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Abstract 
 

In computational grids, heterogeneous resources with 
different ownerships are dynamically available and 
distributed geographically. It is not realistic to build the 
resource allocation mechanisms for such computational 
platform without considering economic issues. Developing 
computational economic-based approaches is a promising 
avenue for building efficient, scalable and stable resource 
allocation mechanisms without a centralized controller for 
computational grids. The key difficulty in building a 
computational economic-based resource allocation 
mechanism is measuring the economic value of resource 
usage. In this paper, we propose a task-oriented mechanism 
for measuring the economic value of using heterogeneous 
resources in computational grids. This mechanism provides 
feasibility for resource users to evaluate their outsourcing 
decisions. It also gives resource suppliers incentive to 
provide their resources to computational grids. Based on this 
mechanism, auction-based, commodities market-based and 
game theory-based distributed resource allocation 
mechanisms are established for computational grids.  
 

1. Introduction 
In computational grids, heterogeneous resources with 

different ownerships are dynamically available and 
distributed geographically. The users’ resource requirements 
in the grids vary depending on their goals, time constraints, 
priorities and budgets. Allocating their tasks to the 
appropriate resources in the grids so that performance 
requirements are satisfied and costs are subject to their 
budgets is an extraordinarily complicated problem. 
Conversely, resource suppliers vary in the resource 
capability, availability, cost and security policies. Allocating 
their resources to the proper users so that utilization of 
resources and the profits generated are maximized is also an 
extremely complex problem.  

From a computational perspective, it is impractical to 
build a centralized resource allocation mechanism in such a 
large-scale distributed environment [2]. Providing incentives 
for both users and resource suppliers to participate in a 
computational grid is also a big challenge, which must be 
addressed in the resource and task allocation mechanisms, 
because it is the key to maintaining the stability of a 
computational grid. Furthermore, the effective agents (both 
users and resource suppliers) in computational grids are 

inherently self-interested because of their different 
ownerships. Self-interested agents make their own decisions 
according to their budgets, capabilities, goals and local 
knowledge, without considering the global good of the entire 
grid. It is not realistic to build the resource allocation 
mechanisms for such a grid without considering economic 
issues. Hence, developing computational economic-based 
strategies [14] is a promising direction for research into 
building efficient, scalable and stable resource allocation 
mechanisms without centralized controllers for 
computational grids.  

Researchers in both high performance computing and 
multi-agent systems have applied computational economic-
based mechanisms for distributed resource allocation 
problems. Wolski et al [1, 2] and Buyya [3] pioneered 
investigation of the commodity market-based resource 
allocation mechanisms in computational grids. Sandholm [4] 
addressed the fact that the computing, communication, and 
privacy issues are deeply intertwined with economic 
incentive issues. 

The key difficulty in build a computational economic-
based resource allocation mechanism is measuring the 
economic value of resource usage by a common currency. 
Previously, people assumed there existed a general currency 
(denoted by grid dollars [1,2,3]) to measure the cost of using 
a certain resource. But nobody addresses how to translate the 
value of using different type of resources into such grid 
dollars.  

This gap keeps computational grids from being realistic 
because it is difficult to convince users that participating in 
computational grids is less expensive than purchasing more 
computational resources while obtaining the same amount of 
computational power for their computational tasks. Similarly, 
for resource suppliers, it is hard to evaluate the profit of 
putting resource into a grid without such a measurement. For 
both users and suppliers, joining a grid will incur more 
security and maintenance cost than having only their own 
computational resources to execute their own tasks. They 
have to be convinced that the extra cost is worthwhile. 

This paper begins with proposing a task-oriented 
mechanism of measuring the value of resource usage in a 
computational grid. Based on this mechanism, the values of 
using heterogeneous resources can be translated into a 
common currency. Based on the value of resource usage, 
both computational economic-based and game theory-based 
distributed resource allocation mechanisms are established 
for computational grids. 



The rest of this paper is organized as follows: Section 2 
presents the task-oriented mechanism for measuring the 
economic value of using resources in computational grids. 
Based on this task-oriented mechanism, Section 3 gives both 
auction-based and market-based resource allocation 
mechanisms for computational grids. Section 4 describes the 
game theory-based resource allocation mechanism for 
computational grids. Section 5 gives summary and our future 
work.  

 

2. Value of Resource Usage 
Traditionally, people measure resource usage by the 

amount of computational units of the corresponding type of 
resources used. For example, the usage of a CPU is measured 
by the number of time slots used [1,2]. Currently, people 
inherited this measuring tradition in computational grids. The 
price settings are based on computational units of resource 
usage in the economic-based resource allocation strategies 
for a computational grid. Based on this price setting 
mechanism, in order to allocate their tasks to appropriate 
resource suppliers, users must be aware of the amounts and 
kinds of resource units they need for a certain task to 
calculate the cost and predicate the performance. 

However, unlike most traditional computational 
platforms, even the same types of resources in computational 
grids vary over a wide range of capabilities. The tasks in 
computational grids usually need intensive resources that 
have different capabilities. A typical example is a task that 
involves a large-scale difference in clock rates of CPUs. It is 
not appropriate to measure the CPU usage only according to 
the number of time slots required, because the computational 
capabilities of the time slots of different CPUs used could be 
different. The prices of CPU units should not only reflect the 
time slots but also the differentiation of physical capabilities 
of the CPUs.  

Unfortunately, it becomes extremely complex for users to 
evaluate whether they should outsource a resource intensive 
task if different CPU units have different prices. Meanwhile, 
the available resources in a grid could differ at different 
times. Hence, even identical tasks must be evaluated at each 
time when they will be executed. Also, different users have 
different performance criteria and requirements. They would 
like to find the cheapest resources that can satisfy their 
performance requirements. It is too complicated to use the 
value of computational resource units to represent users’ 
different preferences.  

Thus, a new mechanism for measuring the economic 
value of resource usages should be developed to hide the 
differentiation of physical capabilities of the same type of 
resources. The value of a resource usage also should reflect 
the different user preferences in a grid.  

 
2.1. An Observation 

For the sake of simplicity, we use CPUs (processors) as 
our example resource to describe how to model the 
capabilities of a resource by considering the certain 
performance it can achieve based on certain tasks instead of 
using the resource usage units. To begin, we give a simple 
observation to show the basic idea behind the task-oriented 

mechanism of measuring the value of a resource usage in this 
paper. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Suppose there are three processors P1, P2, and P3, which 

have different speeds (Here, we do not specify what exact 
meaning of the speed of a CPU. It could be measured by 
MIPs, clock rates, or any other kind of standard units) from 
the highest to the lowest respectively. Given an identical job, 
these three processors would finish it in different amounts of 
time (We assume all other conditions are same, e.g. same 
amount of RAM associating with each processor). Figure 1 
shows the performance of each processor. The equivalent 
performance line depicts the fact that these three processors 
P1, P2, and P3 finish an identical job within H1, H2, and H3 
CPU hours respectively. The amount of work they did is 
same, but they used different amounts of time.  

If a resource user gives the same job to P1, P2, and P3, 
how should the processor owner charge the user for using 
different processors? If all processors can satisfy the deadline 
of a job, the resource user would prefer not to pay extra for 
using P1. But if the deadline of the job is tight, he may be 
willing to pay more for using P1. Therefore, in order to set 
proper prices for using P1, P2, and P3 to execute an identical 
job, the resource suppliers need to consider both the different 
capabilities of the processors and the users’ performance 
preferences. Hence, modeling resource capabilities by 
considering the tasks a resource can accomplish while 
satisfying the corresponding performance requirements is 
critical for measuring the economic value of resource usage 
in computational grids. 
 
2.2. Modeling Resource Capabilities 

The main performance criterion of CPUs is how long it 
takes to finish a job. Therefore, we can define the capability 
of an individual processor as follows: 
Definition 1: Given a task k with duration D and a processor 
P, the capability of the processor P for executing task k is 
denoted by CanSingle(P, k, D). CanSingle(P, k, D) is true if 
and only if P can finish k within D. 

If time constraints are the only performance criteria, it is 
easily to extend above definitions to other types of 
computational resources such as disks and network 
bandwidth. In this paper, we only consider the time 
constraints as the performance requirements for modeling the 
resource capabilities in grids. The general definition of a 
group of resource in a computational grid is as follows: 
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Figure 1: Equivalent Performance by Different Processors 
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Definition 2: Given a set of task K = {k1, …, kn} with a 
duration D and a group of resources G =  {R1, …, Rm}. Ris in 
G could be heterogeneous. The capabilities of a group of 
resources in G for executing the tasks in K is denoted by 
CanGroup(G, K, D). CanGroup(G, K, D) is true if and only if 
the resources in G can finish all kj within D. 

These definitions encapsulate the physical differentiation 
of resources from users and allow users to ignore the physical 
capabilities of resources. Definition 2 implicitly indicates 
that there should be some scheduling algorithms for 
heterogeneous resources, which can schedule tasks in K 
properly so that the resources in G can achieve tasks in K 
within D. The quality of a scheduling algorithm has a strong 
impact on the capabilities of a group of resource, but all these 
scheduling algorithms are also hidden from users who have 
tasks in K. The owner of the resources in G will take care of 
these scheduling algorithms.  
 
2.3. Economic Value of Resource Usages 

In this paper, the economic value refers to the true value 
of a commodity that can generally be accepted by all agents 
in an economic model. The economic value of a resource 
usage is not the value of a resource itself but the value of 
using the resource.  

From a user’s perspective, no matter what kind of 
processors are provided to execute an identical task, the 
economic value of using these processors are equivalent to 
the user if they can finish the task with satisfying the time 
constraints of the task. The economic value of using a 
processor is decided by the task it executes. For individual 
processors, we have the following claim for the equivalent 
values of using two different processors:  
Claim 1: Given a task k with duration D, and two processors 
Pi and Pj. Pi and Pj may have different clock rates. The 
economic value of using Pi to execute k is denoted by V(k, 
D, Pi). We say V(k, D, Pi) = V(k, D, Pj) if and only if both 
CanSingle(Pi, k, D) and CanSingle(Pj, k, D) are true. 

Similarly, from a user’s perspective, the economic value 
of using a group of resources is decided by the tasks they 
execute. Hence, we have the following claim (We will not 
prove these claims as they are common senses.) to address 
the equivalent value of using two groups of resources: 
Claim 2: Given a set of task K = {k1, …, kn} with a duration 
D and two group of resources G1 =  {R11, …, Rm1} and G2 =  
{R11, …, Rr1}. The resources in G1 and G2 could be 
heterogeneous. The economic value of using G1 to execute 
the tasks in K is denoted by V(K, D, G1). We say V(K, D, 
G1) = V(K, D, G2) if and only if both CanGroup(G1, K, D) 
and CanGroup(G2, K, D) are true. 

An important fact is that any agent in a computational 
grid does not have the super power to set the true economic 
value of using a resource. The value should be decided by the 
interaction among all agents (both the resource users and 
suppliers) in the grids. Whether an established value of a 
resource usage is stable depends on the relationship between 
the amount of resources demanded and supplied. Indeed, the 
real value of resource usage should be equal to the amount of 
money by which users are willing to pay for as well as the 
suppliers are willing to sell.  The value of using a resource is 

not the price of using the resource, but a fair price should 
reflect the real value of using a resource [14]. 

Different users have different performance preferences. 
They search for the cheapest resources that can satisfy their 
performance requirements based on their local knowledge, 
computational capabilities and budget limitations. Users do 
not need to know how many resource units their tasks need 
or the exact time slots their tasks are executed on each 
resource. They do not need to be aware the differentiation of 
resource capabilities, either. They only want to know the 
resource consumption as a whole for a certain task in order to 
evaluate the outsourcing decision.  

Suppliers try to allocate their resources to the most 
profitable tasks and prevent their resource from being idle as 
much as possible. Suppliers plan and schedule their resource 
based on user requirements, the costs and their local 
knowledge. Allocating resources to a certain task is a service 
provided to the corresponding user by a resource supplier. 
The cost of a service is affected by how much resource it 
needs, how long it takes, and which levels of customer 
service are required. Consequently, the resource demand for 
users turns out to be a service demand to suppliers. Different 
services result in different costs. 

Based upon the above analyses, any mechanism for 
measuring the economic value of resource usage in 
computational grids should obey the following principles: 
• The economic value of using a resource is evaluated by the 

task executed by the resource. The value of using different 
resources with different physical capabilities to execute 
same tasks can be the same. 

• The values of using two groups of resources are equal if 
they can achieve identical tasks while satisfying the same 
performance requirements.   

• The real economic value of using a resource is established 
through the interaction among all agents in a 
computational grid. 

• The established economic value of using a resource is 
stable if the relationship between the amount of resource 
demanded and supplied is also stable.  

• A fair price of using a resource generated through an 
economic-based resource allocation mechanism can reflect 
the real economic value of using the resource. 

 
2. 4. Task-Oriented Mechanism for Measuring 
the Economic Value of Resource Usage 

Again, we use CPU as an example to illustrate our 
mechanism. Referring to Figure 1, three processors with 
different speeds deal with an identical task. We say the usage 
of each processor for the task is the same. Mathematically, 
“the usage of each processor” here refers to the area of each 
rectangle in Figure 1.  The formal definition of the usage of a 
processor to execute a computational task is given as follows: 
Definition 3: Given a task k and a processor P, the speed of 
P is C(P). P needs H hours to finish k. The usage S(k, P) of P 
for executing k is the following: 
                        S(k, D, P) = C(P) × H                               (2-1) 
This definition reflects the amount of processor usage to 
execute a task no matter what kind of processors are used. 
The following claim is obviously true: 



Claim 3: S(k, D, Px) = S(k, D, Py) for given Px and Py which 
are two processors with different speeds.   

Claim 3 means the total amount of resource usage for 
executing the same task is not changed by using processors 
with different speeds. Based on this claim, we can establish a 
mechanism to translate the usage of CPUs with different 
speeds to a common measurement. The idea is to establish a 
standard speed and convert real CPU usage to the usage of a 
virtual CPU with the standard speed. For example, assuming 
other conditions are same, if a 3MHz CPU can finish a task 
in 3 minutes, then a 1MHz CPU can finish it in 9 minutes 
(We assume that the task can be divided into 3 subtasks 
evenly and all other conditions are same). Then 3 1MHz 
CPUs can finish the task in 3 minutes. Hence there are two 
directions to convert the CPU usage of a task, one is 
changing the duration and the other is changing number of 
CPUs with the standard speed.  

Users in computational grids generally expect to finish 
their tasks as soon as possible. In practice, users would 
expect their tasks finished in certain duration (e.g., the 
duration between job submitting time an expected 
completion time). Given a task with certain duration, we can 
measure the usage of CPU for executing the task by 
calculating how many standard CPUs should be used to 
execute the task while satisfying the time constraints given 
by the user. We also define a standard time unit to measure 
the expected duration of a task. Thus, the definition of the 
usage of processors to execute a computational task is 
modified as follows: 
Definition 4: Given a task k with a certain expected duration 
D, the standard CPU speed is C(Ps) and the standard time 
unit is Ds. D = m × Ds. In order to finish k within D, there 
should be n processors with speed C(Ps) working 
simultaneously (assume k can be divided into n subtasks 
evenly) or a processor with speed n × C(Ps). The usage S(k, 
n, P) of CPUs for executing k is the following: 
                      S(k, D) = n × C(Ps) × m × Ds                     (2-2) 
This definition implies that the CPU usage of any task can be 
measured through a standard speed and a standard time unit. 
The standard unit of CPU usage is given by equation 3-3: 
                             Ss = C(Ps) × Ds                                    (2-3) 

Based on equation 2-3, the CPU usage for executing a 
task can be measured through Ss by changing the number of 
CPUs with the standard speed or the number of the standard 
time units to finish a task. Thus equation 2-2 becomes: 

                   S(k, D) = n × m × Ss                                (2-4) 
If the economic value of Ss is Vs, it is easy to calculate the 

corresponding economic value V(k, D) of CPU usage for 
executing the task.  

                   V(k, D) = n × m × Vs                               (2-5) 
However, equation 2-5 does not reflect the common sense 

that the CPU usage for executing a task in a shorter duration 
might have higher value that the one for executing the same 
task with a longer duration. In order to catch this fact, we 
modify equation 2-5 as follows: 

               V(k, D) = (n+λ1n0)× (m+λ2m0) × Vs            (2-6) 
Where, n0 and m0 refer to the increasing number of CPUs 
with the standard speed and the number of the standard time 
units respectively. n0 and m0 can be negative. The 

coefficients λ1 and λ2 in equation 2-6 imply that changing the 
number of CPUs with standard speed and the number of the 
standard time units to finish the same task results in different 
economic values of CPU usage. Mathematically, equation 2-
6 equivalent to          
           V(k, D) =  nmVs+λ1m n0Vs  
                             +λ2n m0Vs +λ1λ2 m0 n0Vs                
If only either m0 or n0 is equal to 0, then we can have: 
                      V(k, D) = nmVs+λ1m n0Vs                         (2-7) 
or                   V(k, D) = nmVs+λ2n m0Vs                        (2-8) 
If λ1 ≠ λ2, then changing the number of CPUs with standard 
speed and the number of the standard time units to finish a 
same task causes different economic values of CPU usage.  

We have now established a task-oriented mechanism for 
measuring the economic value of CPU usage for executing a 
task in a computational grid. It can be extend to a group of 
heterogeneous resources through defining a standard 
computational unit based on the definition of the capability 
of a group of heterogeneous resources. We leave this for the 
future work.  
 

3. Economic-Based Resource Allocation 
Unlike traditional computational platforms, to build a 

stable computational grid, the incentives of both users and 
suppliers to participate the grid must be addressed in the 
resource allocation mechanisms. Using computational 
economic-based strategies is a promising direction for 
building such resource allocation mechanisms in grids 
[1,2,3].  

Economic-based mechanisms have been extensively 
studied as resource allocation mechanisms for distributed 
computing systems [13]. However, under the computational 
grid settings, no such mechanism has been established in real 
applications. Researchers have done experiments based on 
some popular computational economic-based mechanisms 
such as auction and market mechanisms [1,2,3]. Based on the 
traditional resource usage value measurements, it is hard to 
convince people that it is worthwhile to join a computational 
grid instead of purchasing their own new computational 
resources. We establish economic-based resource allocation 
mechanisms for computational grids based on the task-
oriented mechanism of measuring the value of resource 
usage. 

A question raised here is how to define a user task. Which 
one is more appropriate, a simple task that can be executed 
by an individual resource or a complex task that requires the 
cooperation among heterogeneous resources? In our 
mechanisms, users decide which kind of task they want to 
outsource. If a user decomposes a complex task into a group 
of simple tasks and outsources them, he has to take care of 
scheduling tasks to satisfy the time constraints of the 
complex task. If a user wants to outsource a complex task 
entirely, resource suppliers do the scheduling and bid for the 
task if they can satisfy the time constraints. 

 
3.1. Auction-Based Mechanism 

Recently, combinatorial auction-based resource allocation 
mechanisms have extensively explored [1,2,3,4,5,9,13,14]. It 
is the simplest economic-based resource allocation 



mechanism in the sense that the implementation of an 
auction-based mechanism is simpler than that of other types 
of economic-based mechanisms. 

Wolski et al. [1, 2] have showed that the performance of 
auction-based resource allocation mechanisms is beaten by 
market-based resource allocation mechanisms. However, 
their experiments base the resource usage measurement on 
setting the bids for the computational units of resources. This 
is the most important reason that the auction-based resource 
allocation mechanisms have lower performance than the 
market-based mechanisms. The tasks in a computational grid 
generally require intensive resources. If all resource units 
needed are obtained by auctions, the scheduling process must 
start after the user ends his bid on resources. Also, finding 
the winner in a combinatorial auction has been approved a 
NP-hard problem [5]. As a computational platform, it is hard 
to improve the efficiency of resource allocation through 
auction. 

However, based on our task-oriented mechanism for 
measuring resource usage value, the commodities are not the 
usage units of the computational resources but the tasks from 
users. It is valuable to re-examine the performance of the 
auction-based resource allocation mechanism under this new 
setting. The auctioneers are users who have computational 
tasks. When a user initializes an auction, he has already set 
the performance requirement. The resource suppliers bid for 
the opportunity to provide resources that are capable of 
executing users’ tasks by giving a certain cost. A resource 
supplier has already warranted the performance when he 
commits a bid. The user will select the auction winner to 
execute the task.  
 
3.2. Market-Based Mechanism 

Market-based strategies seem naturally appropriate for 
building economic-based resource allocation mechanisms in 
computational grids, because the users and the resource 
suppliers in computational grids are easily translated into 
buyers and sellers in commodity markets. Intuitively, the 
commodities are usages of resources such as CPU time slots, 
number of files stored etc. This is probably the reason that 
the original computational-based resource allocation 
mechanisms were built on setting prices for the units of 
resource usage. However, in real applications, it is 
impractical for users to know the physical capabilities of 
CPUs that are available in a computational grid at certain 
time in advance. It is infeasible for users to predicate how 
many computational units of a certain type of resources they 
need to execute their tasks.  

We propose a market-based resource allocation 
mechanism for computational grids, also based on our task-
oriented mechanism for measuring resource usage value. 
Again, the commodities in markets are not the usage of the 
computational resources. Resource suppliers provide their 
resource to execute users’ tasks as services to the users. That 
is, resource suppliers sell services to users instead of selling 
the amount of resource usages. Users do not need to know 
the amount of resources required to execute their tasks 
exactly. They only need to know the cost of the services 
provided by the resource suppliers. A stable price for a 

service should be established in a long run through the 
interactions among all agents in grids. This stable price 
should be fair in the sense that it reflects the real economic 
value of resource usages required for the corresponding 
service. An important question we need answer here is how 
to set the original prices for services provided by resource 
suppliers. There are two possible approaches.   

In the first approach, resource suppliers set the original 
prices for the services they provide based on the total amount 
of resources required, the qualities of services and the 
expected profit they want to make. Note that resources used 
to provide the same service could be different at different 
times. Consequently, the amount of resource required does 
not reflect the real value of the resource usage of the service. 
In fact, a supplier should set the original price for a service 
based on the task that the service can finish while satisfying 
the performance requirement.  

Setting the appropriate original prices is very hard for 
resource suppliers, because nobody knows the real economic 
value of a resource usage at the beginning. The second 
approach combines auction-based and market-based 
mechanism.  

 
3.3. Combined Auction-Based and Market-
Based Mechanism 

As Wolski et al [2] pointed out, commodity markets and 
auctions represent two ends of a spectrum of market 
formulations, from satisfying all bidders and sellers at a 
given price to satisfying one bidder and one seller at a given 
price. It is obviously possible to consider market 
organizations that are between the extremes. We construct 
such a combinational resource allocation mechanism by 
using auctions for a certain task at first. The original price of 
a service to achieve the task can be set. Then, put the prices 
in perfect competitive markets [2], and let the relationship 
between service demand and supply and the interaction 
among agents adjust the prices to be fair. 
 
3.4. Market-Based Mechanism Evaluation 

Wolski et al [1, 2] have proposed four criteria for 
evaluating economic-based resource allocation mechanisms 
in computational grids: the grid-wide price stability, market 
equilibrium, application efficiency and resource efficiency. 
Price stability ensures scheduling stability. Equilibrium 
measures the fairness of prices. Application and resource 
efficiency measures how well the grid functions as a 
computational platform. These four criteria should also be 
used to evaluate our auction and market-based resource 
allocation mechanisms for grids. We have not done this 
evaluation yet. 

Furthermore, we should consider the individual 
rationality [12] of each individual agent in a grid. If a user 
would spend more money by outsourcing tasks than 
purchasing more resources, that user will not outsource the 
tasks. Similarly, if a supplier cannot make profit from 
providing resources to a grid, the supplier will not join the 
grid. Although this is the most important criterion for giving 
incentives to agents participating in a grid, it is missed for 



evaluating an economic-based resource allocation 
mechanism in previous work [1,2,3]. 

We have not finished the evaluation results, so we cannot 
include them in this paper.  

  

4. Game Theory-Based Mechanism 
The most obvious weakness of the commodity market-

based mechanism for resource allocation mechanism in 
computational grids is that is no such real market exists 
currently. It is hard to verify that the empirical results in 
experimental settings can be duplicated in a real market for 
computational grids. 

Another kind of economic-based resource allocation 
mechanisms is based on Game theory. They do not need 
price setting mechanisms for support. The typical example is 
coalition formation. Self-interested agents form a coalition to 
pool their capabilities and resources to solve their own 
problems more efficiently and less expensively. Researchers 
in multi-agent systems society have developed quite a few 
coalition formation-based resource allocation mechanisms 
for cooperation among self-interested agents [11]. According 
to our knowledge, this type of economic-based resource 
allocation mechanisms has not been investigated for 
computational grids yet. 
 
4.1. Coalition Formation-Based Mechanism 

Indeed, coalition formation is a more practical mechanism 
for resource allocation in computational grids compared to 
other economic mechanisms. The reason is the following: 
The tasks in a computational grid need intensive 
computational resources in real applications generally. The 
potential users who have such tasks are not individuals but 
organizations that already have owned a large amount of 
computational resources. Even so, these users need more 
computational power to execute their tasks at some peak 
times. Meanwhile most of their resources are idle at other 
times. In other words, agents in computational grids could be 
both resource users and suppliers. Coalition formation 
provides a cooperation mechanism for multiple organizations 
that have this problem to put their resources into a grid and 
satisfy their resource requirements at peak time without 
purchasing more resources as well as improve their resource 
utilization.  

Indeed, real organizations have already started to 
negotiate with each other to share their computational 
resources to execute large computational tasks. For example, 
some research labs negotiate with commercial companies to 
use the computers of those companies at night from 6pm to 
7am and the commercial companies can use the machines of 
the research labs whenever they are idle. Human subjects 
execute the negotiation processes to establish certain 
resource allocation mechanisms for such a computational 
grid currently.  

However, these negotiation processes only can be run to 
initialize a computational grid. Afterwards, if there are 
internal or external changes (e.g. software upgrades) for the 
grid, the resource allocation mechanisms should be changed 
by resetting some other negotiation processes. Furthermore, 
negotiations among human subjects cannot be in task level 

because it is impossible for human subjects to negotiate for 
every computational task. Hence, it is impractical to build 
efficient and adaptive resource allocation mechanisms for 
computational grids through negotiations among human 
subjects. Automatic distributed coalition formation 
mechanism through automate negotiation should be 
established for resource allocation. 
 
4.2. Distributed Coalition Formation 

Game theorists did not provide algorithms for forming 
coalitions. Researchers in multi-agent systems society have 
been developing algorithms for forming buyer coalitions in 
electronic markets so that buyers can obtain greater discount 
from sellers without purchasing more than they really want to 
buy [8,9,10]. In the computational grids, agents can achieve 
desired performance by forming coalitions to share 
computational resources without purchasing more resources 
individually.  

Buyer coalition formation generally involves a group 
leader who is responsible for evaluating the value of each 
possible coalition formed by a group of agents [8,9]. 
However, in computational grids, a centralized coalition 
formation mechanism is impractical for allocating resources. 
Agents are leaving and joining a grid randomly. A 
centralized resource allocation mechanism is not appropriate 
for handling the dynamics in such a large-scale environment. 
A distributed coalition formation mechanism [11] is 
required, meaning no such group leader exists. Coalitions are 
formed through negotiation among agents.  

Agents evaluate the value of a possible coalition and the 
benefit they can obtain from joining the coalition based on 
their own preferences and local knowledge. The value of a 
coalition is defined as the sum of the values of resource 
usage required to execute all tasks that the coalition can 
achieve. An agent will join the best coalition that it finds. 
The best coalition is the one by which the agent could let all 
his tasks achieved with minimum cost as well as maximize 
his own resource utilization.  

To develop such a distributed coalition formation 
mechanism, two important issues should be considered. One 
is the automatic negotiation mechanism. The other is 
evaluating the fairness of the payoff division of a coalition.  
 
4.2. Automate Negotiation Mechanism 

There are three main issues in defining a negotiation 
mechanism: the space of possible deals, the negotiation 
process, and the negotiation strategy [6, 7]. The negotiation 
invoked for forming a coalition is generally not just two 
parties in a grid. The space of possible deals for each agent is 
the total number of the possible coalitions he could join. 
Obviously, there could be multiple agents involved in one 
negotiation process. The negotiation strategies could vary 
based on the preferences of agents. The resulting deals 
should achieve the Pareto optimality [6, 7], meaning no agent 
can improve its own utility without lowering the utilities of 
others. The utility of joining a coalition for each agent is the 
difference between the cost of executing its tasks by using its 
own resources and the cost resulted by joining a coalition to 
execute his tasks using resources in the coalition.  



 
4.3. Payoff Division Evaluation 

In order to form a stable coalition in computational grids, 
the payoff division within the coalition must be fair. We use 
the core concept in the theory of coalition formation to 
evaluate whether a payoff division is stable [12].  Namely, 
any subset of agents in a coalition can get at least as much by 
joining the coalition as the value of the coalition formed by 
the agents in this subset. The fairness of the payoff division 
is critical for the stability of a coalition in a grid. It provides 
the incentive for agents to stay in the coalition. 

 

5. Conclusion and Future Work 
Traditionally, both centralized or decentralized resource 

management mechanisms for computational platforms have 
been constructed from the top down, namely, fixed decision 
rules are imposed to handle all possible situations in resource 
management in that platform. This design philosophy does 
not work well in computational grids, because there does not 
exist an omniscient designer who can develop such a 
resource management mechanism that satisfy the preferences 
of all self-interested users and resource suppliers as well as 
maximize the global efficiency of a grid as a computational 
platform. Instead, in computational grids, resource 
management mechanisms should be established from the 
bottom up, meaning that every resource user or supplier 
makes individual decision based on local knowledge and 
preferences without considering the global good, but the 
global efficiency is generated from bottom up through the 
interactions among agents [14]. The computational 
economic-based approach is a promising avenue for building 
such a distributed resource management mechanism for 
computational grids. 

The key difficulty in building a computational economic-
based resource allocation mechanism is measuring the 
economic value of resource usage by a common currency. 
This is one of the most important obstacles to make 
computational grids realistic because it is difficult to 
convince agents that participating in computational grids is 
less expensive than purchasing more computational resources 
to obtain the same amount of computational power. 

In this paper, we proposed a task-oriented mechanism for 
measuring the economic value of using heterogeneous 
resources in computational grids. This mechanism provides 
feasibility for grid users to evaluate their outsourcing 
decisions. It also gives resource suppliers incentive to 
provide their resources to computational grids. Based on the 
economic value of resource usages, both computational 
economic-based and game theory-based distributed resource 
allocation mechanisms are established. 

Currently, we have just establish these economic-based 
resource allocation mechanisms. To implement all these 
mechanisms, the appropriate resource discovery mechanisms, 
negotiation protocols and resource planning and scheduling 
algorithms are developed to support the entire allocation 
mechanisms. 

Another important issue to consider in the future is how 
the computational capabilities of agents may affect their 
resource allocation decisions in computational grids. The 

complexity of evaluating a resource allocation decision is 
generally intractable. The bounded rationalities [4] of agents 
in computational grids should be investigated.    
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