalization methods, we took the expected value of the

simulation as the normalized dataset. In addition, we simulated the dataset with the

highest density to match the dataset with the lowest density. The method used in our

comparison can be summarized brie°y as follows:

�C 0 ¼ E Multinomial Nx;
�C

Nc

� �� �
; ð13Þ

where �X is the vector of read counts for the input experimental sample, and �C is the

vector of read counts for the input control sample, and Nx ¼PiXi and Nc ¼
P

jCi,

which are the total number reads in the experimental and control datasets.

2.2.5. Quantile normalization

Another nonlinear normalization method we compare against is the (QNM) method.

This method was proposed as a way to normalize DNA micro-array data by Bolstad

et al.18 QNM normalizes datasets so that they share the same empirical distribution

of values. For a given p� n matrix of counts, Xi;j:

(1) Sort each column of X, individually, to get matrix S.

(2) Take the means across the rows of S and assign it to each element in the row to

get S 0.
(3) Get the normalized matrix, X 0, by rearranging each column of S 0 to have the

same ordering as X.

This method can be seen as a special case of the transformation x 0
i ¼ F �1ðGðYiÞÞ,

where the functions F and G are calculated empirically from the datasets being

normalized.

3. Empirical Comparison of Normalization Methods

A set of 32 pairs of TnSeq datasets was obtained from various libraries of M. tu-

berculosis Tn-mutants grown under di®erent conditions, with each condition being

tested in duplicate. The raw read counts were reduced to unique template counts

using sequencing barcodes,4 though we will continue to refer to them generically as

\read counts" throughout this paper. Each dataset had an average of 2.4M total

counts, with a range of 1.1–5.4M. Densities (i.e. fraction of TA sites represented in

each dataset) were in the range of 38% to 69%.

The BGC was applied to each of the 64 datasets (followed by NZMean normal-

ization). As an example, Table 1 contains statistics for the original datasets A1, A2,

B1 and B2 (corresponding to the \in vitro" and \Trans02c" datasets among the 32

pairs), as well as the values of � and � estimated by the BGC method. The dispersion

parameter � is lower for the B1 and B2 datasets, consistent with the greater vari-

ability that is observed in those datasets. A QQ-plot of the corrected values for

dataset B2 is shown in Fig. 5, displaying a much better ¯t to the Geometric distri-

bution, with the skew removed (compare to Fig. 2).
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One empirical metric we can use to evaluate whether our correction method helps

is to compare replicate datasets. In two datasets selected from the same Tn-mutant

library under the same growth conditions, one would ideally expect no di®erences in

essentiality of genes. However, in practice, there is usually high variability observed

in TnSeq datasets, even between biological replicates. Any method for statistical

analysis of TnSeq data has to be conservative enough not to detect many DE genes

between replicates. Yet, when using a permutation test (described below) on mul-

tiple pairs of replicates, we often observe DE genes, in some cases far beyond what

would be expected from random statistical sampling di®erences. We attribute many

of these false positives to the skew inherent in individual datasets. Our goal in this

paper is to show that, by ¯tting each dataset to a Beta-Geometric distribution, we

can correct for the skew in read counts, and thereby reduce many of these false

positives. This enhanced normalization method could be applied to other TnSeq

analysis methods to improve the detection of statistically signi¯cant DE genes.

Table 1. Fitting of parameters for example datasets.

Data set Total reads Insertion density Mean count Max count � �

A1 3.12M 49.3% 84.7 1,693 0.0118 911.1

A2 1.93M 52.6% 49.2 1,175 0.0203 493.9

B1 2.78M 41.1% 89.8 6,009 0.0111 422.0
B2 3.65M 38.1% 128.4 16,146 0.0078 434.7

Fig. 5. QQ-plot of the raw read counts for dataset B2, and the Beta-Geometric variables obtained by

sampling the parameter p from a Beta distribution with estimated parameters � ¼ 0:0078 and � ¼ 434:7.
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3.1. Permutation test to identify conditionally essential genes

In order to evaluate the di®erential essentiality of a gene between two conditions,

possibly with multiple replicates of each, we use a non-parametric permutation test

on the corrected and normalized counts at TA sites within the gene. Brie°y, the

counts are summed over all sites in a gene and replicate to determine the mean in

each condition and then the di®erence is compared to background distribution of

means from 10,000 random permutations of the sites. The p-value is calculated from

the number of times the observed mean is greater than one of the samples.

Suppose we have m1 replicates (datasets) in condition A, and m2 replicates in

condition B. Let Cij be a ðm1 þm2Þ � n matrix of counts at each of n TA sites i

within the gene, for each dataset j:

� ¼ 1

njAj
X
j2A

Xn
i

Cij �
1

njBj
X
j2B

Xn
i

Cij: ð14Þ

Ten thousand random permutations of the counts in matrix Cij are generated, and

� 0 is calculated for each permutation. The p-value is estimated as the number of

times � > � 0 (or � < � 0 for negative di®erences).

3.2. Reduction in type I errors

To assess the impact of the di®erent normalization procedures when performing a

comparative analysis of TnSeq datasets, we compared replicate datasets against each

other. Because the datasets in each pair of replicates are selected under the same

condition, the expectation is that there should be no DE genes between them. A false

positive was de¯ned as a gene that had a p < 0:05, since no statistically signi¯cant

di®erences in essentiality are expected between replicates of the same growth con-

dition. Note that because of the large number of genes in the M. tuberculosis genome

(i.e. 3,989), the permutation test is expected to incorrectly reject the null hypothesis

on as many as 5% of the genes through chance alone.

Table 3 presents the number of false positives obtained by using the permutation

test after normalizing with the di®erent methods. Using NZMean normalization as a

reference, an average of 71.4 false positives is detected over the 32 pairs of datasets.

BGC reduces false positives in 22 out of 32 cases. In comparison to other methods,

BGC reduces the most false positives in 14.8 out of 32 conditions (fraction due to

ties), which is more than any other normalization method. The next best normali-

zation method was RLE, achieving the greatest reduction of false positives in 7.7

datasets. On average, BGC reduces the number of false positives the most, achieving

a mean reduction of 21.7 type I errors overall.

No method achieves a consistent reduction in the number of false positives on all

datasets. However, even though false positives are increased in some datasets, the

amount of false positives increased by BGC is generally small (i.e. average of 6.4). In

addition, most normalization methods tend to increase false-discoveries on the same

conditions, suggesting these conditions are problematic for most of the methods. For
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instance, on condition Trans01c, which was the condition that proved toughest for

BGC (increasing false positives by 23), most other methods increased false positives

as well. RLE increased false positives by 11, and TMM by 141. Only ZI-NB reduced

false positives by two.

Because of the way BGC corrects for the skew in datasets, it is most likely to have

a more substantial e®ect on those cases where there is a large skew between datasets.

Table 2 contains some statistics for the datasets for which applying BGC resulted in

the largest reduction in read counts (BXD04), and in vitro (where the false positives

were nearly unchanged). As can be seen, the condition on which BGC performed the

best showed a very high skew and kurtosis (third and fourth moments of read counts)

between its replicates, whereas the skew and kurtosis in the in vitro datasets were

much smaller by comparison. For comparison, the skew of a dataset ¯tting an ideal

Geometric distribution will be approximately 2.0 (depends slightly on the mean).

The skew in the in vitro datasets is quite close to this value, implying they are not

very skewed. By correcting the skew in datasets and adjusting them to a Geometric

distribution (with a variable parameter), the BGC will have more success in those

datasets that are more highly skewed. On those datasets where the read counts are not

skewed, BGC is expected to have less of an e®ect, but these are likely the datasets that

would bene¯t the least from normalization (as is the case for the in vitro datasets).

3.3. E®ect on detection of di®erential essentiality

So far, the previous sections have focused on the e®ects of BGC on reducing the

number of false positives when comparing replicates of the same condition (where no

true positives are expected). It is important, however, to study the e®ects of BGC on

detecting genes when the datasets are grown on di®erent conditions (and thus at

least some DE genes, or true positives, are expected). Determining the e®ects of

normalization on detecting true positives is complicated by the fact that it is di±cult

to determine a (complete) set of genes which are known a priori to be DE in the

conditions studied. This renders a proper analysis of the true-positive rate between

normalization methods prohibitively di±cult.

Instead, to study the e®ects of the normalization method on the comparative

analysis between conditions, each pair of replicates for all the in vivo conditions was

compared against the pair of replicates grown in vitro. This way we can get an idea of

Table 2. E®ect of skew on the change in the number of false positives (relative to

NZMean) after applying BGC, for three representative conditions.

Dataset Density NZMean Skew Kurtosis �False Positives

BXD04 replicate 1 43.8 51.5 44.8 3997.8 �287
BXD04 replicate 2 54.0 86.2 7.9 183.8

In vitro replicate 1 49.3 84.7 3.2 19.6 2

In vitro replicate 2 52.6 49.2 2.9 16.6

Trans01c replicate 1 58.3 37.8 7.3 164.4 23

Trans01c replicate 2 65.6 51.4 5.3 61.9
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how the normalization methods would a®ect the overall number of signi¯cant hits

(though we cannot say for certain whether this leads to more true positives or not).

Table 4 contains the total number of genes labeled as DE (relative to in vitro) after

normalizing with each of the procedures. DE genes were those which were assigned

an adjusted p-value of q < 0:05 (using the Benjamini–Hochberg correction for mul-

tiple comparisons). On average, the TMM method tended to predict more genes as

Table 3. Change in the number of type I errors relative to the Non-Zero Mean (NZMean) method. False

positives are de¯ned as genes with p < 0:05 under the permutation test between replicates of the same
condition. Methods marked with † have been normalized with the NZMean method after performing the

corresponding normalization. The normalization methods compared were Beta-Geometric Correction

(BGC), Relative Log Expression (RLE), Trimmed Mean of M-Values (TMM), Zero-In°ated Negative

Binomial (ZI-NB), multinomial simulation normalization (MSN), and Quantile Normalization (QNM).
Values which show the largest reduction in false positives for each condition are in bold. Mean reduction

and the number of times each method achieves the best correction are shown at the bottom (ties are

weighted by total number of methods with sharing score).

Condition (pair of replicates) NZMean �RLE �TMM �ZI-NB �MSN† �QNM† �BGC†

AJ 13 �2 1 2 0 1 �3
BL6 74 �20 �21 �12 1 �12 �25

BXD01 2 0 1 �1 1 1 0

BXD03 0 0 0 0 0 0 2

BXD04 535 �328 364 �142 2 �73 �287
BXD05 33 1 99 1 0 �1 13

BXD06 91 �4 82 �6 0 8 �10

BXD07 78 �17 �21 �7 2 �10 �42

BXD08 241 �75 �105 �42 �9 �52 �154
BXD09 6 0 11 0 0 0 �3

CAST 17 �3 �2 1 2 0 �3

CCcont 2 0 98 0 0 0 3
DS01 12 �2 14 0 �1 �2 �4

DS02 22 2 13 �1 1 �1 �1

DS04 49 3 79 2 3 2 �17

DS0c 42 �9 �1 �5 �1 �2 �15
GP01 74 �44 �41 �1 �4 �17 �46

In vitro 2 0 77 0 0 0 2

PWK 100 3 4 0 2 �3 �3

Trans01 32 �13 �1 �5 �6 �2 �13
Trans01c 62 11 141 �2 1 2 23

Trans02c 84 �37 �33 �11 �1 �12 �28

Trans03 46 1 101 �4 �4 �3 3

Trans03c 52 0 121 2 1 2 5
Trans05 142 �7 1 �5 �1 2 �19

Trans05c 30 3 64 4 1 2 12

Trans07 158 �11 43 �10 �1 �1 �61
Trans07c 70 �8 �4 �2 1 0 1

Trans09 32 2 27 �4 0 0 �1

Trans09c 78 �27 341 7 1 �1 �3

Trans11 22 �9 3 �6 1 0 �4
Trans11c 85 21 446 �5 4 �2 �18

Mean 71.4 �17.8 59.4 �7.9 �0.13 �5.4 �21.7

No. of Best N/A 7.7 0.2 4.5 2.2 2.5 14.8
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DE, with a mean of 406 DE genes, followed by RLE with a mean of 398. On the other

hand, Multinomial Simulation Normalization (MSN) showed a tendency to consis-

tently predict the least number of DE genes, predicting an average of 67 genes as DE.

The BGC method falls in between, predicting an average of 253 genes as DE.

To further explore the e®ect of normalizing with the BGC method, we plotted the

number of DE genes detected before and after applying BGC normalization (see

Fig. 6). A slight reduction in the number of DE genes identi¯ed is seen in most

conditions (possibly representing a decrease in the number of false positives obtained

Table 4. Number of genes classi¯ed as Di®erentially Essential (DE) by the permutation test

after applying the di®erent normalization methods. DE genes are de¯ned as genes with q <
0:05 under the permutation test between a pair replicates of the given condition and a pair

replicates grown in vitro. Methods marked with † have been normalized with the Non-Zero

Mean (NZMean) method after performing the corresponding normalization. The normalization

methods compared were Beta-Geometric Correction (BGC), Relative Log Expression (RLE),
Trimmed Mean of M-Values (TMM), Quantile Normalization (QNM), Zero-In°ated Negative

Binomial (ZI-NB), and multinomial simulation normalization (MSN).

# DE GENES

Condition (versus in vitro) NZMean RLE TMM ZI-NB MSN QNM BGC

AJ 441 486 652 436 37 436 431

BL6 383 323 249 303 282 367 280

BXD01 366 372 421 355 37 347 301

BXD03 330 432 355 321 11 330 281
BXD04 315 273 266 302 13 307 254

BXD05 308 381 315 301 38 306 248

BXD06 356 338 412 346 36 337 299
BXD07 301 388 315 298 38 299 281

BXD08 299 416 258 288 37 289 247

BXD09 329 535 320 338 43 326 317

CAST 460 478 819 461 36 461 466
DS01 387 553 400 381 43 384 363

DS02 379 654 371 367 37 382 338

DS04 336 334 511 315 35 334 235

DS0c 323 431 326 324 37 329 299
GP01 844 481 852 628 545 763 507

PWK 453 478 559 428 33 436 408

Trans01 307 268 423 286 43 308 109

Trans01c 36 61 44 38 37 35 64
Trans02c 398 290 253 306 284 380 287

Trans03 266 257 425 255 37 259 202

Trans03c 91 84 223 77 35 87 124
Trans05 283 841 351 277 35 274 200

Trans05c 149 1,208 833 86 37 152 272

Trans07 282 734 409 272 39 277 226

Trans07c 39 142 35 42 42 45 100
Trans09 524 278 477 446 3 497 137

Trans09c 24 34 72 27 40 25 74

Trans11 695 307 1,164 563 2 535 154

Trans11c 43 76 86 33 34 35 83
Mean No. of DE 325 398 407 297 67 312 253
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by correcting for the skew). This shows that the reduction in false positives between

replicates is not achieved at the cost of a dramatic reduction in overall DE genes

detected between conditions. However, when the number of genes classi¯ed as DE is

low (due to possible under-detection of true positives), the BGC procedure tends to

increase the number of DE genes predicted. On the other hand, when the number of

DE genes predicted is exceedingly high (> 500), BGC normalization signi¯cantly

decreases the number of DE genes predicted. This phenomenon suggests that ap-

plying BGC adjusts datasets so that they produce results that are less extreme in

terms of number of DE genes detected.

4. Discussion

Analysis of TnSeq data has become a valuable tool for determining DE genes.

However, the large amount of intrinsic variability that is observed in these datasets

(e.g. read counts) makes direct comparison between datasets problematic. Common

ways of normalizing the datasets have focused primarily on a linear transformation of

read counts between datasets,16,17 usually by making their mean read counts com-

parable. While important, normalization of the means alone is not enough to correct

for the large skew that is observed in some datasets.

Other nonlinear normalization methods have been proposed in the past to over-

come the limitations of scaling datasets by a constant factor.15,18 Indeed, the BGC

Fig. 6. Scatter plot of the number of the DE obtained with and without applying BGC. The solid black

line represents the identity line. Applying BGC results in a reduction in the number of DE genes identi¯ed
in most conditions, possibly representing a reduction in false positives. In addition, BGC produces results

which are less extreme, increasing the number of DE genes identi¯ed when this number is low and

decreasing the number of DE genes identi¯ed when it is very high.
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method is similar to QNM,18 except traditional QNM scales datasets together based

on an empirical distribution function, without making assumptions about the form of

the distribution. On the other hand, the simulation-based approach taken by

ARTIST is fundamentally di®erent.15 It attempts to simulate the e®ects of selection

on the control dataset, by sampling read counts from a multinomial distribution to

obtain a new, simulated, control sample that has approximately the same number of

reads and saturation.

We proposed the BGC method for adjusting datasets for comparative analysis.

This method showed the largest overall reduction in false positives out of all the

normalization methods studied. What sets BGC apart from most of the other

methods evaluated is the fact that it is a nonlinear transformation of the data that is

based on adjusting observed reads to an ideal distribution. It assumes that the skew

in read counts comes from dispersion in the parameter p underlying a Geometric

distribution. The skew is captured by ¯tting the data to a Beta-Geometric distri-

bution, which allows the parameter p of the Geometric distribution to vary according

to a Beta distribution. The original read counts are then adjusted back to an ideal

Geometric distribution by matching quantiles. This approach is non-linear, with

high-counts (spikes) being reduced and unusually suppressed counts increased. We

choose to correct read counts back to a Geometric distribution (with a variable

parameter), since such a pro¯le of abundances at di®erent TA sites (i.e. high pro-

portion of low counts, low proportion of high counts) would be expected from

sampling from a population of competing cells with a range of growth rates.

In addition to reducing false positives in replicate datasets from the same con-

dition, we examined the e®ects of applying BGC when comparing datasets of dif-

ferent conditions (where at least some true positives are expected). While it is

di±cult to say with certainty how the BGC method a®ects the detection of true DE

genes, we showed that in most cases it tends to decrease the number of DE genes

slightly, likely due to reducing false positives. As the overall reduction was relatively

small, this suggests that the reduction of type I errors that is seen when comparing

replicates of the same condition does not come at the expense of a large reduction in

the overall number of positives detected.

One potential limitation of BGC, along with most of the normalization methods

examined here (except ZI-NB and MSN), is that they do not take the saturation

(or density) of the data into account when adjusting reads. Accounting for di®erent

saturation levels is especially important when comparing datasets from di®erent

libraries, where saturation levels can be signi¯cantly imbalanced due to di®erences in

biological selection. ZI-NB and MSN take into consideration the di®erences in sat-

uration of the libraries in their own ways (ZI-NB by using a mixture model to allow

the NB distribution to include some, but not all, empty sites; and MSN by adjusting

the saturation of the control dataset). Despite this limitation, BGC actually pro-

duces a larger reduction in false positives compared to ZI-NB and MSN. This sug-

gests that correcting for the skew in datasets may be more important for reducing

false positives than accounting for the di®erence in saturation, particularly for the
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well-saturated datasets such as those examined here (with insertion densities in the

range of 38% to 69%). A future direction for this work could be to modify BGC so

that it takes into consideration the di®erences in saturation levels between datasets.
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Appendix A. Derivation

To minimize the SSE, we ¯nd the root of the derivative of SSE with respect to �:
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