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ABSTRACT 
       
In the age of electronic commerce, with low-cost information 
access, it has been recognized that a bundle search in a 
combinatorial trade is very valuable for buyers. Optimal travel 
package search is one of the most prominent examples of bundle 
search, allowing buyers to exploit various discounts through 
business partnerships among sellers. There are many varieties of 
bundle search problem. In general, these problems are varieties 
of the NP-hard Knapsack problem. Developing heuristic 
algorithms to find close optimal results is a promising approach 
to solving those problems with polynomial or even linear 
computational complexity. In this paper, we address a bundle 
search problem for buyers in electronic markets. There exist 
multiple sellers in a market. Sellers offer widely varying prices for 
identical items and various discount ratios for different 
purchasing costs. We propose a heuristic bundle search 
algorithm, Maximal Gain Bundle Search (MGBS) algorithm, to 
solve this problem. The time complexity of MGBS algorithm is 
O(NM) in the worst case. The experiments show that the 
execution time of the MGBS algorithm is not sensitive to an 
increase of the number of bundle goods and sellers. The 
simulation results also show that the MGBS algorithm can 
produce a nearly optimal bundle purchase for buyers.  
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1. INTRODUCTION 
In electronic commerce, the distance among producers, 

wholesalers, distributors, retailers, and consumers has nearly 
disappeared [1]. One of the most popular areas of research is 
electronic combinatorial commerce, where combinations of goods 
and services are traded and efficiently allocated. For instance, 
electronic combinatorial auctions are becoming more and more 
popular [2,3,4]. There are many more choices faced by all parties 
involved in electronic commerce than in traditional commerce. As 
a result, the relationship between suppliers and customers is 
undergoing revolutionary changes.  

Buyers vary a great deal in the quantity of goods they 
purchase, in customer service requirements, in income, in time 
constraints and along many other aspects. Different purchasing 
goals can cause widely varying production and transaction costs. 
Suppliers have their “buyer selection” strategies to enhance 
profitability [5]. In electronic markets, quickly differentiating the 
supplier’s marketing strategy based on the difference of 
purchasing goals from various buyers plays a key role in 
improving suppliers’ competitive capabilities.   

On the other hand, because of the price differentiation, 
buyers can build corresponding purchasing strategies to minimize 
their purchase cost. In traditional markets, the high cost of 

accessing product information, makes it impractical for buyers to 
build such purchasing strategies. Only suppliers employed market 
analysis and intelligence to extract the buyer surplus [6]. 
However, in the age of electronic commerce, buyers also can 
access product information easily and inexpensively through the 
Internet. For suppliers, bundling large numbers of goods can be 
surprisingly profitable [7]. Conversely, buyers can build a 
corresponding bundled purchasing strategy to obtain a better 
discount. A well-known example of building such a purchasing 
strategy for buyers is to form buyer coalitions (buyers’ clubs) to 
gain the discount for buying a large numbers of goods in the 
electronic market [1,8,9]. This strategy addresses the situation 
where different buyers want to buy small numbers of items. So 
these buyers can form a buyer coalition to enlarge the quantity of 
items in each transaction and get a greater discount.  

There is another very interesting strategy called “bundle 
search” [6], which addresses the situation where a buyer needs to 
buy multiple goods as a bundle. The partnerships among 
suppliers, result in different bundles having different discounts. 
Typical applications are travel packaging, software, PC 
peripherals, etc. The problem is for the buyers to find the optimal 
bundle that causes minimum cost. Unfortunately, from an 
algorithmic perspective, this problem carries a high computational 
cost. In its general form, the scored bundle search is an NP-hard 
knapsack problem [6]. 

In electronic markets, there are many kinds of bundle search, 
which are different from travel package search. For example, 
many retailers like Amazon, always provide free shipping when 
the total amount of the purchase is over a certain threshold. Other 
retailers, like Express, provide a coupon for the customer’s next 
purchase. Also, even for an identical item, the prices from 
different retailers vary widely. Hence, if a buyer has a long 
shopping list, finding an optimal combination of retailers that 
results in spending a minimal amount of money is a different 
bundle search problem from the travel package search. Instead of 
considering the discount from the partnerships among suppliers, 
the buyer tries to obtain a greater discount from retailers as well as 
get minimal price for each item on the shopping list. Solving this 
problem is not only valuable for individual consuming buyers, but 
also meaningful for industrial buyers when they have multiple 
manufacturers from which to select.  

Unfortunately, finding the optimal result for this bound search 
problem is computationally intractable even for a small number of 
goods and sellers. This problem is even more complicated than 
the traditional Knapsack problem, because whenever you put one 
more item in the knapsack, the values of items that are already in 
the knapsack may change according to the supplier of the new 
item, because of the different discount policies from different 
sellers. The development of heuristic algorithms is a promising 
approach to solving this problem with polynomial or even linear 
computational complexity [6].  



In this paper, we propose an efficient heuristic algorithm to 
solve this problem. We totally agree with one statement in [6], 
“Exploiting the structure of bundle search is key to reduce 
computational complexity”. Our heuristic search rules are based 
on our observations of the special characteristics of this problem.      
The rest of this paper is organized as follows: Section 2 gives a 
simple example and a formal definition of the problem addressed 
in this paper. Section 3 describes the heuristic algorithm proposed 
to solve this problem. Before a detailed algorithm description, we 
discuss the heuristic search rules that are applied for the 
algorithm. Section 4 analyzes the complexity and correctness the 
algorithm. Section 5 presents the experimental evaluation. Finally, 
Section 6 presents our conclusions and discusses future research 
directions and possible ways to improve this work further.  

2. BUNDLE SEARCH PROBLEM 
This section gives a formal definition of the bundle search 

problem addressed in this paper. To demonstrate the difficulty of 
the problem, we give a simple example.  

2.1 An Example 
At the beginning of each semester, for every college student, 

purchasing textbooks is a big expenditure. Thanks to the 
electronic market, it is possible to get books much cheaper than 
buying them from campus bookstores. Amazon provides 
information on some used textbooks with very attractive prices. 
Half is also a popular place for textbook shopping. Ordinarily, the 
prices for the same textbook vary widely with different electronic 
bookstores, seasons, book conditions, and so on. Of course, if a 
customer buys more books in one store, he or she may get free 
shipping, a mail-in rebate, or other kinds of coupons for future 
purchases. How does one select sellers for textbooks with minimal 
cost? Intuitively, the optimal solution could be obtained by 
enumerating all possible combinations of retailers, calculating the 
costs and picking the one that causes minimal cost. This is a very 
simple algorithm. Unfortunately, the computational cost is very 
high.    

 

 Retail0 Retail1 Retail2 Retail3 Retail4 

Book0 $90.00 $95.00 $98.00 Empty $88.00 

Book1 $35.00 Empty $30.00 $39.00 Empty 

Book2 Empty $48.00 $50.00 $58.00 $45.00 

Book3 $80.00 Empty Empty $75.00 Empty 

 

Table 1 shows an example for this case.  “Empty” means the 
retailer does not have this book in stock. There are 4x3x4x2 = 96 
possible combinations of retailers to buy these four books. If there 
were no “Empty” cases, there would be 54 = 625 possible 
combinations. If there are 10 books and 10 suppliers, the total 
number of possible combinations of retailers is 1010.  
Customers may not pay attention to this optimization problem in 
the traditional market because the complete goods information 
may not be available to them. In an electronic market, it is not 
expensive at all for buyers to obtain the goods information. A 
formal definition of this problem follows.  

2.2 Problem Formalization 
Problem Definition:  

Given a set of goods that a buyer needs to purchase G = {G0, 
G1,  …, Gm-1}. There is a set of sellers S = {S0, S1,  …, Sn-1} 
who can supply some or all goods in G. Each seller Si (i = 0, 
1, .., n-1) has its own discount function fi: Ci → Di. Ci is the 
cost of each purchase and Di is the corresponding discount 
for Ci. Also there is a retail price vector Pi = (Pi0, Pi1, … Pi, m-

1) for each seller Si. If seller Si has no item Gj available, Pij = 
0. The question is how to find an optimal combination of 
sellers from S that can provide minimal cost of purchasing all 
goods in G efficiently.   

To illustrate this problem, we borrow the idea of the linear 
graph in [6]. Figure 1 shows how to represent this bundle search 
problem in a linear graph. We use the example in Table 1. Gi 
represents book[i] and Sj represents retailer[j]. There are 4 layers 
of nodes. Each layer refers to the corresponding item. The nodes 
of each layer represent the sellers who can supply the goods. We 
use term “layer” instead of “stage” in [6] because there is no order 
among different goods in our case. Namely, the index of each 
layer is just an identifier of each goods. We define a “purchase 
path”, which is formed by a node sequence in the linear graph. It 
starts at layer G0 and ends at layer G3 and includes only one node 
from each layer. The total cost of this purchase path is the total 
amount of cost spent on all sellers in the path. The bundle search 
problem defined above turns out to be a problem of finding a 
purchase path in the linear graph, the cost of which is minimum. 
  

 

 

 

 

 

 

 

The bundle search problem we address in this paper is 
different from the travel package search problem. For the travel 
package problem, the discount comes from the partnership 
between different sellers (e.g. airlines, car rental companies, 
hotels etc.). The discount function in the bundle search problem in 
this paper is built independently for each seller. Partnerships may 
exist among different sellers. The discount ratio from partnership 
is fixed.  

The difficulty of our bundle search problem mainly comes 
from the various discount ratios. Different sellers have their own 
discount policies. Even with a single seller, the discount ratios 
could vary widely with different amounts of purchase. The general 
assumption is that the greater the amounts purchased each time, 
the greater discount that buyers obtain.  However, the discount 
ratio function is not necessarily monotonic increasing. For 
example, J.C.Penney often provides $10 off for purchases over 
$50, $15 off for purchases over $75, and $35 off for purchases 
over $150. If one spends $65, the discount is still $10. The 
discount ratio at $65 (15%) is lower than the one at  $50 (20%). 
Figure 2 shows the corresponding discount ratio function.  

Table 1: Textbook Shopping Example 

 

 

 

G0 G1 G2 G3 

Figure 1:  Illustration of the Bundle Search Problem  
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3. ALGORITHM 
There are a number of characteristics of our bundle search 

problem that could help to reduce the complexity of this problem 
and also obtain a nearly optimal result. These characteristics are 
the basis of heuristic search rules used in our heuristic algorithm.   

3.1 Heuristic Search Rules 
The problem of bundle search comes from the general 

economic case, the more one spends with a single seller, the more 
discount one gets from that seller. Without this basis, the bundle 
search is not a problem. Buyers only need to sort all prices for 
each item from different sellers and choose the lowest price.  On 
the other hand, whenever a bundle discount exists, the sum of the 
minimal prices for all goods a buyer wants to buy becomes the 
upper bound of the bundle search. If the total cost of any single 
combination of sellers for a bundle purchase is larger than the sum 
of the corresponding minimal prices, those combinations of sellers 
should be discarded, since that bundle is not valuable. This 
observation becomes the first heuristic search criterion: for a 
bundle purchase, if the maximal discount from each seller cannot 
make the total cost of the bundle less than the sum of the 
corresponding minimal prices, then the bundle search fails. We 
just need to make a purchasing plan according to the minimal 
price of each item.  

Heuristic Search Rule 1: Maximal Bundle 
If the cost of a bundle with the maximal discount from every 
available seller is larger than the sum of the corresponding 
minimal prices for the goods in the bundle, then it is not 
necessary to continue the bundle search.   

We call the bundle purchase from one seller which provides 
the maximal discount the “Maximal Bundle”.  If there are multiple 
sellers whose maximal bundle cost less than the sum of the 
corresponding minimal prices, we choose the seller who has the 
“Maximal Gain Ratio”.  To define this term, we need to define the 
gain of each bundle purchase from one seller. In this paper, the 
gain of each bundle purchase is not defined by the amount of the 
discount. If the prices provided by a seller are too high, even if it 
gives a large discount, the purchase cost could still be very high.  
So, the gain of each bundle purchase is defined to be the 
difference between the final cost of this bundle purchase and the 
sum of the corresponding minimal prices. The gain ratio is 
defined to be the ratio of the gain of a bundle purchase to the sum 
of the corresponding minimal prices; so the maximal gain ratio is 
the ratio of the gain of the maximal bundle purchase to the sum of 
the corresponding minimal prices. Picking the seller with the best 
“Maximal Gain Ratio” as our purchasing candidate is our second 
heuristic search rule.  

Heuristic Search Rule2: Maximal Gain Ratio 
If the costs of Maximal Bundles from multiple sellers are less 
than the sums of the corresponding minimal prices, we pick 
the seller with the greatest ”Maximal Gain Ratio” as the 
candidate seller.  

The third heuristic search rule comes from the possibility that 
the discount ratio could be non-monotonic increasing. Through 
the inverse function of the discount function, we can find the 
minimal cost to get the same amount of discount from one seller. 
Based on this minimal cost, we search for the cheapest bundle 
purchase with same amount of discount from this seller, and leave 
the other goods for another round of searching. This rule provides 
a method to refine the search results already obtained from the 
two rules above. The heuristic goal here is to achieve a higher 
discount ratio for each partial bundle purchase. According to this 
rule, in Rule 2, the maximal gain ratio is calculated for the sub-
bundle with the highest discount ratio.   

Heuristic Search Rule 3: Bundle Regression  
Before calculating the maximal gain ratio, the maximal 
bundle for each seller should be refined to the minimal 
bundle from the seller with same amount of discount as the 
maximal bundle.  

As a summary, all of the heuristic search rules above are based 
on the idea that, in order to find a better bundle, buyers search for 
lower prices as well as higher discount ratio. These heuristic 
search rules are the basis upon which we build our heuristic 
algorithm. We call it the Maximal Gain Bundle Search (MGBS) 
algorithm.  

3.2 Maximal Gain Bundle Search Algorithm 
Before we give the complete algorithm, we need to give some 

formal mathematical definitions for the terms in the heuristic 
search rules above, based on our formal problem definition. 
The first term we need to define is the minimal price vector 

minP = ( 0
minP , 1

minP , …, 1
min

−mP ), for a bundle purchase G = {G0, 

G1,  …, Gm-1}. iPmin is the minimal price provided by the sellers in 
layer i in the linear graph. 

Suppose there is a bundle of sellers, Sb = (Sb0, Sb1, …, Sbk) 
for a bundle of goods, Gb = (Gb0, Gb1, …, Gbk). The gain g(Gb, 
Sb) of the bundle of Sb is defined by the following equation: 
         g(Gb, Sb) = 

�
��� −−

Gb

Gb
Sb

Gb
Sb

Gb

P

DPP

min

min )(  

�
Gb

SbP denotes the sum of the prices of all goods in Gb of the 

sellers in Sb. �
GbPmin denotes the sum of the minimal prices to 

purchase all goods in Gb. �
Gb
SbD denotes the sum of the 

discounts obtained from all of the sellers in Sb for purchasing 
goods in Gb as a bundle.The inverse function of the discount 

function of each seller Si is defined by  1−
if : iD → min

iC . We 

use two matrices to represent the input data, the price matrix and 
the of item Gi from seller Sj. If Sj cannot provide Gi, Pij is equal to 
0. providing matrix. The index of rows and columns of these two 
matrices represents the identified number of goods and sellers 
respectively. In the price matrix Mp, entry Pij represents the price. 

 

Figure 2: The Discount Ratio Function  
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Maximal Gain Bundle Search (MGBS) Algorithm 
Input: Mp, Mr, Empty Vector PV, PC = 0; 
Output: 1. Purchasing Plan Vector PV;  
             2. Cost of this purchasing plan PC. 
 
Begin MGBS (Mp, Mr) { 

1. Get information about good set G and seller set S from Mr and Mp; 
2. Size of PV = Size of G; 

3. Calculate the minimal price Vector minP and get the corresponding seller Vector minSV  of minP ; 

4. Calculate the maximal cost MaxCost of this purchase � iPmin - sum of possible discount; 
5. For each seller Sj, { 
6.      Compute the sum of its maximal bundle for G by get the sum of each columns of Mp; 
7.      Calculate its discount MaxDiscount[j] by calling its own discount function; 
8.      Calculate its exact bundle cost BundleCost[j]; 

               } 
9. For all BundleCost[j], { 

10.       If all of BundleCost[j]s are larger than the corresponding MaxSubCost[j] =� jPmin - sum of possible discount; 

11.       Then { PV = minSV , PC = MaxCost;  
12.                   Return PV, PC;} 
13.       Else { 
14.            For each BundleCost[j], { 
15.                Calculate the corresponding minimal cost MinBundleCost[j] with discount MaxDisicount[j]  
                          by calling its inverse discount function; 
16.                 Compute the minimal good bundle vector MinBundle[j] = FindMinBundle (MinBundleCost[j], j, Mp) 
17.                 Calculate the gain ratio g(MinBundle[j], Sj) = (MaxSubCost[j]-BundleCost[j])/MaxSubCost[j]; 
                  } 
18. Pick up MinBundle[k] of seller Sk  with maximal g(MinBundle[k], Sk) among all g(MinBundle[j], Sj); 
19. Add Sk to the corresponding positions in Vector PV according to the goods in MinBundle[k]; 
20. PC = PC + the cost of MinBundle[k]; 
21. Set the entries of the corresponding rows of this MinBundle[k] to 0 in Mp and Mr; 
              } 
        } 
22.  If all entries in Mr are 0 { 
23.        Return PV, PC; 
       } 
24. Else { 
25.      Go back to line 5 with new Mp and Mr; 
       } 

End MGBS (Mp, Mr). 
 

Procedure FindMinBundle (MinBundleCost, j, Mp) { 
1. Fetch the column j in Mp to be the good vector GVj of seller Sj; 
2. Sort GVj according to the price increasingly; 
3. s = size of GVj; 
4. While (s>0) { 
5.      Remove the last element in GVj; 
6.      If the sum of prices in GVj < MinBundleCost, 
7.      then add the removed element back to GVj; 
8.      s = s – 1 ; } 
9. return GVj;}                                                             

Figure 3: Maximal Gain Bundle Search Algorithm 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input: 
90   95   98   0    88 
30   0    35   39   0 
0    48   50   58   45 
80   0     0    75   0 

Mp  =  

S0    S1   S2    S3   S4 
G0 

G1 

G2 

G3 

1    1    1    0    1 
1    0    1    1    0 
0    1    1    1    1 
1    0    0    1    0 

Mr  =  

S0   S1   S2   S3   S4 
G0 

G1 

G2 

G3 

G0       G1        G2         G3 

minP = 

G0       G1        G2         G3 

minSV = 

MaxCost  =  218 

10, if the cost per purchase is larger than 50; 
20, if the cost per purchase is larger than 100; 
35, if the cost per purchase is larger than 150; 
20% off the cost per purchase, if the cost per purchase is larger than 200; 

Discount[i ] = 

Discount function if : 

S0       S1        S2      S3     S4 

G0 

G1 

G3 

G0 

G3 

G0 

G1 

G2 

G1 

G2 

G3 

G0 

G1 

S0        S1        S2        S3        S4 

MaxDiscount  = BundleCost = 

MaxSubCost = 

No any BundleCost[j] ≥ MaxSubCost[j] 
S0         S1          S2         S3        S4 

Gain Ratio  = 

G0       G1        G2         G3 

PV  = 
PC  = 163 

0     0     0     0     0 
0     0     0     0     0 
0     48   50   58   45 
0     0     0     0     0 

Mp  =  

S0    S1   S2    S3   S4 

G0 

G1 

G2 

0    0    0    0    0 
0    0    0    0    0 
0    1    1    1    1 
0    0    0    0    0 

Mr  =  

S0   S1   S2   S3   S4 

G0 

G1 

G2 

G0       G1        G2         G3 

PV  = 
PC  = 200 

Current Bundles are all minimal bundles 
with these discounts 

Go back to Step 2 with new Mp and Mr 

In this case, assume all sellers use the same 
discount policy 

Figure 4: An Example Implementation by Using MGBS Algorithm 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

160    123     148      137     113 

183    133      163     152      123 

0.13    0.075     0.09     0.09    0.08 

S0                    S0         S0 

S0       S2        S0         S0 

88       30        45        75 S4       S0         S4         S3 

40      20       35      35     20 



In the providing matrix Mr, the value of each entry Rij only 
could be either “1” or “0”. “1” means seller Sj provides Gi. “0” 
means seller Sj cannot provides Gi for the current purchase goal. 
The providing matrix here is mainly a supportive matrix, which 
helps to allocate the identifiers of sellers and goods. 

At the beginning of the MGBS algorithm, we need to calculate 
the minimal price vector Pmin.  Then we apply the heuristic search 
rule 1 (Maximal Bundle) to calculate the maximal bundle 
purchase from each seller based on its own discount function. If 
the gain of the maximal bundle for every seller is negative, we 
quit the bundle search and make the purchase decision based on 
the minimal price vector. Otherwise, we refine this bundle by 
applying the heuristic search rule 3 (Bundle Regression) and 
calculating the best discount ratio from each seller with the same 
discount according to the inverse discount function. After this, we 
pick up the seller with the maximal gain ratio to put the goods of 
this bundle from this seller into the purchase decision vector. 
Then, we set all entries related to these goods in the price matrix 
and proving matrix. Repeatedly run this algorithm until the 
purchase decision list is filled completely. Figure 3 shows the 
complete algorithm. 

In Figure 4, we use the example in Section 2 to demonstrate 
this algorithm. Actually, the optimal result of this example is the 
same one that is obtained by the MGBS algorithm.  

4. ALGORITHM ANALYSIS 
The MGBS algorithm is extremely efficient and has very low 

complexity cost compared with other algorithms.  

4.1 Complexity Analysis 
The number of goods a buyer needs to purchase is M, and N 

sellers can provide some or all items in G. Since we use the 
maximal bundle search strategy, the rounds of the maximal bundle 
search must be less than M in the worst case. During each round, 
we need to calculate the costs, discounts, the sums of the 
corresponding minimal single price and the gain ratios of maximal 
bundles for all sellers. Those are 4N times. Additionally, there are 
N computations for finding the minimal goods bundles for 
maximal discounts in the worst case. In other words, there are CN 
times of computation during each round, and C is a constant. The 
total time complexity of the MGBS algorithm is CNM, which is 
O(NM), a very low time complexity compared with the time 
complexity O(MN) for the exhaustive search algorithm. In fact, as 
shown in the experimental evaluation, the worst case of MGBS 
algorithm rarely happens. 

There is a procedure in the MGBS algorithm called 
FindMinBundle, which is used for bundle regression. One must 
find the minimal combination from a price vector. The sum of this 
minimal combination should be equal to or larger than a certain 
threshold. We use another heuristic algorithm to solve this 
problem. Since more expensive goods affect the amount of 
discount much more than cheaper goods (because of the 
assumption that the more one buys, the more discount one gets), 
the algorithm removes more expensive items in the prices vector. 
The bundle regression algorithm sorts the prices increasingly, and 
removes the most expensive one from the price vector. If doing so 
makes the sum less than the threshold, the algorithm adds the item 
back. Otherwise, it tests the second most expensive item, 
continuing until all items are tested. The sum of the remaining 

items in the price vector is the result The time complexity of this 
algorithm is O(V), where V is the size of the price vector and V≤N. 

4.2 Correctness Analysis 
As mentioned earlier, the upper bound of this algorithm is that 

the sum of minimal prices for each goods subtracts the possible 
discounts. Furthermore, since the MGBS algorithm tries to obtain 
the higher discount ratio rather than the higher amount of 
discount, the result is much better than the upper bound in 
general. The only case where the MGBS algorithm may not work 
properly is when the discount ration of a maximal bundle happens 
to be the local optimal point (i.e. Local Optima).  

5. EXPERIMENTAL EVALUATION 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
We implemented both the MGBS algorithm and the full 

Cartesian algorithm for our experiments. We used Java 1.4.1 to 
implement the algorithms and ran them under Windows 2000. 
The experiments ran on a Dell PC with 800MHz Pentium III CPU 
and 256MB memory. We used two-dimensional arrays to store the 
price matrix and the providing matrix. Another issue is the 
memory requirement. For MGBS algorithm, we reused variables 
for each subsequent round. For the full Cartesian algorithm, we 
used a recursive algorithm to only keep the information about the 
current evaluation and the current optimal purchasing path. 
Hence, in our implementations of each algorithm, memory access 
is not expensive at all.  

Our test data constructed by N × N matrices, meaning there are 
N available sellers for this N goods bundle. We tested 4 × 4, 5 × 5, 
6 × 6, 7 × 7, 8 × 8, 9 × 9, 10 × 10 matrices for both the MGBS 
algorithm and the full Cartesian algorithm. The MGBS algorithm 
is not sensitive to the increase of the number of goods and sellers 
at all. The results obtained from the MGBS algorithm are also 
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Figure 6: The Results of Different Algorithms 
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Figure 5: The Execution Time of Different Algorithms 
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close to optimal results and much lower than the upper bounds. 
Figure 5 shows the execution time of different sizes of matrices. It 
is hard to put the execution times of 7 × 7, 8 × 8, 9 × 9, 10 × 10, 
because the magnitude is too high compared with the execution 
time of MGBS algorithm. Figure 6 shows the final results of 
different sizes of matrices. The results of the MGBS algorithm are 
close to the optimal results.  

Currently, the discount function used in the experiment is the 
one in Figure 4. It is constructed based on one of the discount 
policies of J.C.Penney. We will test more discount policies and try 
to get some real data to test our algorithm in the future.   

6. CONCLUSIONS AND FUTURE WORK 
In this paper, we address a bundle search problem for buyers 

in electronic combinatorial trade. There are multiple available 
sellers for each item in the bundle. Each seller can provide 
multiple goods in the bundle. Sellers have widely varying prices 
for identical items and various discount ratios for different 
purchase costs. We propose a heuristic bundle search algorithm, 
Maximal Gain Bundle Search algorithm, to solve this problem. 
The time complexity of the MGBS algorithm is O(NM) in the 
worst case. It is extremely efficient compared with the full 
Cartesian algorithm, which has a time complexity of O(MN). The 
upper bound of the MGBS algorithm is that the sum of the 
minimal prices of all goods subtracts the possible discount for the 
bundle. The simulation data show that the execution time of the 
MGBS algorithm is not sensitive to an increase of the number of 
goods and sellers. The simulation results also show that the 
MGBS algorithm can produce nearly optimal bundle purchases. 

The bundle search problem in this paper is different from the 
travel package search problem in [6] because the discount comes 
from the total purchase cost for each seller instead of the 
partnership between sellers. Also in the travel package search 
problem, each seller only provides one kind of good in general. 
The discount ratio for partnership is normally fixed, but the 
discount ratio of the total purchase cost from one seller is non-
monotonically increasing because the discount function of a seller 
is most likely not linear. Hence, the phase pruning strategy does 
not work well for our bundle search problem, because the optimal 
previous result may not be the optimal result after adding a new 
stage due to the non-monotonically increasing discount ratio, 
which is the same reason why dynamic programming [11] does 
not work well for this problem. 

However, in real applications, the discount for a bundle search 
could come from both partnership among sellers and the total 
purchase amount from one seller. Developing a heuristic 
algorithm for a bundle search problem that considers both 
discount sources is a promising direction for future research.    

The bundle search problem addressed in this paper could be 
extended to many complex bundle search problems for real 
applications in the future. For example, for industrial buyers, the 
quantity of each kind of good could be a large number. Is the 
MGBS algorithm able to handle this situation properly? Another 
interesting issue concerns time. In real electronic markets, many 
purchases happen during specific seasons or occasions, and sellers 
always have some seasonal sales. Buyers could adjust their 
purchase goals to utilize the seasonal sales. Buyers have to make 
purchasing decision before the sale deadline. Considering these 
time issues, making a good bundle purchase plan is a very 
interesting problem.  

In electronic markets, the result of a bundle search for buyers 
can be the input of many other purchasing strategies. For instance, 
it can be an input for buyer coalition formation. According to our 
knowledge, currently, most buyer coalition formation work 
focused on purchasing one [8,9] or at most two [1] kinds of goods 
from only one seller. Bundle search for buyers provides a 
possibility to form buyer coalitions even if buyers have different 
target goods that may be available from different sellers.  

Another promising application of bundle search for buyers is 
“Service Composition”, which is the strategy of taking several 
component products or services, and bundling them together to 
meet the needs of a given customer [10]. The service composer 
needs to minimize the cost of the composition. In [10], the service 
composition is constructed by combinatorial auction. In more 
general cases, we can view a service composition as a bundle 
search for a buyer.  
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