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High-throughput computational methods in X-ray protein crystallography are indispens-
able to meet the goals of structural genomics. In particular, automated interpretation
of electron density maps, especially those at mediocre resolution, can significantly speed
up the protein structure determination process. TEXTALTM is a software applica-
tion that uses pattern recognition, case-based reasoning and nearest neighbor learn-
ing to produce reasonably refined molecular models, even with average quality data.
In this work, we discuss a key issue to enable fast and accurate interpretation of

typically noisy electron density data: what features should be used to characterize
the density patterns, and how relevant are they? We discuss the challenges of con-
structing features in this domain, and describe SLIDER, an algorithm to determine
the weights of these features. SLIDER searches a space of weights using ranking of
matching patterns (relative to mismatching ones) as its evaluation function. Exhaustive
search being intractable, SLIDER adopts a greedy approach that judiciously restricts
the search space only to weight values that cause the ranking of good matches to change.
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We show that SLIDER contributes significantly in finding the similarity between den-
sity patterns, and discuss the sensitivity of feature relevance to the underlying similarity
metric.

Keywords: Protein structure determination; X-ray crystallography; pattern recognition;
case-based reasoning; nearest neighbor learning; feature relevance.

1. Introduction

X-ray diffraction methods account for over 80% of proteins whose three-dimensional
(3D) structures have been determined.1 However, high cost and low throughput of
X-ray crystallography and other experimental methods (like NMR) result in solving
only a small fraction of the new proteins being discovered. In fact, the ratio of
solved crystal structures to the number of discovered proteins is about 0.15.2 At
the same time, DNA-sequencing projects are producing an overwhelming amount of
sequencing information; keeping up the protein structure determination rate with
this growth of genomic information has become a major challenge. The structural
genomics initiative3 is a worldwide effort aimed at solving protein structures in
a high-throughput mode, primarily by X-ray crystallography and NMR methods.
There is also a surge of interest in predicting structure through ab initio methods
(based directly on physical principles) and comparative modeling techniques (based
on comparison to known structures).

High-throughput structure determination requires automation to reduce human
intervention, especially in bottleneck steps. One such step in X-ray crystallography
is the electron density map interpretation, where crystallographers have to rec-
ognize 3D patterns of electron density around the protein, and fit amino acids
into the density patterns in the right orientation (Fig. 1). Although crystallog-
raphers use molecular graphics programs, the process is nonetheless tedious and
time-consuming, especially if the data is noisy or at low resolution.4 Map interpre-
tation may take of the order of weeks or months, and can often be subjective in
nature.5,6

TEXTALTM automates this process of map interpretation — it takes an electron
density map as input and outputs a model (atoms and their 3D coordinates) of the
macromolecule in a few hours. One of the salient features of TEXTALTM is that it
has been designed to work even with average or poor quality density data (in the
2.5–3.0Å resolution range). Existing density interpretation programs7–10 typically
require good quality data and/or human intervention.

TEXTALTM uses case-based reasoning11,12 and nearest neighbor learning13 to
recognize patterns of electron density (in small spherical regions in a density map)
by comparing them to existing patterns whose structures are known and stored in
a database. Matching patterns are identified in the database, corresponding solved
local structures are retrieved and assembled together to model the protein incre-
mentally, guided by domain knowledge, either explicitly stated (like typical stereo-
chemical constraints) or implicitly encoded in the solved structures.
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Fig. 1. Example of electron density around a fragment of a protein structure. The fragment shown
consists of nine residues (144-122) of a β-strand in 1HQZ, an actin-binding protein from Yeast.
The electron density map has been calculated (back-transformed) from the solved structure at
2.8 Å, and is shown at a contour level of ∼1σ. This stereo view has been made with Spock, a
graphics program written by Dr. Jon A. Christopher (http://quorum.tamu.edu).

A salient characteristic of nearest neighbor learning and case-based reasoning
methods is their sensitivity to the distance (or similarity) metric being used to com-
pare patterns. One of the key requirements for accurate determination of similarity
is the correct choice of features to be used in the metric. In TEXTALTM, 76 numeric
features were manually extracted based on domain knowledge, as well as intuitions
on what would be relevant in discriminating electron density patterns. But not all
the features may be relevant, in all situations. Irrelevant features effectively intro-
duce noise in the data, and can mislead the matching of patterns. In this paper, we
focus our attention on the challenges of designing features in this domain, the impor-
tance of determining relevance of features, and the methods we use to address these
problems in TEXTALTM. We present SLIDER, an algorithm that assigns numeric
weights to features such that the similarity measure is improved, which leads to
better case retrieval and ultimately enhanced model-building.

Feature selection and weighting can be viewed as a search over a space of weight
vectors, with an evaluation function to assess each weight vector. In SLIDER we
propose the following evaluation function: given an instance (i.e. a spherical region
of electron density), we first find a matching region and a set of mismatching ones
(using an independent, objective measure). Then we evaluate how well a given
feature-based distance measure (that uses the weights) ranks the match relative to
the mismatches. This is done for a set of instances, and the average ranking of the
matches reflects how good the weight vector is.
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The space of weight vectors is very large, and an exhaustive search is clearly
intractable; even if we consider two possible weights (0 and 1) for each feature i.e.
it is either irrelevant or relevant, then there are 2n possible subsets of n features.
Therefore we search only those weights at which matching and mismatching pat-
terns switch as nearer neighbors to query instances. The evaluation function based
on ranking of matches will in fact change at those specific weights, and thus the
search becomes very effective. But the algorithm is greedy in that decisions are
based on finding the “optimal” weight of one feature at a time, which may lead
to solutions that are only locally optimal. Nonetheless, SLIDER outputs weights
that significantly contribute to the accuracy of case matching, and improves on the
initial (non-weighted) set of features as defined by human experts. We also observe
that the best weight vector as determined by SLIDER varies for different distance
metrics. We argue that feature relevance can be, to a certain extent, sensitive to
the underlying distance metric it is used for. Although SLIDER was motivated by
the crystallographic map interpretation problem, the algorithm is based on general
principles, and can be applied to many other applications, especially those with
high-dimensional and noisy data.

The rest of this paper is organized as follows:

• Section 2 provides more details on the principles and challenges of the X-ray
crystallography method to determine protein structures, and summarize other
work related to automated interpretation of electron density maps.

• The TEXTALTM system is briefly described in its entirety in Sec. 3; this provides
the context and motivation for feature weighting.

• Section 4 discusses the general feature selection and weighting problem, and
presents the main approaches proposed in the literature on artificial intelligence
and machine learning.

• Section 5 describes the features that experts defined in this domain, and the
rationale behind the choices.

• The SLIDER algorithm is presented in details in Sec. 6, followed by empirical
results and a discussion in Secs. 7 and 8 respectively.

2. X-Ray Protein Crystallography

X-ray crystallography is the most widely used technique to accurately determine
the structure of proteins and other macromolecules. It is based on the fact that
X-rays can be diffracted by crystals. In fact, X-rays are scattered by the electrons
around atoms, and this scattering from periodic arrangements of atoms in a crystal
results in diffraction patterns. These patterns are detected and used to reconstruct
the electron density, from which the macromolecular model (i.e. atoms and their
coordinates) can be determined. X-ray crystallography usually produces accurate
molecular structures, from global folds to atomic-level bonding details.

Crystallographic structure determination involves many steps: first the protein
has to be isolated, purified and crystallized. Protein molecules being long chains of
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typically hundreds of amino acids, they fold in irregular shapes, and are not suited
to be stacked in a regular crystal lattice. Thus protein crystals are generally small,
fragile, and contain about 50% solvent, on average — this makes crystallization a
challenge, and usually requires experimenting with many conditions.

After crystallization, diffraction data has to be collected; diffraction spots are
obtained when X-rays are shone through the crystal, based on the arrangement of
the atoms. The intensities of the diffracted spots are determined, and an electron
density map is calculated by the Fourier transformation of the intensities and cor-
responding estimated phases. In fact, the spots contain information only about the
intensity of diffracted waves; the phase information, which is also required for infer-
ring the map, is lost and has to be approximated by other methods, such as multi-
wavelength anomalous diffraction (MAD)14,15 or multiple isomorphous replacement
(MIR).16,17 This is known as the phase problem. Furthermore, the sample of points
at which intensities can be collected is limited, which constrains the degree to which
atoms can be distinguished from one another. This imposes limits on the resolution
of the map, measured in Å (1 Å = 10−10 m).

Solving the structure essentially means fitting amino acids or residues in the
density map, where each amino acid has several rotational degrees of freedom and
can adopt various conformations. The solved structure can then be used to obtain
better phase information and generate an improved map, which can then be re-
interpreted. This process can go through many cycles, and it may take weeks or
sometimes months of effort for an expert crystallographer to produce a refined
structure, even with the help of molecular 3D visualization programs. Manual
structure determination can be laborious and inaccurate, depending on factors
like the size of the structure, resolution of the data, the complexity of the crys-
tal packing, etc. There can be many sources of errors and noise, which distort
the electron density map, making interpretation difficult.4 There is also a subjec-
tive component to model building;5,6 decisions of an expert are often based on
what seems most reasonable in specific situations, with oftentimes little scope for
generalization.

Various tools and techniques have been proposed for automated protein
model building: treating modeling and phase refinement as one unified procedure
using free atom insertion in ARP/wARP,7 expert systems,18,19 molecular-scene
analysis,20,21 database search,22–24 using templates from the Protein Data Bank,25

template convolution and other FFT-based approaches,8 maximum-likelihood den-
sity modification,26 heuristic methods based on optimizing the fit of rotamers
or backbone in the density,9,10,27 etc. Common problems with many of these
approaches include dependency on user-intervention and/or high quality data (i.e.
with 2 Å resolution, or better). In contrast, TEXTALTM has been designed to be
fully automated, and to work with average and even low quality data (around 2.8 Å
resolution); most maps are, in fact, noisy and fall in the low-medium resolution
category28 due to difficulties in protein crystallization and other limitations of the
data collection methods.
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3. The TEXTALTM System

TEXTALTM fully automates electron density map interpretation, thereby saving
considerable effort required by human experts. TEXTALTM attempts to mimic the
way a crystallographer approaches the problem — first the backbone is modeled
i.e. the positions of the Cα carbon atoms are determined. Side chains are then
fitted into the density based on how the density looks around the Cα atoms. After
side chain modeling, the structure is refined through a number of post-processing
routines to improve the fit to the density29 and to align with the protein sequence.30

The model obtained can then be manually improved by the crystallographer, and
used to obtain better phases. An improved map can thus be generated, and fed
again to TEXTALTM.

Figure 2 gives the overall architecture of TEXTALTM. In this section, we provide
a very brief description of the system, with emphasis on issues related to feature
relevance. For a more detailed discussion on TEXTALTM and its sub-systems, refer
to previous work31–34 and http://textal.tamu.edu:12321.

3.1. Backbone modeling

The backbone determination is done by a system called CAPRA, or C-Alpha Pat-
tern Recognition Algorithm.32 As shown in the architecture of the TEXTALTM

system (Fig. 2), CAPRA comprises of the following steps:

• SCALE MAP: the input map, in XPLOR35 format, is scaled i.e. density values
are normalized to have a mean and a standard deviation comparable to those in
other maps. This is done to enable meaningful comparison between regions from
different maps.

• TRACE MAP: this is analogous to skeletonization programs;36,37 given an elec-
tron density map, this routine creates a chain of grid points along the medial axis
of the contours of the map. These trace points essentially represent the shape of
the density contours in a compact form.

• CALCULATE FEATURES: takes a scaled map as input, and computes numeric
features of spherical regions defined around each of the trace points from TRACE
MAP. These features are subsequently used to determine the positions of Cα

atoms, and to model side chains.
• PREDICT Cα POSITIONS: uses a neural network to determine the distances of

a set of points in a map to true Cα’s. The inputs to the network are 38 numeric
features in a 5 Å sphere centered on each trace point. Points with the lowest
predicted distances to Cα’s are picked as an initial set of Cα’s, with preference
to those that are about 3.8 Å apart (this is the typical distance between Cα atoms
in proteins).

• BUILD CHAINS: heuristic search methods are used to link putative Cα’s in a
map into a set of linear chains. The heuristic favors those chains that conform to
secondary structures and other typical motifs in proteins. The output is a PDB
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Input: electron density map

CAPRA: main chain modeling

human crystallographer for editing, or 
density modification for improving phases

Output of POST-PROCESSING:

Output of LOOKUP: initial model

final model

POST-PROCESSING

Output of CAPRA: model of backbone

SCALE MAP

CALCULATE FEATURES

PREDICT Cα POSITIONS

BUILD CHAINS

UNIMOL

LOOKUP: side chain modeling 

SEQUENCE ALIGNMENT

REAL SPACE REFINEMENT

TRACE MAP

REFINE CHAINS

PATCH CHAINS

STITCH CHAINS

Fig. 2. Architecture of TEXTALTM, showing the three major components: CAPRA, LOOKUP
and POST-PROCESSING. The crystallographer may use the model produced by TEXTALTM to
improve phases and create a better map, which can be re-inputted to TEXTALTM; this process
can go through several iterations.

file, which represents information about the coordinates of Cα’s and how they
are linked together.

• UNIMOL: reduces the complexity of a set of chains by removing redundant sym-
metry copies. UNIMOL keeps chains that are near the center of the model and
eliminates symmetric chain copies around the periphery. The result is a simplified
model that is easier to interpret.

• PATCH CHAINS: connects chains together in regions where density is weak by
adjusting the contour level.
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• STITCH CHAINS: uses a case-based reasoning approach to stitch together
nearby ends of disconnected chains, especially in regions where the backbone
makes a loop and/or the density appears distorted or missing.

• REFINE CHAINS: improves the geometry of Cα chains with respect to typical
atomic bond lengths and angles.

3.2. Side chain modeling

Modeling of side chains is done by a sub-system called LOOKUP — the program
takes a set of Cα chains and an electron density map as inputs, and uses case-based
reasoning and nearest neighbor learning to effectively and efficiently retrieve, from
a database, spherical regions (of 5 Å radius) that are structurally similar to regions
from the unsolved map. In fact, the 5 Å spherical regions centered around Cα’s
in the backbone model produced by CAPRA are compared to a large database of
∼50,000 regions from ∼200 maps of proteins (the local structures of the regions are
known and cover a very wide range of structural motifs in proteins). The matching
local structures are retrieved and assembled together to gradually produce a prelim-
inary model, which can be further refined by post-processing routines. Matching
regions are found based on a similarity metric that uses 76 numeric features to
locally characterize the spherical regions.

Like many other case-based reasoning systems, LOOKUP needs a large database
of cases for wide problem coverage and high quality solutions. But large databases
may be very inefficient, especially if the case matching function to determine simi-
larity between two cases is expensive.38 Given an unsolved spherical query pattern
q of electron density, the distance between q and each case ci in the database can
be determined, and the most similar (smallest distance) can be returned as the
best match. In TEXTALTM, the similarity between q and the ci’s is measured by
density correlation, a metric that involves the computation of the optimal super-
position between two patterns. Since the number of possible 3D rotations is very
large, the computation of density correlation is too expensive, which we cannot
afford to run over the whole database. Thus, we use an approximate, inexpen-
sive, feature-based distance metric to select a small subset of k potential matches,
and the density correlation procedure then makes the final ranking. In previous
work,39 we evaluated and compared various feature-based distance metrics for this
approach.

It should be noted that a good feature-based match need not be the absolute
best one according to the objective metric; it can be the top few matches (based
on a tolerance on how high we wish the density correlation value to be to qualify
for being a match). Given a query pattern, our aim is to try to get as many good
matches (anywhere) in the top k, since the expensive objective will be employed to
re-rank the top k matches and identify the truly good ones. In an earlier work,40 we
examined the effectiveness of this filtering scheme and how it depends on the level
of tolerance of matching. We also discussed how to choose the value of k, based
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on a loss function that represents the extent to which the feature-based distance
measure approximates the objective metric (density correlation).

3.3. Post-processing

There are two main post-processing routines in TEXTALTM:

• SEQUENCE ALIGNMENT: takes an initial solved model as input (i.e. both
the backbone and side chains have been determined), and corrects the identity
of amino acids through alignment of the sequence determined by LOOKUP to
the known sequence.30 These corrections are necessary because LOOKUP fits
residues that are structurally similar to correct ones, oftentimes erring on the
exact identity. Furthermore, noise in the density often deceives LOOKUP in its
choices.

• REAL SPACE REFINEMENT: takes a solved structure and the electron density
map as inputs, and moves atoms slightly to improve the fit to the density, subject
to the preservation of stereo-chemical constraints.29

3.4. Deployment of TEXTALTM

The TEXTALTM project was initiated in 1998 as an inter-disciplinary effort with
researchers from computer science and structural biology. TEXTALTM has been
deployed in various ways:

(1) Linux-based distributions, available since September 2004, can be downloaded
from the TEXTALTM website at http://textal.tamu.edu:12321.

(2) Through WebTex, a web-based interface (http://textal.tamu.edu:12321), where
registered users can upload their maps that are processed on our servers, and
the generated models are automatically sent back in an email. WebTex was
launched in June 2002. Currently it is used in 61 research institutions in 17
countries, both from the industry and academia.

(3) As the model determination component of PHENIX41 (http://www.phenix-
online.org), an integrated crystallographic computing environment, based on
the Python scripting language. PHENIX was first released in March 2003.

4. Feature Relevance

Automated reasoning and learning systems need information to work effectively —
but too much information may cause accuracy and efficiency to degrade. Thus
determining what information is relevant is an important endeavor in machine
learning. Assessment of relevance in learning systems can be made for various types
of information — a training example, a proposition, an inference rule, an attribute
(or feature), etc.

Relevance of features is widely studied in learning tasks42 like pattern
classification,43 instance-based learning44 and case-based reasoning,11,12 where
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patterns or examples have to be compared to detect similarities. Potentially useful
features are generally defined by an expert or extracted by automated techniques,45

and a subset of these features is automatically selected (or weighted), based on the
relevance to the task at hand.46 Irrelevant features tend to mislead pattern match-
ing; the problem is particularly acute in the nearest neighbor method, where irrel-
evant features can seriously hamper learning.47 There are several algorithms that
have been proposed to address the problem. These approaches can be categorized
into two major groups:

(i) filter methods try to build classifiers that take into account some proper-
ties of the features involved, such as correlations, dependencies and other
information;48 the features are considered independently of the induction algo-
rithm (i.e. the general classifier being built). In fact, the feature selection is
done before the induction step; thus irrelevant features are filtered out before
induction occurs.48

(ii) wrapper methods use part of the data to iteratively evaluate the subset of
selected features using performance on the induction algorithm for evalua-
tion; this is done by techniques such as cross-validation. In wrapper meth-
ods, features are selected by taking the bias of the induction algorithm into
account.42,49

Feature selection is a specific case of feature weighting i.e. selection is essentially
using only two alternative weights, 0 and 1, whereas general weighting assigns
degrees of perceived relevance. Blum and Langley42 suggest that feature selection
is most natural when the result is expected to be understood and interpreted by
humans, or fed into another algorithm. Feature weighting, on the other hand, are
generally purely motivated to enhance the performance of the induction algorithm.
But it has also been argued that there may be very little benefit in increasing the
number of possible weights beyond two (0 and 1). More fine-grained weighting may,
in fact, degrade performance.50

A different type of criterion for determining feature or attribute relevance is
sensitivity to the context. Different features may be relevant for different instances,
making attribute relevance a function of the instance and sensitive to the location in
the feature space. This motivates local feature weighting methods.51–53 Nonetheless,
in this work we assume that relevance of features is global, independent of the
instance.

Another facet of the feature weighting problem is feature interaction. Sometimes
information is shared among attributes, and one attribute is effectively meaningful
when considered in conjunction with other attributes.54,55 Thus, an attribute may
appear irrelevant when analyzed independently, but its relevance manifests itself
when combined with other attributes.

5. Features in TEXTALTM

In this section we describe the features that were defined by domain experts to
characterize small spherical regions of electron density. One important limitation
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that was imposed on the design is that the features have to be rotation-invariant,
since patterns to be compared can occur in any 3D orientation. This eliminates
many candidate features that may contain relevant information — for example
Fourier coefficient amplitudes, which are translation-invariant, but not rotation-
invariant. The density pattern to be characterized is effectively a 3D grid of
electron density values around the protein macromolecule. The relevant infor-
mation we attempt to capture includes general statistics of the density distri-
bution, moments of inertia, and various geometric measures designed to capture
typical shapes of amino acids. Thus, four classes of features have been defined
(Table 1):

(i) Statistical features like mean, standard deviation, skewness and kurtosis of
electron density distribution for a set of grid points in the spherical region.

(ii) Features based on moments of inertia, which gives the distribution of density
in three dimensions. The primary moment lies along the path around which
the density is most widely distributed; the secondary and tertiary moments are
orthogonal to the primary moment (and to each other) and describe directions
in space that have narrower density distributions. The magnitudes of the three
moments of inertia are taken as features. The various ratios of eigenvalues

Table 1. Definition of features used to describe spherical electron density patterns in
TEXTALTM. The features are grouped into four classes; each feature has four versions for
different radii of the sphere (3, 4, 5 and 6 Å, where 1 Å = 10−10 m).

Method of computation (ρi is the
electron density value at the ith of

Feature class Description of feature n grid points in a region)

Statistical Mean P = (1/n)Σρi

Standard deviation [(1/n)Σ(ρi − ρ)2]1/2

Skewness [(1/n)Σ(ρi − ρ)3]1/3

Kurtosis [(1/n)Σ(ρi − ρ)4]1/4

Moments of Magnitude of primary moment Compute inertia matrix, diagonalize
Inertia Magnitude of secondary moment and sort eigenvales

Magnitude of tertiary moment

Ratio of primary to secondary
moment

Ratio of primary to tertiary moment
Ratio of secondary to tertiary moment

Symmetry Distance from center of sphere to |〈xc, yc, zc〉|, where xc = (1/n)Σxiρi,
center of mass yc = (1/n)Σyiρi, zc = (1/n)Σziρi

Shape Minimum angle between spokes Find three “spokes” i.e. three
Maximum angle between spokes distinct vectors with highest density
Median angle between spokes summation, and compute the min,
Sum of spoke angles max, median, and sum of angles
Radial sum of first spoke
Radial sum of second spoke
Radial sum of third spoke
Spoke triangle area
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for the three mutually perpendicular moments of inertia are also defined as
features.

(iii) A feature that captures how symmetric or balanced the region is, based on the
distance from the center of the sphere to its center of mass.

(iv) Features that capture information about the shape of the pattern: typically an
amino acid has three “spokes” emanating from its Cα (one to the side chain
and two to the main chain in opposite directions). These spokes are identified,
and various features are calculated based on the angles between these spokes.
We specifically look at the minimum, median and maximum angle among the
spokes. The three spokes are defined as vectors from the center to the surface
of the sphere with maximum radial sum, where the radial sum is calculated as
the sum of the densities evaluated at points sampled evenly along the spoke.
Computation of all possible spoke directions is too expensive; thus a finite
number of trial spokes are sampled, and the best triplet of spokes is then
computed. Besides the minimum, median and maximum spoke angles, other
features include the sum of spoke angles, radial sum for each spoke, and the
area of the triangle formed by the endpoints of the three spokes.

Furthermore, for each region, we calculate these features at four different radii
(3, 4, 5 and 6 Å); this is necessary since amino acids vary in shape and size, and
each feature captures slightly different information for different sizes. Thus, the
total number of features that we use is 19 ∗ 4 = 76.

6. The SLIDER Algorithm

SLIDER34,56 is a supervised machine learning method to optimize weights such that
the accuracy of a distance metric that uses the weights (like weighted Euclidean
distance) is improved. It is essentially a filter approach that uses the following
measure to evaluate how good a set of weights is: given an instance x, we look at
how well the given distance metric ranks an instance y truly similar to x, relative
to a set of instances known to be different to x. True similarity or difference is
determined by an objective, and typically expensive, metric; in this domain, we use
density correlation, which involves a rotational search to find the best superposition
between two regions.

This ranking is averaged over a set of instances. Trying to optimize the ranking is
intuitive since similarity is measured by a continuous variable (density correlation).
Thus, in searching our database, we are not necessarily looking for one perfect
match, since the latter may not exist, and the notion of a match here is fuzzy.
Instead, we attempt to select a group of potential matches (by ranking them highly)
that will be scrutinized in subsequent steps.

A central idea in SLIDER is that evaluation is done specifically where there is
a switch in relative distance between a match and a mismatch to a given instance.
These weights are the ones that will influence the accuracy of ranking the most.
Thus, by limiting the space of weights to be searched, and identifying only the
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weights that are more likely to make a difference, the efficiency and effectiveness of
learning are largely ensured.

In our empirical analysis, we compare three different weighting schemes: (1)
uniform i.e. all features are selected, and weighted equally; (2) binary i.e. feature
weights can be either 0 or 1; (3) continuous weights. The latter two schemes are
derived from the output of the SLIDER algorithm. We also analyze the sensitivity
of the weighting methods to different distance measures. In this work, we look at
the Minkowsky family of distance metrics (of order 1, 2 and 3) i.e. Manhattan (L1),
Euclidean (L2) and L3.

The SLIDER algorithm was very briefly described in previous work.56,34 In
this section, we provide a more detailed explanation of how weights are tuned by
SLIDER. We first consider two-component mixtures (i.e. involving two features,
where their weights sum up to one) and then extend it to an arbitrary number
of features. The weighted Minkowsky distance of order n between two instances
x and y, using two features i and j (with weights wi and wj respectively, where
wi + wj = 1) is defined as:

Di,j(x, y) = (wi|xi − yi|n + wj |xj − yj |n)1/n (1)

If n = 1, we get the Manhattan distance; if n = 2, the metric is called Euclidean,
and in general it is known as the Minkowsky distance of order n. We can drop the
nth root, since it is a monotonic transformation, and we use distances as a relative
measure (their absolute values are not meaningful). Thus Di,j can be re-defined as:

Di,j(x, y) = wi|xi − yi|n + wj |xj − yj |n
= (1 − w)|xi − yi|n + w|xj − yj |n (2)

where w is set to wj , the weight of feature j. One approach to approximate the
optimal weight w is to use a test set to exhaustively evaluate accuracy for various
weights defined over a grid, such as {0.0, 0.1, 0.2, . . . , 1.0}. Then the induction algo-
rithm would have to be run on the training data to evaluate which weight gives the
highest accuracy, as in a wrapper method. This approach is inefficient and is limited
by the coarseness of the grid sampling. SLIDER utilizes a more efficient method.

Consider an instance x that has y as its closest neighbor according to feature fi,
and z as its closest neighbor according to feature fj i.e. the nearest neighbor of x is y

when w = 0, and it is z when w = 1 (w is the weight of feature j), assuming that y �=
z. If w “slides” from 0 to 1, then there is a weight wc at which Di,j(x, y) = Di,j(x, z);
this point is called a “crossover”. Re-writing Di,j(x, y) = Di,j(x, z), we get:

(1 − w)|xi − yi|n + w|xj − yj |n = (1 − w)|xi − zi|n + w|xj − zj |n (3)

Solving for w, and setting it to wc, we get:

wc =
|xi − zi|n − |xi − yi|n

|xj − yj |n − |xi − yi|n + |xi − zi|n − |xj − zj|n (4)

In other words, wc is a weight where there is a net increase (or decrease) in
accuracy, depending on which of y and z is truly closer to x. The concept of a
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Distance, D

(xi-zi)
n Di,j(x,z) (xj-yj)

n

(xj-zj)
n

(xi-yi)
n Di,j(x,y)

0 wc 1 wj

Fig. 3. As the weight of feature j, wj , slides from 0 to 1, the Minkowsky distance between x and
y [Di,j (x, y)] changes linearly from lesser to greater than that between x and z [Di,j (x, z)]. The
“crossover” occurs at wc i.e. there is a change in accuracy of prediction at wc, depending on
whether y or z is truly more similar to x.

crossover point is illustrated in Fig. 3. When there is an increase in accuracy (i.e.
the match is closer to x than the mismatch, for all weights above wc), it is referred to
as “positive crossover”, and “negative crossover” otherwise. It should be noted that
not all three-tuples of instances will have a crossover for a given pair of features; in
fact, there will not be a crossover point if for all values of wj , the distance between
x and its match is always larger (or smaller) than the distance between x and its
mismatch (i.e. the lines representing distances Di,j(x, y) and Di,j(x, z) in Fig. 3 do
not intersect).

Crossover points can also be determined by considering two subsets of features
(instead of just two features). Consider two feature subsets A and B, with cor-
responding Minkowsky distances DA and DB respectively. A composite metric,
DA+B, can be defined as DA+B(x, y) = wDA(x, y) + (1 − w)DB(x, y). As w slides
from 0 to 1, it may cause a switch of neighbors, as described earlier. Thus w can be
used to determine the new weight vector that increases accuracy, based on crossover
points. Currently, SLIDER randomly chooses one feature (singleton set A) and eval-
uates it against all remaining features (set B). The approach can be extended to
compare feature sets of arbitrary size and composition.

SLIDER determines the crossovers for a set T of training examples by sliding
over the weight of one feature at a time to determine the “optimum” weight value
at which the overall accuracy increases the most. SLIDER uses a greedy approach57

by iteratively choosing a (random) feature, adjusting its weight based on the above
criterion, and stopping when there is no net increase in accuracy. In each iteration of
the algorithm, we randomly choose a feature and find all crossover points from the
training examples. Then we find the optimum weight w∗ (of the chosen feature) that
maximizes the difference between the number of positive crossovers and negative
crossovers; w∗ is computed as follows: For a given set of crossover weights wi, we
define a score d(w) for each crossover weight w as follows:

d(w) =
∑

wi≤w

crossover type(wi) (5)



July 13, 2005 18:12 WSPC/185-JBCB 00127

Recognizing Electron Density Patterns in X-ray Protein Crystallography 659

where crossover type(wi) = 1 if wi is a positive crossover weight, and –1 if wi is
a negative crossover weight. Given the set of crossover weights for the randomly
chosen feature, we determine the optimal weight w∗ of that feature as follows:

w∗ = argmax
wi

d(wi) (6)

The procedure that we use to evaluate whether overall accuracy has improved
by updating the weights is as follows: we define a set S of instances (independent
of the training set T to find crossover weights), and for each instance in S we
find a match (high density correlation), and a set of mismatches (average or low
density correlation). Given a weight vector and an instance, we compute and rank
the distances of that instance to the known match and mismatches; the rank of the
match relative to the mismatches gives an estimate of the optimality of the weights.
Given a weight vector w, a set S of m cases, and for each case, one match and n

mismatches, we define the ranking consistency of w, RC(w, S) as follows:

RC(w, S) = 1/(mn)
m∑

i=1

[n − rank (i, S)] (7)

where rank(i, S) is the rank of the match of i (relative to all n mismatches of i) in
S; note that lower rank implies more similar to the query instance (i.e. the match
should ideally have rank = 1).

The pseudo-code for the SLIDER algorithm is given in Fig. 4. After the weights
are determined, they can be directly used in the distance metric as continuous

Inputs: 1. Sets S and T of spherical regions of density centered on Cα atoms.
2. For each instance in T, one match and one mismatch.
3. For each instance in S, one match and n mismatches.
4. F features.

Output: Optimized weight vector w = 〈w1, w2, . . . , wF 〉
for each feature fi

wi ← 1/F //initialize weights of all features uniformly s.t. Σwi = 1

repeat
Select feature f randomly
Find all crossover points in T // i.e. by sliding wf from 0 to 1
Find the “optimum” weight of f , wf *

// The optimum weight maximizes the difference between positive
// and negative crossovers — Eq. (6)

for all features i, i �= f, wi ← wi + (wf − wf
∗)wi/

P
wk, k �= f

// Other weights are proportionally adjusted
// (according to weight) s.t. all weights add up to 1

wf ← wf*
Compute Ranking Consistency of w, RC(w, S) using Eq. (7).

until RC(w, S) does not improve or number of iterations exceeds a threshold

return w

Fig. 4. The SLIDER algorithm.
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weights. Alternatively, the features can be “selected” by converting their corre-
sponding weights to 0 or 1 if the weights are below or above a certain threshold
i.e. negligibly small weights (less than 0.01, for instance) are converted to 0, and
all other weights are converted to 1. We refer to this weighting scheme as “binary”.
It should be noted that our objective function in this problem is a continuous
metric (density correlation). But this approach can be extended to handle discrete
classification problems as well.

7. Results

In this section, we empirically evaluate SLIDER’s performance, analyze its impact
on TEXTALTM, and explore various aspects of the feature weighting algorithm. We
compare the three different weighting schemes (uniform, continuous and binary),
with weights optimized by SLIDER for three different distance metrics (Manhattan,
Euclidean and L3). We closely look at which of the 76 features get how much weight,
and analyze the dependence of weighting on the distance metric.

We assess SLIDER’s performance on both “ideal” protein maps (i.e. maps that
have been artificially generated by back-transforming from their correct structures
at 2.8 Å) as well as real, experimental maps. Analysis of the performance of SLIDER
on ideal maps is insightful since it reduces the confusion that noise, variance in
resolution, and phase error in real maps may introduce. Of course, performance on
real maps is what matters ultimately; we later show how SLIDER helps in solving
real maps as well.

We use a database of ideal maps for our case-based reasoning approach; a
database of ideal maps is more suitable than one of real maps, since it enables
better case matching and retrieval in solving real maps. In general, we use ideal
maps for the various machine learning tasks in TEXTALTM: training the neural
network to determine Cα positions, case-based reasoning method to “stitch” chains
in CAPRA, and tuning feature weights in SLIDER.

Our evaluation of SLIDER on ideal maps involves three sets of data: (1) a set to
train SLIDER i.e. to determine crossover points and tune the weights; (2) a test set
of query regions to evaluate whether using weights determined by SLIDER improve
on retrieval of matching density regions; and (3) a database from where matches
are actually retrieved. These three sets were constructed using maps from three
independent sets of proteins in PDBSelect,58 a subset of the PDB59 database. As
mentioned earlier, the maps were artificially generated at 2.8 Å from their correct
structures, and the regions were defined as 5Å spheres centered on Cα atoms.

The training set consisted of 200 example regions (drawn randomly from 48
proteins in PDBSelect) that were used to determine the weights. For each example,
one match and 200 mismatches were pre-determined by the calculation of density
correlation. An instance is defined as a match (mismatch) if its density correlation
to the example in question is above (below) 0.7, a threshold above which local
patterns of density look similar.
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We evaluate the effectiveness of SLIDER in determining a final set of appropriate
global weights in the context of the filtering scheme where we essentially try to get
as many matches as possible in the top k, and let an expensive measure make
the final choice. For that purpose, the following test procedure is used: we chose
100 regions from our test set obtained from 51 proteins in PDBSelect (independent
of the proteins used for tuning the weights). For each test region, we exhaustively
searched the database of ∼30,000 regions (obtained from yet another 137 proteins
in PDBselect) to find their true, objective matches (based on density correlation).
We then used the weighted feature-based distance metrics to rank all the ∼30,000
regions according to similarity, and find out how many good matches are found in
the top k by the feature-based metric.

We are willing to accept more than just the single best match, since the second,
third, and other subsequent matches will often do. So we use a more relaxed notion
of good match, which is defined as follows: given an example x, a database D and
an objective similarity metric obj, an example y in D is said to be good match
of x if:

[obj(x, b) − obj(x, y)]/obj(x, b) < δ

where δ (δ ≥ 0) is a tolerance, and b = argmaxd∈D obj (x, d), i.e. b is the
absolute best match of x in D. We here assume that obj > 0, and increases
with similarity. This definition accepts multiple hits (in the database) as reason-
able matches if they have a similarity within some threshold of the best possi-
ble score. In fact, for any given tolerance δ, let the number of good matches
be λ. In this domain, the objective similarity metric obj is density correlation
between two spherical regions, which involves an expensive rotational search for
the best possible superposition; density correlation ranges from 0 to 1. Figure 5
shows how the average number of matches λ (over the test set of 100 regions)
varies with tolerance δ, using a database of ∼30,000 instances. Domain experts
found that a tolerance of about 0.02 is reasonable to produce useful models of side
chains.

Since SLIDER is greedy and non-deterministic, we run it ten times for each of
the three Minkowsky distance metrics. The average weight for each of the 76 fea-
tures was calculated and proportionally adjusted so that all weights sum up to 1.
For all three metrics, between 23 and 31 features (out of 76) were selected i.e.
those features with weights greater than 0.01. Moreover, there is strong tendency
to choose the same features, and even weigh them similarly. There are 34 features
for which all three metrics have yielded zero weight. Table 2 shows all features
that were found to be irrelevant (for all three metrics) by SLIDER. These features
need not be irrelevant in absolute terms; they might just be useless in the context
of other features deemed relevant, especially in situations where some features are
redundant. Table 3 shows those features that were found relevant for any of the
three metrics — the average weights over ten runs are shown with their standard
errors.
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Number of "good matches" for various levels of
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Fig. 5. The number of “good matches” (λ) grows exponentially with tolerance, δ.

Table 2. List of 34 features found irrelevant by SLIDER
for all 3 metrics.

Name (and radii in Å) of features with weight = 0

Mean (3, 4)
Standard deviation (4, 5, 6)
Skewness (4, 5, 6)
Kurtosis (5)
Primary moment of inertia (6)
Secondary moment of inertia (3, 4, 5, 6)
Tertiary moment of inertia (4)
Ratio of primary to secondary moment of inertia (5, 6)
Ratio of primary to tertiary moment of inertia (6)
Ratio of secondary to tertiary moment of inertia (5, 6)
Distance to center of mass (6)
Maximum angle between spokes (3, 6)
Minimum angle between spokes (4, 6)
Median angle between spokes (6)
Radial sum of first spoke (3, 4, 5, 6)

Radial sum of second spoke (3)
Radial sum of third spoke (4, 5, 6)

It should be noted that when different SLIDER runs “select” different features,
the features selected may actually be quite similar, in two ways:

(i) The features could be closely related e.g. standard deviation, skewness and
kurtosis, or the three moments of inertia.

(ii) They could be the same feature (like mean density) but calculated over different
radii, especially those radii close to each other.
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Table 3. Features found relevant (i.e. non-zero weights) for any of the three
Minkowsky distance metrics. The weights are averaged over multiple runs. The stan-
dard errors are also shown.

Feature name (radius in Å) Manhattan Euclidean L3

Mean (5) .046 ± .015 .028 ± .008 .036 ± .012
Mean (6) .020 ± .011 .026 ± .007 .000 ± .002
Standard deviation (3) .000 ± .008 .042 ± .007 .000 ± .005
Skewness (3) .017 ± .007 .030 ± .006 .000 ± .006
Kurtosis (3) .033 ± .007 .000 ± .005 .000 ± .004
Kurtosis (4) .016 ± .006 .000 ± .005 .000 ± .008
Kurtosis (6) .000 ± .004 .000 ± .004 .026 ± .009
Primary moment of inertia (3) .021 ± .005 .000 ± .006 .000 ± .009
Primary moment of inertia (4) .000 ± .006 .031 ± .008 .024 ± .008
Primary moment of inertia (5) .000 ± .000 .000 ± .000 .024 ± .012
Tertiary moment of inertia (3) .000 ± .000 .000 ± .007 .023 ± .009
Tertiary moment of inertia (5) .017 ± .009 .029 ± .009 .025 ± .010
Tertiary moment of inertia (6) .000 ± .006 .023 ± .006 .025 ± .006
Ratio of primary to secondary MOI (3) .029 ± .006 .056 ± .004 .062 ± .009
Ratio of primary to secondary MOI (4) .014 ± .005 .023 ± .003 .000 ± .002
Ratio of primary to tertiary MOI (3) .000 ± .002 .030 ± .008 .000 ± .004
Ratio of primary to tertiary MOI (4) .026 ± .008 .024 ± .006 .000 ± .005
Ratio of primary to tertiary MOI (5) .018 ± .007 .000 ± .006 .022 ± .005
Ratio of secondary to tertiary MOI (3) .087 ± .011 .040 ± .007 .067 ± .015
Ratio of secondary to tertiary MOI (4) .035 ± .007 .036 ± .007 .029 ± .005
Distance to center of mass (3) .109 ± .005 .114 ± .006 .116 ± .012
Distance to center of mass (4) .017 ± .006 .026 ± .007 .024 ± .006
Distance to center of mass (5) .021 ± .007 .028 ± .005 .000 ± .006
Maximum angle between spokes (4) .032 ± .007 .031 ± .005 .000 ± .004
Maximum angle between spokes (5) .022 ± .007 .049 ± .007 .055 ± .013
Median angle between spokes (3) .000 ± .003 .000 ± .005 .030 ± .005
Median angle between spokes (4) .026 ± .006 .026 ± .006 .000 ± .003
Median angle between spokes (5) .034 ± .005 .031 ± .005 .041 ± .007
Minimum angle between spokes (3) .024 ± .006 .000 ± .004 .000 ± .003
Minimum angle between spokes (5) .026 ± .006 .044 ± .004 .026 ± .007
Sum of spoke angles (3) .000 ± .000 .000 ± .003 .026 ± .008
Sum of spoke angles (4) .018 ± .006 .000 ± .006 .000 ± .006
Sum of spoke angles (5) .088 ± .019 .054 ± .013 .106 ± .017
Sum of spoke angles (6) .039 ± .006 .000 ± .006 .044 ± .014
Radial sum of second spoke (4) .000 ± .000 .000 ± .004 .025 ± .011
Radial sum of second spoke (5) .020 ± .009 .000 ± .005 .000 ± .001
Radial sum of second spoke (6) .015 ± .007 .000 ± .002 .000 ± .000
Radial sum of third spoke (5) .000 ± .006 .025 ± .009 .000 ± .000
Spoke triangle area (3) .037 ± .010 .034 ± .006 .000 ± .006
Spoke triangle area (4) .024 ± .005 .034 ± .006 .045 ± .012
Spoke triangle area (5) .050 ± .016 .062 ± .013 .097 ± .015
Spoke triangle area (6) .018 ± .007 .025 ± .005 .000 ± .002

Figure 6(a) tries to capture this concordance in returned weights by first sorting
the features based on radius and then listing them in a particular order (such that
related features are as close together as possible). Figure 6(b) groups the features
the other way round i.e. first it lists all features [in the same order as in Fig. 6(a)],
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Fig. 6. The relative weights of 76 features returned by SLIDER for L1 (Manhattan), L2

(Euclidean), and L3 are shown. (a, left): the features are first sorted on radius, and for each
radius, 19 features are listed in a specific order. (b, right): the 19 features are first listed in the
same order as in Fig. 6(a), and then sorted on radius. Darker shade implies higher weight. The
white cells represent features with zero weight.
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Table 4. Sum of all feature weights at four different
radii; there are 19 features for each radius.

Sum of weights for three
Minkowsky metrics

Radius in Å
(1 Å = 10−10 m) Manhattan Euclidean L3

3 0.36 0.35 0.32
4 0.21 0.23 0.15
5 0.34 0.35 0.43
6 0.09 0.07 0.10

and then sorts them based on radius, in ascending order. The weights have been
linearly graded on a five-level scale, where darker shade implies higher weight.

We make the following remarks regarding the feature weights computed by SLIDER:

• The consistency in features selected (and weighted) across the three metrics shows
that the algorithm converges. But the risk of local minima still exists; this is
partially addressed by the randomized choice of a feature in each iteration. The
major cause of local minima is the fact that the weight of only one feature is
greedily adjusted at a time.

• Table 4 shows the sum of weights for each radius; we can again observe significant
similarity of weights for the three metrics. Furthermore, we can note that the total
weights for radii 3 Å and 5 Å are the highest, and comparable to each other, and
the total weights for radius 6 Å is significantly lower. The 3D spherical patterns
are expected to cover amino acids of various shapes and sizes, which justifies the
choice of feature values at different radii. A 3 Å radius sphere centered on a Cα

atom is expected to contain significant information about the side chain; but this
information may not be adequate to recognize the side chain, especially for large
amino acids that may not be totally encapsulated in the 3 Å sphere. But at 6 Å,
we face the problem of having noise due to density of neighboring residues or
long-range contacts, and hence we expect their relevance to be lower; this trend
is captured by our weight optimization algorithm.

• The absolute moments of inertia seem irrelevant individually, but their ratios
provide more information related to the shape of the density pattern (e.g.
spherical, ellipsoidal, etc.). This exemplifies the feature interaction problem,54,55

where several features may not appear relevant on an individual basis, but when
looked at in combination, they contribute significantly to the description of the
pattern.

• The strong similarity of weights across the three Minkowsky metrics is largely
expected. Some weights are relevant, irrespective of the underlying metric. For
example, the distance between the center of sphere and its center of mass at 3 Å
is weighted highly for all three metrics. Nonetheless, there are differences, and
interestingly, these differences do capture the sensitivity of “optimum” weights
to the metric being used.
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Figures 7–9 plot the number of good matches (averaged over the test set) that
the three Minkowsky metrics manage to obtain (from the database of ∼30,000
regions) in the top k, for various values of tolerance (at a constant k = 500).

Figures 10–12 plot the average number of good matches in the top k for the three
metrics, this time varying k (keeping tolerance fixed at 0.02). We can observe that
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Fig. 7. Weighted Manhattan metrics find more matches than non-weighted Manhattan distance
in top k = 500 from a database of ∼30,000 regions (for various levels of tolerance). Similar results
are obtained for Euclidean (L2) and L3.

Effectiveness of case retrieval using
Euclidean (k = 500)

0

2

4

6

8

10

12

14

0 0.02 0.04 0.06

Tolerance

A
ve

ra
g

e 
n

u
m

b
er

 o
f 

m
at

ch
es

fo
u

n
d

 in
 t

o
p

 k
 =

 5
00

Uniform

Binary

Continuous

Fig. 8. Continuous weights are more effective than binary weights (using Euclidean distance) in
retrieval of matching electron density patterns from a database. Similar results are obtained for
Manhattan and L3.
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Effectiveness of case retrieval using L3 (k = 500)
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Fig. 9. Weighted L3 metrics outperform the non-weighted (uniform) L3 metric.
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Fig. 10. Weighted Manhattan metrics find more matches than non-weighted Manhattan metric
for various values of k from a database of ∼30,000 regions (tolerance = .02).

both feature selection (binary weights) and feature weighting (continuous weights)
improve over uniform weights (all 76 features equally weighted). Furthermore, con-
tinuous weights are better than binary weights for all three metrics.

Figures 7–9 show that as tolerance increases, more matches are found, but at a
higher rate for the weighted metrics compared to the non-weighted one. Of course,
it can be argued that only one good match needs to be found, which can be achieved
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Effectiveness of retrieval using Euclidean
(tolerance = .02)
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Fig. 11. Continuous weights are more effective than binary weights (using Euclidean distance)
in retrieval of matching electron density patterns from a database of ∼30,000 regions for various
values of k. Similar results are obtained with Manhattan and L3.
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Fig. 12. Weighted L3 metrics outperform the non-weighted (uniform) L3 metric.

by setting k sufficiently high. But the improved retrieval allows us to use a lower
k, and hence improve efficiency by reducing the database search time.

Figures 10–12 examine how performance scales with k, at constant tolerance.
The results again show that using weights determined by SLIDER gives the best
performance, since it needs the smallest value of k for the same number of hits
(good matches).
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Effectiveness of metrics in retrieving correct
amino acids in top k = 500
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Fig. 13. Weighted metrics retrieve more matches with the same residue identity than non-weighted
metrics (for k = 500). Similar results are obtained with other values of k.

Figure 13 shows the effectiveness of case retrieval in a different way: how many
instances retrieved in the top 500 have same amino acid identity as that of the test
region? We can see that the weighted schemes help in getting more side chains of
similar identity in the top 500. Similar results are obtained for other values of k

(not shown). Selecting as many correct residues as possible in the top k is helpful
in the sequence alignment step of TEXTALTM — it is often rewarding to look at
several top matches (rather than just the first), and see a better alignment with
the sequence can be obtained with the second, third, or subsequent matches. Note,
however, that even regions with the correct amino acid identity are not necessarily
good matches, as they might represent a different side chain conformation. Con-
versely, sometimes residues of alternative amino acid identity can be good matches,
due to structural similarity (e.g. between Valine and Threonine, or Glutamate and
Glutamine).

Figure 14 compares the effectiveness of retrieval of the Euclidean metric to
the Mahalabonis distance,43 which is a distance metric that takes into account
some statistical properties of the data. The Mahalanobis distance is based on the
correlations between the feature values; it effectively selects or weights features
based on feature covariances. From Fig. 14, it can be observed that, while the
Mahalabonis metric outperforms the non-weighted Euclidean measure, both binary
and continuous weighting schemes based on SLIDER outperform the Mahalabonis
distance.

An important point to note is that, given a distance metric, using continuous
weights does not improve pattern matching (as compared to binary weights) if the
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Effectiveness of retrieval of weighted and non-
weighted metrics
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Fig. 14. Mahalanobis distance outperforms the non-weighted (uniform) Euclidean metric in obtain-
ing matches in the top k = 500 for various levels of tolerance. But weighted Euclidean distances
(using weights determined by SLIDER) are more effective than the Mahalanobis metric in case
matching and retrieval.

weights used are those optimized for another metric e.g. the weights determined by
SLIDER for Euclidean will not make continuous weights outperform binary weights
for Manhattan.

We now evaluate the impact of SLIDER by running TEXTALTM (including the
sequence alignment and real-space refinement steps) on real maps, using Euclidean
distance with uniform weights as well as with weights determined by SLIDER. The
distance metric is invoked in the LOOKUP system, which performs the database
search. The other components (CAPRA and POST-PROCESSING) do not depend
on the distance metric. As mentioned earlier, the database we use in TEXTALTM

is made up of ideal (back-transformed) maps. The training set that SLIDER uses
to determine the weights is also generated from ideal maps. Experimental maps are
noisy and have high variance in terms of quality and resolution; thus we achieve
better case retrieval and tuning of weights if ideal maps are used.

We ran TEXTALTM on four experimentally determined maps: (i) CzrA60

(chromosome-determined zinc-responsible operon A) is a dimer consisting of 96
amino acids in four α-helices; (ii) IF-5A61 (translation initiation factor 5a) consists
of a pair of β-barrel domains; it has 137 amino acids; (iii) MVK62 (mevalonate
kinase) is a medium-sized protein with 317 amino acids, including both α and β

secondary structures; and (iv) PCA63 (mycolic acid cyclopropane synthase) has 262
amino acids, and is made up of both α-helices and β-sheets.

Table 5 shows the percentage of amino acids that were correctly determined
by TEXTALTM, using the weighted and non-weighted Euclidean measure, and set-
ting k to 100. Given an unsolved query region, the top 100 potential matches are
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Table 5. Performance of TEXTALTM with and without SLIDER weights.

% of residues correctly identified by TEXTALTM

Euclidean distance with Euclidean distance with weights
Protein No of residues uniform weights determined by SLIDER

CzrA 96 98.9 95.6
IF-5A 137 78.1 79.7
MVK 317 25.4 54.7
PCA 262 23.9 57.7

retrieved from a database (of ∼50,000 regions) by the Euclidean distance metric,
and the final selection is done by choosing the one with the highest density correla-
tion with the query region. We can observe that feature weighting by SLIDER seems
to contribute little to the performance of TEXTALTM for the first two (smaller)
proteins (CzrA and IF-5A). But in the last two cases (MVK and PCA), the percent-
age of amino acids correctly identified more than doubles when SLIDER weights
are used. The wide variation of performance of TEXTALTM on different real maps
can most likely be attributed to differences in qualities of the maps. The accu-
racy with which CAPRA places the Cα atoms is also influenced by the quality of
the map, and the performance of LOOKUP is sensitive to that of CAPRA. Thus
the “interpretability” of maps varies widely, depending on resolution and degree of
phase error.

8. Discussion

The SLIDER system has been successfully applied to determine the weights of
features for the complex problem of recognizing patterns of electron density in
protein crystallography. But the techniques employed are general and potentially
useful in other domains, especially those with high-dimensional, noisy data. The
salient aspects of our approach are:

• SLIDER is a filter method that avoids searching a large space of possible weight
vectors. Instead, the evaluation is performed at weight values that matter i.e. at
“crossover” weights, where there is a change in accuracy of matching. Further-
more, locating these weight values can be done efficiently, since it involves solving
linear equations applicable to many metrics (like the Euclidean distance). The
benefits of restricting the number of weights searched and used for nearest neigh-
bor classification are emphasized by Kohavi et al.;49 they also argue that there are
probably no benefits in using weights beyond two possible values (0 and 1) — but
the SILDER algorithm does manage to compute finer weight values that improve
matching and case retrieval.

• SLIDER was used to optimize weights for three different Minkowsky distance
metrics, and proved to be successful in improving pattern matching and retrieval
for each of the three metrics, in the context of case-based reasoning and nearest
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neighbor strategies to efficiently retrieve matches. The weights as determined
by SLIDER were largely similar for the various metrics; nonetheless, the slight
differences were significant in capturing the sensitivity of relevance to the distance
metric being used. We argue that the relevance of features in describing a pattern
is not absolute; it depends on how the features are used to determine similarity,
especially since similarity itself is often a fuzzy concept, with multiple ways of
determining it.

As future work, there is considerable scope for improvement and investigation.
In particular, we are looking at the following:

• SLIDER is currently limited to distance metrics for which crossovers weights can
be calculated by solving simple linear equations. This may not be possible for
other metrics, like those based on probabilistic and statistical methods.39,64,65 We
are currently investigating approaches where crossover points for such metrics
can be efficiently determined (by binary search over the space of weights, for
instance).

• SLIDER can be extended to optimize more than one weight at a time, based on
the same geometric principles in higher dimensions. It can be shown that each
〈instance, match, mismatch〉 three-tuple represents a line in a 2D space of two
features, with one side representing an improvement in accuracy, and the other
side a loss in accuracy. If many such three-tuples are considered, the problem is to
find an optimal 2D region (a convex polygon, actually) that represents optimum
pairs of weights for these two features. This will make the algorithm less greedy.

• One aspect that necessitates closer scrutiny is the definition of match and mis-
match to assess if the updated weights improve accuracy. We use a simple strat-
egy where two patterns are said to match/mismatch if their density correlation
in above/below a threshold. We observed that the final set weights returned by
SLIDER is sensitive to this threshold. What would be an appropriate threshold,
and how can it be determined? Or is there a better way of assessing similarity in
this context? Should we use “perfect” matches/mismatches in our training set, or
do we need to allow for near-matches/near-mismatches as well, which will enable
us capture the nuances in the information that is required to confidently say how
different two instances are?

• More generally, we are also working on other strategies to weight features, includ-
ing analyzing the sensitivity of feature relevance to the context51–53 and methods
based on Singular Value Decomposition (SVD) and Principal Component Anal-
ysis (PCA).
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