
An Efficient Heuristic Bundle Search Algorithm for Buyers in Electronic Markets

Linli He and Thomas R. Ioerger
Department of Computer Science

Texas A&M University, College Station, TX77843-3112
{linli, ioerger}@cs.tamu.edu

ABSTRACT

In the age of electronic commerce, with low-cost information
access, it has been recognized that a bundle search in a
combinatorial trade is very valuable for buyers. Optimal travel
package search is one of the most prominent examples of bundle
search, allowing buyers to exploit various discounts through
business partnerships among sellers. There are many varieties of
bundle search problem. In general, these problems are varieties
of the NP-hard Knapsack problem. Developing heuristic
algorithms to find close optimal results is a promising approach
to solving those problems with polynomial or even linear
computational complexity. In this paper, we address a bundle
search problem for buyers in electronic markets. There exist
multiple sellers in a market. Sellers offer widely varying prices for
identical items and various discount ratios for different
purchasing costs. We propose a heuristic bundle search
algorithm, Maximal Gain Bundle Search (MGBS) algorithm, to
solve this problem. The time complexity of MGBS algorithm is
O(NM) in the worst case. The experiments show that the
execution time of the MGBS algorithm is not sensitive to an
increase of the number of bundle goods and sellers. The
simulation results also show that the MGBS algorithm can
produce a nearly optimal bundle purchase for buyers.

Keywords
Heuristic search, Buyer strategy, Bundle search, Discount ratio

1. INTRODUCTION
In electronic commerce, the distance among producers,

wholesalers, distributors, retailers, and consumers has nearly
disappeared [1]. One of the most popular areas of research is
electronic combinatorial commerce, where combinations of goods
and services are traded and efficiently allocated. For instance,
electronic combinatorial auctions are becoming more and more
popular [2,3,4]. There are many more choices faced by all parties
involved in electronic commerce than in traditional commerce. As
a result, the relationship between suppliers and customers is
undergoing revolutionary changes.

Buyers vary a great deal in the quantity of goods they
purchase, in customer service requirements, in income, in time
constraints and along many other aspects. Different purchasing
goals can cause widely varying production and transaction costs.
Suppliers have their “buyer selection” strategies to enhance
profitability [5]. In electronic markets, quickly differentiating the
supplier’s marketing strategy based on the difference of
purchasing goals from various buyers plays a key role in
improving suppliers’ competitive capabilities.

On the other hand, because of the price differentiation,
buyers can build corresponding purchasing strategies to minimize
their purchase cost. In traditional markets, the high cost of

accessing product information, makes it impractical for buyers to
build such purchasing strategies. Only suppliers employed market
analysis and intelligence to extract the buyer surplus [6].
However, in the age of electronic commerce, buyers also can
access product information easily and inexpensively through the
Internet. For suppliers, bundling large numbers of goods can be
surprisingly profitable [7]. Conversely, buyers can build a
corresponding bundled purchasing strategy to obtain a better
discount. A well-known example of building such a purchasing
strategy for buyers is to form buyer coalitions (buyers’ clubs) to
gain the discount for buying a large numbers of goods in the
electronic market [1,8,9]. This strategy addresses the situation
where different buyers want to buy small numbers of items. So
these buyers can form a buyer coalition to enlarge the quantity of
items in each transaction and get a greater discount.

There is another very interesting strategy called “bundle
search” [6], which addresses the situation where a buyer needs to
buy multiple goods as a bundle. The partnerships among
suppliers, result in different bundles having different discounts.
Typical applications are travel packaging, software, PC
peripherals, etc. The problem is for the buyers to find the optimal
bundle that causes minimum cost. Unfortunately, from an
algorithmic perspective, this problem carries a high computational
cost. In its general form, the scored bundle search is an NP-hard
knapsack problem [6].

In electronic markets, there are many kinds of bundle search,
which are different from travel package search. For example,
many retailers like Amazon, always provide free shipping when
the total amount of the purchase is over a certain threshold. Other
retailers, like Express, provide a coupon for the customer’s next
purchase. Also, even for an identical item, the prices from
different retailers vary widely. Hence, if a buyer has a long
shopping list, finding an optimal combination of retailers that
results in spending a minimal amount of money is a different
bundle search problem from the travel package search. Instead of
considering the discount from the partnerships among suppliers,
the buyer tries to obtain a greater discount from retailers as well as
get minimal price for each item on the shopping list. Solving this
problem is not only valuable for individual consuming buyers, but
also meaningful for industrial buyers when they have multiple
manufacturers from which to select.

Unfortunately, finding the optimal result for this bound search
problem is computationally intractable even for a small number of
goods and sellers. This problem is even more complicated than
the traditional Knapsack problem, because whenever you put one
more item in the knapsack, the values of items that are already in
the knapsack may change according to the supplier of the new
item, because of the different discount policies from different
sellers. The development of heuristic algorithms is a promising
approach to solving this problem with polynomial or even linear
computational complexity [6].

In this paper, we propose an efficient heuristic algorithm to
solve this problem. We totally agree with one statement in [6],
“Exploiting the structure of bundle search is key to reduce
computational complexity”. Our heuristic search rules are based
on our observations of the special characteristics of this problem.
The rest of this paper is organized as follows: Section 2 gives a
simple example and a formal definition of the problem addressed
in this paper. Section 3 describes the heuristic algorithm proposed
to solve this problem. Before a detailed algorithm description, we
discuss the heuristic search rules that are applied for the
algorithm. Section 4 analyzes the complexity and correctness the
algorithm. Section 5 presents the experimental evaluation. Finally,
Section 6 presents our conclusions and discusses future research
directions and possible ways to improve this work further.

2. BUNDLE SEARCH PROBLEM
This section gives a formal definition of the bundle search

problem addressed in this paper. To demonstrate the difficulty of
the problem, we give a simple example.

2.1 An Example
At the beginning of each semester, for every college student,

purchasing textbooks is a big expenditure. Thanks to the
electronic market, it is possible to get books much cheaper than
buying them from campus bookstores. Amazon provides
information on some used textbooks with very attractive prices.
Half is also a popular place for textbook shopping. Ordinarily, the
prices for the same textbook vary widely with different electronic
bookstores, seasons, book conditions, and so on. Of course, if a
customer buys more books in one store, he or she may get free
shipping, a mail-in rebate, or other kinds of coupons for future
purchases. How does one select sellers for textbooks with minimal
cost? Intuitively, the optimal solution could be obtained by
enumerating all possible combinations of retailers, calculating the
costs and picking the one that causes minimal cost. This is a very
simple algorithm. Unfortunately, the computational cost is very
high.

 Retail0 Retail1 Retail2 Retail3 Retail4

Book0 $90.00 $95.00 $98.00 Empty $88.00

Book1 $35.00 Empty $30.00 $39.00 Empty

Book2 Empty $48.00 $50.00 $58.00 $45.00

Book3 $80.00 Empty Empty $75.00 Empty

Table 1 shows an example for this case. “Empty” means the
retailer does not have this book in stock. There are 4x3x4x2 = 96
possible combinations of retailers to buy these four books. If there
were no “Empty” cases, there would be 54 = 625 possible
combinations. If there are 10 books and 10 suppliers, the total
number of possible combinations of retailers is 1010.
Customers may not pay attention to this optimization problem in
the traditional market because the complete goods information
may not be available to them. In an electronic market, it is not
expensive at all for buyers to obtain the goods information. A
formal definition of this problem follows.

2.2 Problem Formalization
Problem Definition:

Given a set of goods that a buyer needs to purchase G = {G0,
G1, …, Gm-1}. There is a set of sellers S = {S0, S1, …, Sn-1}
who can supply some or all goods in G. Each seller Si (i = 0,
1, .., n-1) has its own discount function fi: Ci → Di. Ci is the
cost of each purchase and Di is the corresponding discount
for Ci. Also there is a retail price vector Pi = (Pi0, Pi1, … Pi, m-

1) for each seller Si. If seller Si has no item Gj available, Pij =
0. The question is how to find an optimal combination of
sellers from S that can provide minimal cost of purchasing all
goods in G efficiently.

To illustrate this problem, we borrow the idea of the linear
graph in [6]. Figure 1 shows how to represent this bundle search
problem in a linear graph. We use the example in Table 1. Gi
represents book[i] and Sj represents retailer[j]. There are 4 layers
of nodes. Each layer refers to the corresponding item. The nodes
of each layer represent the sellers who can supply the goods. We
use term “layer” instead of “stage” in [6] because there is no order
among different goods in our case. Namely, the index of each
layer is just an identifier of each goods. We define a “purchase
path”, which is formed by a node sequence in the linear graph. It
starts at layer G0 and ends at layer G3 and includes only one node
from each layer. The total cost of this purchase path is the total
amount of cost spent on all sellers in the path. The bundle search
problem defined above turns out to be a problem of finding a
purchase path in the linear graph, the cost of which is minimum.

The bundle search problem we address in this paper is
different from the travel package search problem. For the travel
package problem, the discount comes from the partnership
between different sellers (e.g. airlines, car rental companies,
hotels etc.). The discount function in the bundle search problem in
this paper is built independently for each seller. Partnerships may
exist among different sellers. The discount ratio from partnership
is fixed.

The difficulty of our bundle search problem mainly comes
from the various discount ratios. Different sellers have their own
discount policies. Even with a single seller, the discount ratios
could vary widely with different amounts of purchase. The general
assumption is that the greater the amounts purchased each time,
the greater discount that buyers obtain. However, the discount
ratio function is not necessarily monotonic increasing. For
example, J.C.Penney often provides $10 off for purchases over
$50, $15 off for purchases over $75, and $35 off for purchases
over $150. If one spends $65, the discount is still $10. The
discount ratio at $65 (15%) is lower than the one at $50 (20%).
Figure 2 shows the corresponding discount ratio function.

Table 1: Textbook Shopping Example

G0 G1 G2 G3

Figure 1: Illustration of the Bundle Search Problem

S0

S2

S3

S0

S1

S2

S4

S2

S3

S4

S1

S0

S3

3. ALGORITHM
There are a number of characteristics of our bundle search

problem that could help to reduce the complexity of this problem
and also obtain a nearly optimal result. These characteristics are
the basis of heuristic search rules used in our heuristic algorithm.

3.1 Heuristic Search Rules
The problem of bundle search comes from the general

economic case, the more one spends with a single seller, the more
discount one gets from that seller. Without this basis, the bundle
search is not a problem. Buyers only need to sort all prices for
each item from different sellers and choose the lowest price. On
the other hand, whenever a bundle discount exists, the sum of the
minimal prices for all goods a buyer wants to buy becomes the
upper bound of the bundle search. If the total cost of any single
combination of sellers for a bundle purchase is larger than the sum
of the corresponding minimal prices, those combinations of sellers
should be discarded, since that bundle is not valuable. This
observation becomes the first heuristic search criterion: for a
bundle purchase, if the maximal discount from each seller cannot
make the total cost of the bundle less than the sum of the
corresponding minimal prices, then the bundle search fails. We
just need to make a purchasing plan according to the minimal
price of each item.

Heuristic Search Rule 1: Maximal Bundle
If the cost of a bundle with the maximal discount from every
available seller is larger than the sum of the corresponding
minimal prices for the goods in the bundle, then it is not
necessary to continue the bundle search.

We call the bundle purchase from one seller which provides
the maximal discount the “Maximal Bundle”. If there are multiple
sellers whose maximal bundle cost less than the sum of the
corresponding minimal prices, we choose the seller who has the
“Maximal Gain Ratio”. To define this term, we need to define the
gain of each bundle purchase from one seller. In this paper, the
gain of each bundle purchase is not defined by the amount of the
discount. If the prices provided by a seller are too high, even if it
gives a large discount, the purchase cost could still be very high.
So, the gain of each bundle purchase is defined to be the
difference between the final cost of this bundle purchase and the
sum of the corresponding minimal prices. The gain ratio is
defined to be the ratio of the gain of a bundle purchase to the sum
of the corresponding minimal prices; so the maximal gain ratio is
the ratio of the gain of the maximal bundle purchase to the sum of
the corresponding minimal prices. Picking the seller with the best
“Maximal Gain Ratio” as our purchasing candidate is our second
heuristic search rule.

Heuristic Search Rule2: Maximal Gain Ratio
If the costs of Maximal Bundles from multiple sellers are less
than the sums of the corresponding minimal prices, we pick
the seller with the greatest ”Maximal Gain Ratio” as the
candidate seller.

The third heuristic search rule comes from the possibility that
the discount ratio could be non-monotonic increasing. Through
the inverse function of the discount function, we can find the
minimal cost to get the same amount of discount from one seller.
Based on this minimal cost, we search for the cheapest bundle
purchase with same amount of discount from this seller, and leave
the other goods for another round of searching. This rule provides
a method to refine the search results already obtained from the
two rules above. The heuristic goal here is to achieve a higher
discount ratio for each partial bundle purchase. According to this
rule, in Rule 2, the maximal gain ratio is calculated for the sub-
bundle with the highest discount ratio.

Heuristic Search Rule 3: Bundle Regression
Before calculating the maximal gain ratio, the maximal
bundle for each seller should be refined to the minimal
bundle from the seller with same amount of discount as the
maximal bundle.

As a summary, all of the heuristic search rules above are based
on the idea that, in order to find a better bundle, buyers search for
lower prices as well as higher discount ratio. These heuristic
search rules are the basis upon which we build our heuristic
algorithm. We call it the Maximal Gain Bundle Search (MGBS)
algorithm.

3.2 Maximal Gain Bundle Search Algorithm
Before we give the complete algorithm, we need to give some

formal mathematical definitions for the terms in the heuristic
search rules above, based on our formal problem definition.
The first term we need to define is the minimal price vector

minP = (0
minP , 1

minP , …, 1
min

−mP), for a bundle purchase G = {G0,

G1, …, Gm-1}. iPmin is the minimal price provided by the sellers in
layer i in the linear graph.

Suppose there is a bundle of sellers, Sb = (Sb0, Sb1, …, Sbk)
for a bundle of goods, Gb = (Gb0, Gb1, …, Gbk). The gain g(Gb,
Sb) of the bundle of Sb is defined by the following equation:
 g(Gb, Sb) =

�
��� −−

Gb

Gb
Sb

Gb
Sb

Gb

P

DPP

min

min)(

�
Gb

SbP denotes the sum of the prices of all goods in Gb of the

sellers in Sb. �
GbPmin denotes the sum of the minimal prices to

purchase all goods in Gb. �
Gb
SbD denotes the sum of the

discounts obtained from all of the sellers in Sb for purchasing
goods in Gb as a bundle.The inverse function of the discount

function of each seller Si is defined by 1−
if : iD → min

iC . We

use two matrices to represent the input data, the price matrix and
the of item Gi from seller Sj. If Sj cannot provide Gi, Pij is equal to
0. providing matrix. The index of rows and columns of these two
matrices represents the identified number of goods and sellers
respectively. In the price matrix Mp, entry Pij represents the price.

Figure 2: The Discount Ratio Function

Purchase Amount

Discount Ratio

0

0 .05

0.1

0 .15

0.2

0 .25

0 50 100 150 200

Maximal Gain Bundle Search (MGBS) Algorithm
Input: Mp, Mr, Empty Vector PV, PC = 0;
Output: 1. Purchasing Plan Vector PV;
 2. Cost of this purchasing plan PC.

Begin MGBS (Mp, Mr) {

1. Get information about good set G and seller set S from Mr and Mp;
2. Size of PV = Size of G;

3. Calculate the minimal price Vector minP and get the corresponding seller Vector minSV of minP ;

4. Calculate the maximal cost MaxCost of this purchase � iPmin - sum of possible discount;
5. For each seller Sj, {
6. Compute the sum of its maximal bundle for G by get the sum of each columns of Mp;
7. Calculate its discount MaxDiscount[j] by calling its own discount function;
8. Calculate its exact bundle cost BundleCost[j];

 }
9. For all BundleCost[j], {

10. If all of BundleCost[j]s are larger than the corresponding MaxSubCost[j] =� jPmin - sum of possible discount;

11. Then { PV = minSV , PC = MaxCost;
12. Return PV, PC;}
13. Else {
14. For each BundleCost[j], {
15. Calculate the corresponding minimal cost MinBundleCost[j] with discount MaxDisicount[j]
 by calling its inverse discount function;
16. Compute the minimal good bundle vector MinBundle[j] = FindMinBundle (MinBundleCost[j], j, Mp)
17. Calculate the gain ratio g(MinBundle[j], Sj) = (MaxSubCost[j]-BundleCost[j])/MaxSubCost[j];
 }
18. Pick up MinBundle[k] of seller Sk with maximal g(MinBundle[k], Sk) among all g(MinBundle[j], Sj);
19. Add Sk to the corresponding positions in Vector PV according to the goods in MinBundle[k];
20. PC = PC + the cost of MinBundle[k];
21. Set the entries of the corresponding rows of this MinBundle[k] to 0 in Mp and Mr;
 }
 }
22. If all entries in Mr are 0 {
23. Return PV, PC;
 }
24. Else {
25. Go back to line 5 with new Mp and Mr;
 }

End MGBS (Mp, Mr).

Procedure FindMinBundle (MinBundleCost, j, Mp) {
1. Fetch the column j in Mp to be the good vector GVj of seller Sj;
2. Sort GVj according to the price increasingly;
3. s = size of GVj;
4. While (s>0) {
5. Remove the last element in GVj;
6. If the sum of prices in GVj < MinBundleCost,
7. then add the removed element back to GVj;
8. s = s – 1 ; }
9. return GVj;}

Figure 3: Maximal Gain Bundle Search Algorithm

Input:
90 95 98 0 88
30 0 35 39 0
0 48 50 58 45
80 0 0 75 0

Mp =

S0 S1 S2 S3 S4
G0

G1

G2

G3

1 1 1 0 1
1 0 1 1 0
0 1 1 1 1
1 0 0 1 0

Mr =

S0 S1 S2 S3 S4
G0

G1

G2

G3

G0 G1 G2 G3

minP =

G0 G1 G2 G3

minSV =

MaxCost = 218

10, if the cost per purchase is larger than 50;
20, if the cost per purchase is larger than 100;
35, if the cost per purchase is larger than 150;
20% off the cost per purchase, if the cost per purchase is larger than 200;

Discount[i] =

Discount function if :

S0 S1 S2 S3 S4

G0

G1

G3

G0

G3

G0

G1

G2

G1

G2

G3

G0

G1

S0 S1 S2 S3 S4

MaxDiscount = BundleCost =

MaxSubCost =

No any BundleCost[j] ≥ MaxSubCost[j]
S0 S1 S2 S3 S4

Gain Ratio =

G0 G1 G2 G3

PV =
PC = 163

0 0 0 0 0
0 0 0 0 0
0 48 50 58 45
0 0 0 0 0

Mp =

S0 S1 S2 S3 S4

G0

G1

G2

0 0 0 0 0
0 0 0 0 0
0 1 1 1 1
0 0 0 0 0

Mr =

S0 S1 S2 S3 S4

G0

G1

G2

G0 G1 G2 G3

PV =
PC = 200

Current Bundles are all minimal bundles
with these discounts

Go back to Step 2 with new Mp and Mr

In this case, assume all sellers use the same
discount policy

Figure 4: An Example Implementation by Using MGBS Algorithm

Step 1

Step 2

Step 3

Step 4

Step 5

160 123 148 137 113

183 133 163 152 123

0.13 0.075 0.09 0.09 0.08

S0 S0 S0

S0 S2 S0 S0

88 30 45 75 S4 S0 S4 S3

40 20 35 35 20

In the providing matrix Mr, the value of each entry Rij only
could be either “1” or “0”. “1” means seller Sj provides Gi. “0”
means seller Sj cannot provides Gi for the current purchase goal.
The providing matrix here is mainly a supportive matrix, which
helps to allocate the identifiers of sellers and goods.

At the beginning of the MGBS algorithm, we need to calculate
the minimal price vector Pmin. Then we apply the heuristic search
rule 1 (Maximal Bundle) to calculate the maximal bundle
purchase from each seller based on its own discount function. If
the gain of the maximal bundle for every seller is negative, we
quit the bundle search and make the purchase decision based on
the minimal price vector. Otherwise, we refine this bundle by
applying the heuristic search rule 3 (Bundle Regression) and
calculating the best discount ratio from each seller with the same
discount according to the inverse discount function. After this, we
pick up the seller with the maximal gain ratio to put the goods of
this bundle from this seller into the purchase decision vector.
Then, we set all entries related to these goods in the price matrix
and proving matrix. Repeatedly run this algorithm until the
purchase decision list is filled completely. Figure 3 shows the
complete algorithm.

In Figure 4, we use the example in Section 2 to demonstrate
this algorithm. Actually, the optimal result of this example is the
same one that is obtained by the MGBS algorithm.

4. ALGORITHM ANALYSIS
The MGBS algorithm is extremely efficient and has very low

complexity cost compared with other algorithms.

4.1 Complexity Analysis
The number of goods a buyer needs to purchase is M, and N

sellers can provide some or all items in G. Since we use the
maximal bundle search strategy, the rounds of the maximal bundle
search must be less than M in the worst case. During each round,
we need to calculate the costs, discounts, the sums of the
corresponding minimal single price and the gain ratios of maximal
bundles for all sellers. Those are 4N times. Additionally, there are
N computations for finding the minimal goods bundles for
maximal discounts in the worst case. In other words, there are CN
times of computation during each round, and C is a constant. The
total time complexity of the MGBS algorithm is CNM, which is
O(NM), a very low time complexity compared with the time
complexity O(MN) for the exhaustive search algorithm. In fact, as
shown in the experimental evaluation, the worst case of MGBS
algorithm rarely happens.

There is a procedure in the MGBS algorithm called
FindMinBundle, which is used for bundle regression. One must
find the minimal combination from a price vector. The sum of this
minimal combination should be equal to or larger than a certain
threshold. We use another heuristic algorithm to solve this
problem. Since more expensive goods affect the amount of
discount much more than cheaper goods (because of the
assumption that the more one buys, the more discount one gets),
the algorithm removes more expensive items in the prices vector.
The bundle regression algorithm sorts the prices increasingly, and
removes the most expensive one from the price vector. If doing so
makes the sum less than the threshold, the algorithm adds the item
back. Otherwise, it tests the second most expensive item,
continuing until all items are tested. The sum of the remaining

items in the price vector is the result The time complexity of this
algorithm is O(V), where V is the size of the price vector and V≤N.

4.2 Correctness Analysis
As mentioned earlier, the upper bound of this algorithm is that

the sum of minimal prices for each goods subtracts the possible
discounts. Furthermore, since the MGBS algorithm tries to obtain
the higher discount ratio rather than the higher amount of
discount, the result is much better than the upper bound in
general. The only case where the MGBS algorithm may not work
properly is when the discount ration of a maximal bundle happens
to be the local optimal point (i.e. Local Optima).

5. EXPERIMENTAL EVALUATION

We implemented both the MGBS algorithm and the full

Cartesian algorithm for our experiments. We used Java 1.4.1 to
implement the algorithms and ran them under Windows 2000.
The experiments ran on a Dell PC with 800MHz Pentium III CPU
and 256MB memory. We used two-dimensional arrays to store the
price matrix and the providing matrix. Another issue is the
memory requirement. For MGBS algorithm, we reused variables
for each subsequent round. For the full Cartesian algorithm, we
used a recursive algorithm to only keep the information about the
current evaluation and the current optimal purchasing path.
Hence, in our implementations of each algorithm, memory access
is not expensive at all.

Our test data constructed by N × N matrices, meaning there are
N available sellers for this N goods bundle. We tested 4 × 4, 5 × 5,
6 × 6, 7 × 7, 8 × 8, 9 × 9, 10 × 10 matrices for both the MGBS
algorithm and the full Cartesian algorithm. The MGBS algorithm
is not sensitive to the increase of the number of goods and sellers
at all. The results obtained from the MGBS algorithm are also

Cost

10×10 9×9 4×4 5×5 6×6 7×7 8×8

G×S

Full Cartesian

MGBS Non-bundle Search

Figure 6: The Results of Different Algorithms

4×4 5×5 6×6 7×7 8×8 9×9 10×10
G×S

MilliSeconds

Figure 5: The Execution Time of Different Algorithms

Full Cartesian

MGBS

0

50

100

150

200

250

300

350

400

0

100

200

300

400

500

600

close to optimal results and much lower than the upper bounds.
Figure 5 shows the execution time of different sizes of matrices. It
is hard to put the execution times of 7 × 7, 8 × 8, 9 × 9, 10 × 10,
because the magnitude is too high compared with the execution
time of MGBS algorithm. Figure 6 shows the final results of
different sizes of matrices. The results of the MGBS algorithm are
close to the optimal results.

Currently, the discount function used in the experiment is the
one in Figure 4. It is constructed based on one of the discount
policies of J.C.Penney. We will test more discount policies and try
to get some real data to test our algorithm in the future.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we address a bundle search problem for buyers

in electronic combinatorial trade. There are multiple available
sellers for each item in the bundle. Each seller can provide
multiple goods in the bundle. Sellers have widely varying prices
for identical items and various discount ratios for different
purchase costs. We propose a heuristic bundle search algorithm,
Maximal Gain Bundle Search algorithm, to solve this problem.
The time complexity of the MGBS algorithm is O(NM) in the
worst case. It is extremely efficient compared with the full
Cartesian algorithm, which has a time complexity of O(MN). The
upper bound of the MGBS algorithm is that the sum of the
minimal prices of all goods subtracts the possible discount for the
bundle. The simulation data show that the execution time of the
MGBS algorithm is not sensitive to an increase of the number of
goods and sellers. The simulation results also show that the
MGBS algorithm can produce nearly optimal bundle purchases.

The bundle search problem in this paper is different from the
travel package search problem in [6] because the discount comes
from the total purchase cost for each seller instead of the
partnership between sellers. Also in the travel package search
problem, each seller only provides one kind of good in general.
The discount ratio for partnership is normally fixed, but the
discount ratio of the total purchase cost from one seller is non-
monotonically increasing because the discount function of a seller
is most likely not linear. Hence, the phase pruning strategy does
not work well for our bundle search problem, because the optimal
previous result may not be the optimal result after adding a new
stage due to the non-monotonically increasing discount ratio,
which is the same reason why dynamic programming [11] does
not work well for this problem.

However, in real applications, the discount for a bundle search
could come from both partnership among sellers and the total
purchase amount from one seller. Developing a heuristic
algorithm for a bundle search problem that considers both
discount sources is a promising direction for future research.

The bundle search problem addressed in this paper could be
extended to many complex bundle search problems for real
applications in the future. For example, for industrial buyers, the
quantity of each kind of good could be a large number. Is the
MGBS algorithm able to handle this situation properly? Another
interesting issue concerns time. In real electronic markets, many
purchases happen during specific seasons or occasions, and sellers
always have some seasonal sales. Buyers could adjust their
purchase goals to utilize the seasonal sales. Buyers have to make
purchasing decision before the sale deadline. Considering these
time issues, making a good bundle purchase plan is a very
interesting problem.

In electronic markets, the result of a bundle search for buyers
can be the input of many other purchasing strategies. For instance,
it can be an input for buyer coalition formation. According to our
knowledge, currently, most buyer coalition formation work
focused on purchasing one [8,9] or at most two [1] kinds of goods
from only one seller. Bundle search for buyers provides a
possibility to form buyer coalitions even if buyers have different
target goods that may be available from different sellers.

Another promising application of bundle search for buyers is
“Service Composition”, which is the strategy of taking several
component products or services, and bundling them together to
meet the needs of a given customer [10]. The service composer
needs to minimize the cost of the composition. In [10], the service
composition is constructed by combinatorial auction. In more
general cases, we can view a service composition as a bundle
search for a buyer.

7. Acknowledgement
This work was supported in part by MURI grant #F49620-

00-1-0326 from DoD and AFOSR.

8. REFERENCES
[1] Ye, Y., and Tu, Y., Dynamics of coalition formation in

combinatorial trading, in proceedings of International Joint
Conference of Artificial Intelligence (IJCAI), 625-630, 2003.

[2] Yokoo, M., Sakurai, Y., and Matsubara, S., Robust
combinatorial auction protocol against false-name bids, in
Proceedings of the Seventeenth National Conference on
Artificial Intelligence (AAAI), 110-116, 2000.

[3] Sandholm, T., Suri, S., Gilpin, A., and Levine, D., Winner
Determination in Combinatorial Auction Generalizations, in
Proceedings of the First International Joint Conference on
Autonomous Agents and Multi-agent Systems (AAMAS),
69-76, 2002.

[4] Sandholm, T., Algorithm for optimal winner determination in
combinatorial auctions. Artificial Intelligence, 135, 1-54,
2002.

[5] Proter, M. E., Competitive Strategy, The Free Press, New
York, 1980.

[6] Chang, Y., Li, C., and Smith, J. R., Searching dynamically
bundled goods with pairwise relations, in proceedings of
ACM Electronic Commerce, 135-143, 2003.

[7] Brynjolfsson, E., and Bakos, Y., Bundling information
goods: pricing, profits and efficiency. Management Science,
Dec. 1999.

[8] Li, C. and Sycara, K., Algorithm for combinatorial coalition
formation and payoff division in an electronic marketplace,
in proceedings of the First International Joint Conference on
Autonomous Agents and Multi-agent Systems (AAMAS),
120-127, 2002.

[9] Lerman, K. and Shehory, O., Coalition formation for
largescale electronic markets, in proceedings of the
International Conference on Multi-Aent Systems, 2000.

[10] Preist, C., Bartolini, C., and Byde, A., Agent-based service
composition through simultaneous negotiation in forward
and reverse auction, in proceedings of ACM Electronic
Commerce, 55-63, 2003.

[11] Puterman, M. L., Dynamic Programming and Its
Applications, Academic Press, 1978.

