
Collaborative Agents for C2 Teamwork Simulation
Dianxiang Xu, Michael S. Miller, Richard A. Volz, and Thomas R. Ioerger

Department of Computer Science
301 H.R. Bright Building
Texas A&M University

College Station, TX 77843-3112
{ xudian, mmiller, volz, ioerger} @cs.tamu.edu

Abstract – Existing team training software often
requires that trainees be organized as physical teams
and the members of the same team be trained at the
same time. To demonstrate that team training software
can be made more flexible, this paper presents an
approach to incorporating software agents into the
distributed command-and-control (C2) simulation
software DDD, which supports only human players.
Based on the multi-agent architecture CAST, the
software agents are designed as a team to perform C2
tasks in the DDD. By associating the agents with the
same basic capabilities as the DDD provides its
human users, we illustrate how to specify the
teamwork knowledge for the agent team, and how to
make agents efficiently reason about the dynamic,
partially observable environment. Different methods
of communication and coordination among agents are
also briefly described.

Keywords: agents, multi-agent systems, teamwork,
communication, command-and-control

1. Introduction
Teamwork has gained increasing attention in the
areas of multi-agent systems [1-8], cognitive
psychology [9-11], and team training [12-14].
The notion of ‘shared mental model’ [9], which is
one of the psychological findings about
teamwork, has been applied as a basic principle
for the design of multi-agent teamwork [4].
Meanwhile, distributed software systems have
also been playing an important role in
psychological research on team performance and
team training. For example, Porter et al [10] have
studied helping behaviors of teammates with the
aid of the DDD (Distributed Dynamic Decision-
making) [15], a computer software system for
simulating command-and-control (C2) tasks.

However, existing simulation software for
team training, like the DDD, often supports only
human players or trainees. This requires the
organization of physical teams before team
training can be conducted. On the other hand,
existing multi-agent systems are seldom suitable
for psychological study of team training because
they support agent-only teams. It is naturally
desirable that a multi-agent system could support
human-agent mixed teams, where agents are
peers or teammates of human users (this is
essentially different from those agent systems,
where agents are primarily assistants of human
users). Such a system may significantly improve
cost-effectiveness and flexibility of practical team
training.

In this paper, we present an approach to
incorporating software agents into the DDD so
that the agents can replace the human players to
perform teamwork. The agent team is designed
based on the domain-independent multi-agent
architecture CAST [4, 16]. We show how to
extend the CAST architecture so that the agents
can interact with the DDD in an effective way.
We also demonstrate how to specify the
teamwork knowledge for the agents to perform
C2 tasks in the DDD and how the agents reason
about their individual knowledge about the
dynamic, partially observable environment of the
DDD simulation. Different methods of
communication and coordination among agents
are also briefly described.

The rest of this paper is organized as follows.
To facilitate our discussion, section 2 gives a
brief introduction to the DDD. Section 3
discusses the architectural issue of integrating
CAST agents into the DDD. Section 4 describes
how to specify teamwork knowledge for the

agents to perform C2 tasks in the DDD
simulation, and how CAST agents can make use
of the simulation information on the dynamic,
partially observable environment. In Section 5,
we discuss how agents communicate and
coordinate with each other in order to accomplish
team tasks. Section 6 concludes this paper with
some directions of future work.

2. DDD: An Overview
The DDD is a distributed multi-person simulation
and software tool for understanding C2 issues in
a dynamic teamwork environment. The DDD was
designed to capture the essential elements of a
wide variety of C2 team tasks, and allow the
experimenter to vary team structure, access to
information, and control of resources [13, 15].
The recent generations of DDD provide an
extensive set of capabilities for implementing
complex, synthetic C2 team tasks. One of the
DDD generations, MSU-DDD, together with a
group of training and testing C2 scenarios, has
been used by cognitive psychologists at Michigan
State University for the study on helping
behaviors and team performance [10].

Technically, each DDD player is supported by
a simulation client, which communicates with the
DDD simulation server via sockets. The
simulation sever is in global control of the game,
and coordinates all clients. For example, the
server notifies each simulation client when a new
track is coming up according to the scenario
specification. Through a graphical user interface,
a DDD client provides its human user a number
of commands (operations) that can be used to
perform C2 tasks, such as launching, moving and
returning an asset (e.g. fighter, AWACS, tanker
and helicopter), identifying friendly or unfriendly
nature of a track that is within the identification
range of the owner’s asset, pursuing a track, and
attacking unfriendly track that is within the attack
range, and transferring assets or sending
messages to teammates. Each operation or
message issued by a human player is sent to the
server. The server in turn broadcasts the message
to other clients, which update and display
relevant information for the players.

Our work is based on the MSU-DDD and its
simplified air defense scenarios, though it should
be easily portable to other versions of DDD. Fig.

1 shows a typical task screen (similar to that in
[10]). Team members (or decision makers or DMs
in DDD terminology) are assigned to the four
geographic quadrants, respectively. The centermost
4×4 grid marked off in red represents a highly
restricted area. The 12×12 grid demarcated in green
represents a restricted area. The area outside this
restricted area is neutral territory. The team’s goal
is to keep unfriendly vehicles from moving into
the restricted and highly restricted areas. The
team's task is to monitor the geographic space,
identify all tracks in terms of their nature
(friendly or unfriendly), and then destroy
unfriendly tracks (also called targets in this
paper) threatening the restricted area.

Figure 1. The MSU-DDD task screen

Each DM's base has a detection ring radius and
an identification ring radius. The DM can detect
the presence or absence of any track within the
detection ring, and discern the friendly or
unfriendly nature of a track within the
identification ring. Any track outside the
detection ring was invisible to the DM. Each DM
has also control of various types of vehicles (also
called sub-platforms, or assets), including
AWACS, tanks, helicopters, and jets. Each of
these sub-platforms varies in range of vision,
speed of movement, duration of operability, and
weapons capacity. A more detailed description
can be found in [15].

3. Integrating Agents into DDD
The agents we have developed for DDD tasks are
based on the CAST, a multi-agent architecture for
modeling effective teamwork by capturing team
structures and teamwork processes. The common
prior knowledge about the team structures and
processes enables the team members to develop
an overlapping shared mental model, which is the
source for a team member to reason about the
states and the need of his/her teammates. With
such a model, agents on a team can anticipate the
actions and expectations of others (e.g. by
knowing others’ roles, capabilities, and
commitments), and initiate proactive information
exchange (knowing who to ask for information,
or providing information proactively just when it
is needed by someone else to accomplish their
task).

To formally specify the teamwork knowledge,
the CAST provides the MALLET (Multi-Agent
Logic Language for Encoding Teamwork)
language to define team organizations, roles and
capabilities of agents, goals, tasks, operators, and
team/individual plans. Operators, as schemes of
basic atomic actions of agents are specified by
preconditions and post-conditions. Plans are
essentially the procedural description of
teamwork processes, i.e. how they will achieve
the goals or perform the tasks. Teamwork
processes consist of invocations of atomic actions
(operators), or arbitrary combinations using
various constructs such as sequential, parallel,
contingent, or iteration.

In addition to the teamwork level knowledge
represented in MALLET, CAST agents also have
individual domain knowledge and beliefs about
their environment and teammates, represented in
the logic rule based language JARE. Information
on CAST, MALLET and JARE can be found in
[4, 16]. Briefly, logical conditions and constraints
expressed in MALLET are evaluated by invoking
the backward-chaining inference engine of JARE
on the individual knowledge base. Decisions such
as what is the next action and whether
communication with other agents is needed are
made by the CAST Agent Kernel in terms of the
teamwork knowledge and the agents’ individual
knowledge.

The integration of the CAST with the DDD,
called CAST-DDD, enables CAST agents to

replace human players in a DDD simulation task.
These agents are able to communicate and
coordinate with each other. The architecture of
the CAST-DDD is shown in Fig. 2.

CAST
Agent Kernel

CAST
Domain Actor

DDD
Domain Actor

DDD
Simulation Client

DDD
Simulation Server

JARE
Inference Engine

Teamwork Knowledge
in MALLET

Individual Knowledge
in JARE

Local simulation
Database

Global simulation
Database

JareEngine
Database Extension

DDD

CAST Agent

Implemented in C

Implemented in Java

 Figure 2. The CAST-DDD architecture

One of the basic ideas about the integration is

that CAST agents must be able to perform the
same commands as the DDD provides its human
players, e.g. for launching an AWACS from the
owner’s base, pursuing an unfriendly track, etc.
We define these commands as the basic operators
that agents are capable of and use them to
construct complex individual and/or team plans
in a MALLET teamwork specification. Once an
agent has decided to perform such an operation in
the course of executing an individual or team
plan, the CAST Agent Kernel sends the operating
command to the CAST Domain Actor, which in
turn communicates via a socket with the DDD
Domain Actor. The DDD Domain Actor sends
the command to the DDD simulation, achieving
the same effect as if the corresponding command
had been issued by a human player.

In order for an agent to perform a DDD
simulation task in a teamwork setting, the agent
must make decisions according to its individual
knowledge about the DDD simulation domain.

For example, before the agent can attack an
unfriendly target with one of its asset, it has to
make sure the target is already within the attack
range of the asset and the asset is not less
powerful than the target. Determining the truth-
values of these constraints needs several pieces of
information about the asset and the target, such as
positions, strength levels, the attack range, etc.
These constraints are typically represented in
preconditions of operators and plans, logical
conditions of contingent statements in the
processes of plans, and even inference rules in the
agent’s knowledge base (refer to next section for
more details). Considering the dynamic nature of
a DDD environment (e.g. targets may appear
without prior knowledge to agents or players,
targets are moving at different velocities, etc.),
the agents do not store the environment
information in their individual knowledge bases.
Instead, we extend the JARE knowledge
representation language and the inference engine
so that the agents get only the current state of
relevant information needed in the course of
decision-making at the time they need it. In other
words, the agents don’ t keep track of everything
that is happening in the environment. This is
achieved by the JareEngine Database Extension,
which predefines a set of predicates that
correspond to the domain information in the
DDD simulation database. These predefined
predicates can be used to define conditions in
MALLET specifications and inference rules in
agents’ individual knowledge base.

The JareEngine Database Extension obtains
environment information through the CAST
Domain Actor, which sends requests via the
socket to the DDD Domain Actor. The DDD
Domain Actor then retrieves the Local
Simulation Database and returns the results to the
CAST Domain Actor and the JareEngine
Database Extension. Since the CAST and the
DDD are implemented in Java and C,
respectively, sockets are used for the
communication of commands and data between
the CAST agents and the DDD simulation
environment.

4. Agent Team for C2 Tasks
This section discusses two of the key issues about
using intelligent agents as a virtual team for C2

tasks in the DDD simulation. These issues are: 1)
the specification of teamwork knowledge (i.e.
team structure and team process) for the agent
team to perform given C2 tasks, and 2) the use of
simulation information for individual agents to
make decisions.

4.1 Specifying C2 teamwork knowledge

To enable software agents to be team members of
DDD team tasks, agents should be able to
perform the same commands as the DDD
provides its human users. In the CAST-DDD,
these commands are defined as corresponding
operators. Some examples are listed as follows:

(ioper moveto (?asset ?x ?y))
(ioper identify (?asset ?target))
(ioper transfer (?asset ?to))
(ioper launch (?asset ?base))
(ioper returntobase (?asset ?base))
(ioper attack (?with ?target))
(ioper fusion (?with ?target))
(ioper pursue (?target ?with))
(ioper transferinfo (?asset ?to))

The operators are then used to specify team
structures (team organization and capabilities
etc), as well as team processes (plans). For
example, we may have the following MALLET
specification of team structure:

(team DDDteam (DM0 DM1 DM2 DM3 DM4))

(capability (DM1 DM2 DM3 DM4)
(moveto transfer launch returntobase
 identify attack fusion pursue transferinfo
))

This means that team DDDteam consists of five
agents, namely DM0, DM1, DM2, DM3 and
DM4, and DM1-DM4 are capable of performing
the listed operations. Here, DM0’ s capability is
not defined because it is an observer, as in the
MSU-DDD.
 As mentioned earlier, team processes, which
describe the procedure of how agents will
perform the team task, are captured by plans in
the MALLET specification. In the CAST-DDD,
the DDD commands, i.e. MALLET operators, are
basic actions from which complex MALLET
plans are constructed. For example, when an
agent has found or been told by its teammates
that an unidentified target is moving towards its
area of responsibility, the agent would launch its

own asset, move the asset toward the moving
target, identify the target, attack the target if
unfriendly, and then return to its base. This
procedure can be formalized by the following
MALLET plan:

 (plan defense (?who ?craft ?target ?x ?y)
 (pre-cond (myasset ?who ?craft ?base))
 (process
 (seq
 (do ?who (launch ?craft ?base))
 (while (cond (not (launched ?craft)))
 (do ?who (await))
)
 (do ?who (moveto ?craft ?x ?y))
 (while (cond (not
 (id-range ?craft ?target)))
 (do ?who (await))
)
 (do ?who (identify ?craft ?target))
 (if (cond (foe ?target)
 (morepowerful ?craft ?target))
 (seq
 (while (cond (not (attack-range
 ?craft ?target)))
 (do ?who (await))
)
 (do ?who (attack ?craft ?target))
)
 (do ?who (transferinfo ?target ?dm))
)
 (do ?who (returntobase ?craft ?base))
)))

The pre-condition of the above plan, (myasset
?who ?craft ?base), means that the agent (?who)
executing the plan uses one (i.e. ?craft) of its
assets (if none, the agent cannot execute the plan)
to perform the plan. Since it takes some time to
launch an aircraft from its base (which is
determined by the DDD simulation), the agent
has to wait until the aircraft is completely
launched before the agent can move the aircraft
to a designated position (while waiting, the agent
may do other things concurrently, though). Once
the target reaches the identification range of the
aircraft, the agent is able to identify the target. If
the target is unfriendly and the agent’s aircraft is
more powerful, the agent will attack the
unfriendly target when the target reaches the
attack range of its aircraft. If the target is friendly
or the target is more powerful, the agent will
transfer the information on the target to the
teammates. During the plan execution, the CAST

Agent Kernel sends a corresponding command to
the DDD for each invocation of operators in the
above plan.
 In MALLET, agents are allowed to perform
parallel and concurrent tasks. The following is a
parallel plan with a number of branches.

 (plan c2task
 (process
 (par

(do DM1 (defense DM1 JT 205 0.80 0.80))
(do DM1 (defense DM1 HE 206 0.75 0.75))
(do DM2 (defense DM2 JT 200 0.20 0.20))
(do DM2 (defense DM2 TK 201 0.25 0.25))
(do DM3 (patrol DM3 AW ?base3 0.2 0.8))
(do DM4 (patrol DM4 AW ?base4 0.8 0.2))

)))

This plan specifies that DM1 and DM2 launch
their jet and helicopter to defend their areas of
responsibility, whereas DM3 and DM4 launch
their AWACS craft to patrol their areas of
responsibility.

We can also specify strategic or tactical C2
knowledge in MALLET. For example, in one of
the divisional MSU-DDD scenarios, each agent
owns a jet, a helicopter, a tanker, and an
AWACS. One possible strategy for playing the
game is that, to keep alert on the coming waves
of enemy attacks, each agent or player launches
his/her AWACS to the border of his/her partner’s
area of responsibility. This could be specified by
a similar structure of the above parallel plan.

4.2 Reasoning about the environment

Besides teamwork-level knowledge, the CAST-
DDD agents also need individual knowledge,
particularly on the environment, for the process
of decision-making. Specifically, such individual
knowledge is required to evaluate preconditions
of operators and plans, and conditions for
contingent and repetitive statements (e.g. if and
while) in the processes of plans. For example, an
agent that is executing plan defense specified in
last subsection has to be able to evaluate the truth
value of condition (id-range ?craft ?target).

The environment for the CAST-DDD agents
is dynamic (i.e. the targets as well as the agents’
assets are changing their positions, and even
directions and speeds) and partially observable
(i.e. an agent cannot observe a target unless the
target is within the detection range of its base or

launched assets). To deal with such an
environment, we use the ‘pull’ technique to
obtain the current state of needed, observable
information (e.g. the position of an observable
target) from the environment. This is more
efficient than the ‘push’ style, which may keep
agents updated on all information in each
simulation cycle.

Since CAST-DDD agents use JARE as the
knowledge representation language, we specify
the dynamic information by a predefined number
of predicates. When such a predicate needs to be
evaluated, the JareEngine Database Extension
communicates with the DDD Domain Actor via
the CAST Domain Actor to get the up-to-date
values. Note that, these predefined predicates can
be used to define inference rules in agents’
knowledge base. For example, the following is a
rule for determining if a target is within the
identification range of an asset.

 (rule (id-range ?asset ?target)
 (position ?asset ?x1 ?y1)

(position ?target ?x2 ?y2)
 (radar ?asset ?radius)

 (> (+ (* (- x1 x2) (- x1 x2))
 (* (- y1 y2) (- y1 y2))
)

(* ?radius ?radius)
)

)

where (radar ?asset ?radius) means that ?asset
can identify a target within the range of ?radius.

5. Agent Communication
Communication is a critical element for
coordination and cooperation in effective
teamwork. The CAST-DDD provides three
different ways of communication and
coordination:

• Transfer of assets and information:
agents can transfer their assets as well as
information on targets to other agents.
This type of communication and
coordination is realized through the DDD
commands, such as ‘ transfer info’ and
‘ transfer asset’ , which are naturally
defined as an individual operators in
MALLET specification

• Formatted messages: agents may send
other agents email-like messages with
predefined formats (similar to a simple
discourse language [17]). This is based
on the free-form messages in DDD,
which are useful for the communication
among human players. However, the
CAST-DDD agents cannot understand
the messages that do not comply with
predefined formats.

• Proactive information exchange:
(inherited from CAST). Based on the
analysis of information needs indicated
by the preconditions of plans and
operators in MALLET specification,
agents can proactively provides
information that is useful for other agents
to make decisions.

6. Conclusion
We have presented how to incorporate CAST
agents into the distributed C2 simulation software
DDD to replace human players to perform
teamwork. The basic strategy has been
implemented, though not all operators and
predicates are yet complete, and only preliminary
testing has been performed.

Our long-term objective is to develop
software agents as teammates of human players
as well as coaches. The use of agents as human
partners on a team makes team training more
flexible in that any number (typically smaller
than the required team size) of trainees can be
trained. This requires that MALLET be
sufficiently expressive for the specification of the
teamwork knowledge for human-agent mixed
teams. For example, what roles are played by
human trainees and what roles are played by
agents, and how the MALLET supports plans that
involve team training. On the other hand, the use
of agents as coaches that provide immediate
online instructions and suggestions can improve
the effectiveness of team training. The design of
such coach agents needs acquisition of more
domain knowledge from C2 experts (e.g. what
are good strategies for decision makers on a team
to cooperate under different C2 situations).

Acknowledgment
This work was supported in part by AFOSR
under MURI grant #F49620-00-1-0326. The
DDD software is the property of Aptima, Inc.
(www.aptima.com) and has been developed over
the last 15 years with research and development
funds from the Office of Naval Research and the
Air Force Research Laboratory. The authors
thank the Aptima staff for making the DDD
available to support the research presented in this
paper. The authors also thank Drs. John R.
Hollenbeck and Daniel R. Ilgen at the Michigan
State University for their support.

References
[1] P. R. Cohen and H. J. Levesque,

"Teamwork," Nous, vol. 25, 487-512, 1991.
[2] M. Tambe, "Agent Architectures for

Flexible, Practical Teamwork," National
Conference on Artificial Intelligence
(AAAI-97), 22-28, 1997.

[3] M. Tambe, "Towards Flexible Teamwork,"
Journal of Artificial Intelligence Research,
vol. 7, 83-124, 1997.

[4] J. Yen, J. Yin, T. R. Ioerger, M. S. Miller, D.
Xu, and R. A. Volz, "CAST: Collaborative
Agents for Simulating Teamwork," Proc. of
the 17th International Joint Conference on
Artificial Intelligence (IJCAI'2001), Seattle,
WA, 1135-1142, 2001.

[5] N. Jennings, "Controlling cooperative
problem solving in industrial multi-agent
systems using joint intentions," Artificial
Intelligence, vol. 75, 195-240, 1995.

[6] D. Kinny, M. Ljungberg, A. S. Rao, E. A.
Sonenberg, G. Tidhar, and E. Werner,
"Planned Team Activity," Proceedings of the
fourth European Workshop on Modeling
Autonomous Agents in a Multi-Agent World
(MAAMAW'92), 226-256, 1992.

[7] P. Stone and M. Veloso, "Task
decomposition, dynamic role assignment,
and low-bandwidth communication for real-
time strategic teamwork," Artificial
Intelligence, vol. 110, 241-273, 1999.

[8] P. R. Cohen and H. J. Levesque, "Intention
Is Choice With Commitment," Artificial
Intelligence, vol. 42, 213-261, 1990.

[9] E. Blickensderfer, J. A. Cannon-Bowers, and
E. Salas, "Theoretical Bases for Team Self-
Correction: Fostering Shared Mental
Models," Advances Interdisciplinary Studies
of Work Teams, vol. 4, M. Beyerlein, D.
Johnson, and S. Beyerlein, Eds. Greenwich,
CT: JAI Press, 249-279, 1997.

[10] C. O. Porter, J. R. Hollenbeck, D. R. Ilgen,
A. P. J. Ellis, B. J. West, and H. Moon,
"Backing Up Behaviors in Teams: The Role
of Personality and Legitimacy of Need,"
Journal of Applied Psychology, vol. I, 2002.

[11] M. T. Brannick, C. Prince, and e. al., "The
Measurement of Team Process," Human
Factors, vol. 37, 641-651, 1995.

[12] J. A. Cannon-Bowers and E. Salas, "A
Framework for Developing Team
Performance Measures in Training," in Team
Performance Assessment and Measurement:
Theory, Research and Applications, M. T.
Brannick, E. Salas, and C. Prince, Eds.
Hillsdale, NJ: Lawrence Erlbaum
Associates, 45-62, 1997.

[13] D. Serfaty, E. E. Entin, and J. Johnston,
"Team Adaptation and Coordination
Training," in Decision Making Under Stress:
Implications for Training and Simulation, A.
Cannon-Bowers and E. Salas, Eds.
Washington D.C.: Apa Press, 170-184, 1998.

[14] R. J. Stout, E. Salas, and J. E. Fowkes,
"Enhancing Teamwork in Complex
Environments Through Team Training,"
Journal of Group Psychotherapy,
Psychodrama & Sociometry, vol. 49, 163-
186, 1997.

[15] D. L. Kleinman, P. W. Young, and G.
Higgins, "The DDD-III: A Tool for
Empirical Research in Adaptive
Organizations," Proc. of the 1996 Command
and Control Research and Technology
Symposium, Monterey, CA, 1996.

[16] J. Yin, M. S. Miller, T. R. Ioerger, J. Yen,
and R. A. Volz, "A Knowledge-Based
Approach for Designing Intelligent Team
Training Systems," Proc. of the Fourth
International Conference on Autonomous
Agents, Barcelona, Spain, 427-434, 2000.

[17] B. Grosz and C. Sidner, "Plans for a
discourse," in Intentions in Communication,
J. Cohen, J. Morgan, and M. E. Pollack, Eds.
Cambridge, MA: MIT Press, 417-444, 1990.

