
Learning to Control First Order Linear Systems with Discrete Time
Reinforcement Learning

Eric Nelson
Department of Computer Science and

Engineering
Texas A&M University

College Station, TX 77843, USA
ejn8411@tamu.edu

Thomas Ioerger
Department of Computer Science and

Engineering
Texas A&M University

College Station, TX 77843, USA
ioerger@cs.tamu.edu

Abstract— Reinforcement learning (RL) is a powerful method
for learning policies in environments with delayed feedback. It
is typically used to learn a control policy on systems with an
unknown model. Ideally, it would be desirable to apply RL
to learning controllers for first-order linear systems (FOLS),
which are used to model many processes in Cyber Physical
Systems. However, a challenge in using RL techniques in FOLS
is dealing with the mismatch between the continuous-time
modeling in the linear-systems framework and the discrete-
time perspective of classical RL. In this paper, we show that the
optimal continuous-time value function can be approximated as
a linear combination over a set of quadratic basis functions,
the coefficients of which can be learned in a model-free way
by methods such as Q-learning. In addition, we show that
the performance of the learned controller converges to the
performance of the optimal continuous-time controller as the
step-size approaches zero.

I. INTRODUCTION

The use of reinforcement learning is becoming an increas-
ingly popular choice for learning to control arbitrary systems
by minimizing the error of a given objective function. This
is because near optimal control policies can be obtained
without having to know the underlying system model. If
the model of the system is known, the optimal control
can sometimes be derived analytically or through the use
of dynamic programming and other methods. However, the
analytical solutions, even when they can be obtained, are
often complicated. This is even more true in the case of
higher order dynamical systems. Therefore, this work focuses
only on first-order (FO) linear systems. In addition, it is
possible for the dynamics of linear systems to vary with
time. For example, an airplane’s weight changing as the fuel
it is carrying is burned. Solutions to these types of systems
do exist however they are not the focus of this paper. We
only consider the control of first-order linear time-invariant
(FO LTI) systems.

The analytical control solutions of FO LTI systems are
continuous-time functions that define an optimal trajectory
through state-space. However, in many CPSs, control inputs
cannot be performed in real-time. For instance, the controls
performed by a digital control system are limited by the clock
cycle time of the underlying hardware. We assume in this
paper that for these discrete time systems a control is selected
and is held for a minimum of ∆t before another control can

be selected where the time between successive control inputs
is denoted as ∆t.

Reinforcement learning (RL) is a method for learning a
policy in a particular environment by exploring the state
and action space and receiving rewards after transitioning
to a new state. Some RL algorithms, such as value iter-
ation, require knowing a-priori the reward functions and
state-transition functions. To remedy this, Q-learning was
proposed to be able to learn without explicit knowledge of
the reward and state-transition functions [1]. In Q-learning,
we attempt to learn a function of both a state and an action
instead of attempting to learn a function that gives a value
only based on state. The Q-learning algorithm was originally
proposed to work on problems with discrete state spaces.
Eventually, methods to adapt Q-learning to continuous state
spaces were developed in which the state space can be
represented by a set of weighted basis functions [2].

In this paper, we show that an optimal controller for a
linear system can be learned through the use of reinforce-
ment learning. In addition, we provide insight into how
the selection of a ∆t affects the policies learned by the
reinforcement learner. It seems intuitive that a smaller ∆t
will lead to better control policies and reducing the cycle time
of the underlying hardware is possible through engineering
methods. However, this can significantly increase the cost of
the design. The selection of a larger ∆t will allow for costs
to be decreased by allowing slower (cheaper) hardware to be
used. Further, we show how the properties of linear systems
can be exploited in order to decompose the description of
the system into a transient response which affects how the
system evolves shortly after a new control input is selected
and a long-term response which specifies where the system
will come to rest. In order to do so, we have to make a
few assumptions. First and as discussed above, we are only
concerned with LTI systems. In addition, we assume once
a control input has been selected we must hold it for the
entire ∆t. We show the reinforcement learner can learn a
weighted basis function representation of the value function
that approximates it’s optimal continuous time counterpart.
Finally, we show empirically that control error shrinks with
∆t and approaches optimal continuous time control in the
limit (as ∆t→ 0).

II. CONTROL OF LINEAR SYSTEMS
A. State-Space Representation

Modern control theory introduces the idea of the state of
a system. In this representation, a set of state variables are
chosen and the system is described by how these variables
evolve over time. Any FO LTI system with n state variables,
r input variables, and m output variable can be written
in terms of change in state by the following simultaneous
differential equations:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where x is the state, y is the output and u is the control input.
A is an n×n matrix that describes the system dynamics. B
is an n × r matrix that describes how the inputs affect the
change in state. C is an m×m matrix and D is an m× r
matrix.

We can solve the differential equation for x by employing
the Laplace transform.

X(s) = (sI−A)−1x(0) + (sI−A)−1BU(s) (1)

Taking the inverse Laplace transform we get:

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bu(τ) dτ (2)

Therefore, we can see that the internal behavior (state space
trajectory) is not, in general, linear and instead the system
evolves exponentially as a function of time. These trajectories
have a transient phase of rapid response before slowing
to a new equilibrium point which we call the long-term
or asymptotic response. If we assume that A is negative
definite then as a control is applied, the exponential terms
will approach zero as time passes. Eventually, the system
will converge to a new equilibrium point as the exponential
terms approach zero.

Fig. 1: State space response of the example system to unit
step input. The state changes rapidly during the initial period
(transient) after a new control input is applied and gradually
converges to a new equilibrium point (long-term).

B. Example
Consider the following first-order linear system:

ẋ(t) =

−1 2 0
−1 −4 1
0 0 −1

x(t) +

1 0
0 1
1 0

u(t)

The solution can be derived as follows:

(sI−A) =

s+ 1 −2 0
1 s+ 4 −1
0 0 s+ 1

(sI−A)−1 =

2

s+ 2
−

1

s+ 3

2

s+ 2
−

2

s+ 3
−

2

s+ 2
+

1

s+ 3
+

1

s+ 1

1

s+ 3
−

1

s+ 2

2

s+ 3
−

1

s+ 2

1

s+ 2
−

1

s+ 3

0 0
1

s+ 1

To solve for x(t) with

x(0) =

1
0
1

 and u(t) =

[
U1(t)
U2(t)

]
where u(t) is a step function. We now have the parts to

evaluate Equation 1. Multiplying the matrices out we get:

(sI−A)−1x(0) =

1

s+ 1

0

1

s+ 1

and

(sI−A)−1BU(s) =

1

s+ 1

2

s+ 2
−

2

s+ 3

0
2

s+ 3
−

1

s+ 2

1

s+ 1
0

1

s

1

s

 =

−

1

s+ 1
−

1

s+ 2
+

2

3(s+ 3)
+

4

3s

1

2(s+ 2)
−

2

3(s+ 3)
+

1

6s
1

s
−

1

s+ 1

Therefore,

X(s) =

1

s+ 1

0

1

s+ 1

+

− 1

s+ 1
− 1

s+ 2
+

2

3(s+ 3)
+

4

3s
1

2(s+ 2)
− 2

3(s+ 3)
+

1

6s
1

s
− 1

s+ 1

so that

x(t) =

e−t − e−t − e−2t +

2

3
e−3t +

4

3
1

2
e−2t − 2

3
e−3t +

1

6

e−t + 1− e−t

=

−e−2t +

2

3
e−3t +

4

3
1

2
e−2t − 2

3
e−3t +

1

6

1

 (3)

We will analyze the transient and long-term behavior of
this system below.

C. Solving for the Optimal Continuous Time Trajectory

Next, we need to find a policy u that optimizes some
objective. The calculus of variations will prove to be useful
in finding such a policy.

Mathematically, we can describe the objective function as:

J =

∫ b

a

f(x, y, y′) dx

where we want to find the function y that minimizes J
over the range [a, b] and satisfies initial and final boundary
conditions. In this paper, we consider that the goal is to reach
a target state xd, and f(·) is the distance squared as a cost
function, f =| xt − xd |2 or, for generality, f = xTQx in
matrix form, where Q is a matrix of weights. Using Calculus
of Variations, a necessary condition for an extremum function
is that it satisfies the Euler-Lagrange equation:

∂f

∂y
− d

dx

(
∂f

∂y′

)
= 0

The optimal control for a given objective function can be
found in a similar manner. This will correspond to how we
find an optimal policy in the case of continuous state spaces.
For example, take the objective function [3]:

J =

∫ tf

0

x(t)TQx(t) + u(t)Ru(t) dt

First we define the pre-Hamiltonian as:

H(x, u, p, t) = L(x, u, t) + pT (t)f(x, u, t)

ṗ =
∂H
∂x

H = xTQx + uTRu + pT (Ax + Bu)

Pontryagin’s minimum principle specifies that the optimal
policy is one that minimizes the Hamiltonian at every time
t [3]. The Hamiltonian for this example is minimized by
setting:

∂H
∂u

= 0 = 2Ru + pTB

u∗(t) = −1

2
R−1BTp(t)

where p(t) is the co-state vector that can be solved for
through the use of boundary conditions. This gives us the
optimal continuous time policy u∗(t) that minimizes J .
Furthermore, the optimal continuous-time trajectory can be
derived as x(t) = eAtx(0) +

∫ t
0
eA(t−τ)Bu∗(τ) dτ .

D. Solving for the Optimal Continuous Time Value Function

One can solve for the optimal value function by solving the
Hamilton-Jacobi-Bellman (HJB) equation [4]. If we define
the value function as:

V =

∫ ∞
0

x(t)TQx(t) + u(t)TRu(t) dt

where Q and R are positive definite matrices. Then we can
define a differential equivalent [5]:

0 = r(x, u) +∇V T ẋ

The RHS of this equation is the Hamiltonian of the system.

H(x, u,∇V) = r(x, u) +∇V T ẋ

We can now define the HJB equation as:

0 = min
u
H(x, u,∇V)

If we assume that the value function is a quadratic function
in the Euclidean distance to the goal then we can derive an
analytical solution for the value function based on solving
the Lyapunov equation ATP + PA + Q = 0 [5].

V (x) = xTPx

P =

∫ ∞
0

etA
T

QetA dt

where P is the solution to the Lyapunov equation. Note
that the integral in the definition of P doesn’t need to be
solved directly. Instead, P is the solution of the n(n+ 1)/2
simultaneous equations defined by the Lyapunov equation.
Also, note that these results only hold if the origin is the goal.
Therefore, if the goal is to control the system to another point
that is not at the origin then a change of variables where the
new origin is defined as xn = x− xd must be carried out.

III. REINFORCEMENT LEARNING

Reinforcement learning (RL) is a method of machine
learning in which an agent learns a control policy by at-
tempting to maximize the returned rewards for taking an
action in a given state [6]. It does this by exploring the
state and action spaces and observing the rewards in order
to approximate the value function which is the expectation
of the sum of discounted rewards for starting in state s and
following the policy π. An important assumption made by
the RL framework is that state changes are discrete; when
an action is taken, a transition to a new state occurs, and
the reward is observed, instead of happening continuously in
time. If the value function is known, the optimal policy π∗

can be derived as:

π∗(s) = arg max
s′

V (s′)

A. Markov Decision Processes

Much of the theory of reinforcement learning is based
on what are called Markov Decision Processes (MDPs) [7].
A MDP is defined on a set of states S and actions A
available to an agent. The size of the state and action spaces
are traditionally assumed to be finite. The reward function
R(s, a) defines the feedback given to the agent for being in
state s, taking action a, and ending in state s′. Actions can
either be deterministic or non-deterministic. If the current
state depends only on the previous state and action taken then
the problem is said to satisfy the Markov property. Given this
definition of an MDP, we now define the value function for
a given policy (mapping of states to actions) π as:

V π(s) = Eπ[R(s)] = Eπ[

∞∑
k=0

γkrk+1]

Where γ is a discount factor that tunes how much the agent
should care about future rewards versus the current reward.
In other words, the value of being in state s is equal to the
expected value of sum of the current reward and all future
rewards for being in state s and following π until termination.

If the reward and transition functions are known, an
MDP can be solved by employing dynamic programming
techniques [8]. Value iteration is one such technique in which
one can iterate on the value function by taking the max
over the actions V (s) = max

a

∑
s′
Pass′ [Rass′ + γV (s′)]. The

iterations continue until the LHS of the equation is equal to
the RHS. The equation above is called the Bellman equation,
which is based on the Bellman Principle of Optimality.

B. Q-learning

Some typical methods of reinforcement learning, such as
the value iteration algorithm, require the learner to know
some model of the underlying system (i.e. the reward func-
tion or state-transition function). However, it is often the
case that one does not know these functions. Q-learning can
be used to learn policies without having to know a-priori
the reward or state-transition functions. Instead of a value
function, we now define a Q-function that represents the
value of being in state s and taking action a:

Qπ(s, a) = Eπ[R(s, a)] = Eπ[

∞∑
k=0

γkrk+1]

The Q-function is typically represented as a table called a
Q-table where the rows and columns are the finite states and
actions. Q-learning can be extended to infinite state spaces
by representing Q-functions as the sum of weighted basis
functions:

Q̂(s, a) =

N∑
i=1

wiφi(s, a)

This representation requires choosing a set of basis functions
that can accurately represent the true value function for a
given problem.

IV. CONNECTING REINFORCEMENT LEARNING
AND CONTROL THEORY

Optimal control theory and reinforcement learning share
the goal of obtaining an optimal control policy for a par-
ticular problem. The difference between the two is the
knowledge of the model and assumptions about time. In the
optimal control theory case, the control policies are derived
exactly with full knowledge of the system and assume
continuous time. In the case of reinforcement learning, the
model of the system might not be fully or even partially
known, and the policies are derived based on interaction
with the environment over discrete periods of time, ∆t. In
this section, we describe the control policies obtained from
both fields in order to derive some insight as to how the two
different policies change with respect to ∆t. The questions
we address are: 1) Is the value function in the discrete case
V∆t representable as a linear mapping? 2) How closely would
it approximate the continuous time V ∗ for a finite ∆t?

A. System Behavior Decomposition

In this section, we prove that a given linear system can be
decomposed into a linear function of the transient and long
term behaviors of the system.

Theorem 1: If A has both real and distinct eigenvalues,
then each entry in the solution to the state equation (Eq. 2)
can be written as the sum of exponentials and constants.

Recall the solution to the state space equations in the
Laplace domain given by Equation 1. Note that x(0) and
B are both constant and U(s) is a step input. Therefore, let
us focus on the (sI−A)−1 term first.

Using |sI−A| = 0, we can obtain the eigenvalues of A,
which we assume by the theorem are both real and distinct.
We can write:

|sI−A| = (s− λ1)(s− λ2)...(s− λn)

which is a polynomial of degree n.
Let Mij be the matrix obtained by eliminating the ith row

and jth column from A. |Mij | is called the minor of aij and
has a degree ≤ (n− 1). Let

Aij = (−1)i+j |Mij |

be called the cofactor of aij . The adjoint of A is the matrix
in which:

adj(A)ij = Aji

In other words, the adjoint of A is the transpose of the matrix
of cofactors. Since

(sI−A)−1 =
adj(sI−A)

|sI−A|

We can use Eqs 1, 2, and 3 to write:

adj(sI−A)ij
(s− λ1)(s− λ2)...(s− λn)

=
(sI−A)ji

(s− λ1)(s− λ2)...(s− λn)

=
(−1)j+i|Mji|

(s− λ1)(s− λ2)...(s− λn)

Because the degree of |Mji| is at most (n − 1) the degree
of the numerator is strictly less than the degree of the
denominator.

Therefore, we can use partial fraction decomposition since
there are no repeated roots in the denominator and the
degree of the numerator is strictly less than the degree of
the denominator to get the form:

k1

(s− λ1)
+

k2

(s− λ2)
+ ...+

kn
(s− λn)

Finally, taking the inverse Laplace transform we get:

k1e
λ1t + k2e

λ2t + ...+ kne
λnt

for each entry in (sI−A)−1 as shown below.

(sI−A)−1 =

k111e

λ11t + ...+ kn1ne
λ1nt

k121e
λ21t + ...+ kn2ne

λ1nt

...
k1n1

eλn1t + ...+ knnn
eλ1nt

Since x(0) is a vector of constants for the first half of
equation 1 we get:

=

c1k111

eλ11t + ...+ c1kn1n
eλ1nt

c2k111
eλ11t + ...+ c2kn1n

eλ1nt

...
cnk111e

λ11t + ...+ cnkn1ne
λ1nt

For the second half of equation 1, we have two parts:

(sI−A)−1B =

b1k111

eλ11t + ...+ b1kn1n
eλ1nt

b2k111
eλ11t + ...+ b2kn1n

eλ1nt

...
bnk111e

λ11t + ...+ bnkn1ne
λ1nt

For the unit step in each dimension of U(s):

U(s) =
1

s
KT =

[
k1
s

k2
s · · · kn

s

]T
we take the inverse Laplace transform to get:

U(t) = U = KTH(t)

where H(t) is the Heaviside step function. So we can see that
(sI−A)−1BU(s) is equal to the matrix for (sI−A)−1BU.
Therefore,

x(t) = L−1((sI−A)−1x(0) + (sI−A)−1BU(s))

= L−1(sI−A)−1x(0) + L−1(sI−A)−1BU(s)) =
C1k111

eλ11t + ...+ C1kn1n
eλ1nt

C2k121
eλ21t + ...+ C2kn2n

eλ2nt

...
Cnk1n1e

λn1t + ...+ Cnknnne
λnnt

where Ci = ki(bi + ci) and i is equal to the row index.
Therefore, as long as the eigenvalues of the matrix A are
both real and distinct the solution to the state equation can
be written as a sum of exponential functions and constants.

If we group the exponential terms together, they form
what we call the transient response matrix T of the system.
The constants form the long term response matrix N of the
system. The λ terms in the transient response matrix are the
time constants of the system. We can now define:

x(t) = T (t) +N

For the example problem in section II, separating exponen-
tials from constants in equation 3, we have:

T =

−e−2t +

2

3
e−3t

1

2
e−2t − 2

3
e−3t

0

 , N =

4

3
1

6

1

The smallest time constant is given by τ = 1
3 . Thus, the

system reaches about 37% of the way to the new equilibrium
point

[
4
3

1
6 1

]T
in about 1/3 sec.

B. Response LTI Systems to Actions

Unlike general applications of RL, we can derive a transi-
tion function from knowledge of a linear system. For any
action held constant for ∆t, we can predict the discrete
response xt → xt+1. The previous section allows us to see
that given any step input we can decompose the system into
a set of constants and exponential functions. In this section,
we will show that we can derive the state transition function
of an LTI system given the matrix A and a ∆t over which
a constant action u is held. In addition, we show that it is
a linear transformation in the state space of the system. We
start by defining ∆x as the difference in state at time t from
the initial state.

∆x = x(t)− x(0)

We then plug in the solution for x(t).

x(t) = eAtx(0) + L−1((sI−A)−1BU(s))

∆x = eAtx(0) + L−1((sI−A)−1BU(s))− x(0)

∆x = (eAt − I)x(0) + L−1((sI−A)−1BU(s))

Since U is a step input we can represent it as a constant U.

∆x = M(∆t)x(0) + L

where
M(∆t) = (eA∆t − I)

and
L = L−1((sI−A)−1BU)

Therefore, for a given ∆t the matrix M and the vector L
are constants, meaning we can predict, for a given state, ∆t
and control input, our next state discrete xt+1. We can also
see how this transformation is a simple linear transformation
of coordinates in state space (given a fixed ∆t) as shown in
Figure 2.

Fig. 2: A depiction of the linear mapping for an input action
for the example problem. Each vector shows the result of
taking the same action from different coordinates in state
space and holding it for ∆t = 0.2.

So in theory, since we can extract the transition function
from knowledge of the dynamics, then it should be possible

learn a control policy (for a given reward function) using
a dynamic programming technique such as value iteration.
However, our goal is to show that a controller can be learned
for a linear system without requiring the model (i.e. using
Reinforcement Learning).

C. Approximating the continuous-time value function

Although reinforcement learning is often presented in
terms of discrete state spaces, it can be extended to con-
tinuous state spaces by representing the value function as a
linear combination over a set of continuous basis functions
[2]. That is, given a basis set φ1(s) to φn(s).

V =

n∑
i=1

wφi(s)

where wi is a weight for each φi. Two important ques-
tions in applying discrete-time RL to learning control of a
continuous-time LS are: 1) can the continuous-time value
function be approximated as a linear combination?, and 2)
over what basis set? Since the Lyapunov equation (above)
shows that if the reward is quadratic (r = xTQx, then the
optimal continuous-time value function can also be expressed
as a quadratic function V ∗ = xTPx. Expanding this
matrix expression out as a polynomial, V ∗ = ΣiΣiPijxixj .
Therefore, a natural set of basis functions is the n(n+ 1)/2
combinations of products of the state space variables (up to
second-order). For the example in the previous section, we
would choose: [φ1...φn] = [x2

1, x1x2, x1x3, x
2
2, x2x3, x

2
3]

Theorem 2 (Representation Theorem): The optimal
continuous-time value function V ∗ is representable
as linear combination over a quadratic basis set,
V ∗ =

∑n(n+1)/2
i=1 wiφi(s) where [φ1...φn(n+1)/2] =

[x2
1, x1x2..., xixj , ...x

2
n].

We show below that the optimal discrete-time value
function V∆t can be made to approximate V ∗. Thus the
Representation Theorem shows that V ∗ can be learned as
a target by using discrete-time methods (e.g. Reinforcement
Learning) by learning weights over a quadratic basis set.
However, as shown in the next section, the accuracy of
approximation will depend on the size of the time step, ∆t.

D. Effect of ∆t

If we assume continuous control inputs that are bounded
by some constant µ (i.e. |U | ≤ µ) then a reachable region
from the current state is defined given a ∆t. This is illustrated
in Figure 3 as the light gray region. A state x2 is said to be
reachable from x1 if there exists a control input u(t) such
that |u(t)| < µ that can transfer the system from x1 to x2 in
finite amount of time. It should be noted that the shape of
the region is dependent on the dynamics of the system and
is not necessarily circular. The optimal trajectory, x∗(t), is
represented as the solid black line in the figure and a constant
input trajectory for a given action is shown as a dotted line.
The dotted line represents choosing an action and holding
it for ∆t. It is curved because of the non-linear, transient
response of the system.

Theorem 3: Assuming bounded, continuous control in-
puts, there exists an action that intersects with either the
optimal trajectory along the boundary of the reachable region
or the goal if it is inside the reachable region and this action
belongs to the optimal policy.

This can be proven by contradiction. The policy we learn,
once converged, has the property that the action chosen for
a given state maximizes the value function. That is

π∗(s) = arg max
s′

V (s′)

which means that V (s′) ≥ V (s) ∀s ∈ S where S is
the full state space. In addition, the optimal trajectory has
the property that it maximizes the optimal value function
for every point along optimal trajectory. That is: V ∗(s) ≥
V (s′) s′ 6= s. Therefore, if we choose an action that leads
to a state not at the intersection of the optimal trajectory
and the reachable region’s boundary then its value is less
than the optimal value. This violates our assumption that
V (s′) ≥ V (s) ∀s ∈ S because we could choose an action
with a higher value by choosing the action at leads to the
intersection point.

Next, we show that as ∆t → 0, we get better control
policies. For a smaller ∆t, the reachable region is smaller
which implies the maximum distance away from the optimal
trajectory is also smaller. The error of the policy for a given
∆t is defined by the difference of the integral of the distance
to the goal for the trajectories produced by both policies.

An important goal is to show that the value function
learned by reinforcement learning will converge in the limit
(as ∆t → 0) to the optimal value function for continuous
time control,

V ∗ =

∫ ∞
0

(x(t)− xd)
2
dt

Although the discrete-time value function is conventionally
defined V = Σγirt, in order to get it to converge to V ∗, we
modify by setting γ = 1 and multiply by ∆t:

V∆t = ∆t Σ∞t=0 rt = ∆t Σ∞t=0 (x(t)− xd)
2

Since for any time step ∆t, there is always a constant
action that can move the system to the same point on the
continuous time trajectory, as argued above, then the rewards
rt = (x(t)− xd)2 will match at these discrete points. Thus,
the discrete-time value function is simply the numerical
approximation of the continuous-time value function, V ∗.

V ∗ =

∫ ∞
0

(x(t)− xd)
2
dt ≈ Σ∞t=0 ∆t(x(t)− xd)

2

lim
∆t→0

V∆t → V ∗

Furthermore, we can we put a bound on the error in the
value function. The error is a function of the time step size
(as with any numerical quadrature), as well as the maximum
deviation between the optimal continuous-time trajectory and
the constant-input trajectory between the discrete time points,
where the coordinates coincide. This is bounded because the

amount the constant-input trajectory can diverge from the
continuous time path within ∆t is limited by the dynamics
of the system, which will force them to follow similar paths.

The response to a given input, and therefore the error, is
dependent on the underlying system dynamics and it is also
dependent on how quickly a system responds to a new input.
The smallest system time constant, τ , defines how rapidly
the system responds to a new control input. Therefore, we
propose that a requirement for the selection of a ∆t is that
it be less than τ in order to ensure that these rapid responses
can be controlled. At ∆t = dt the optimal trajectory will
equal the approximate trajectory through state space.

(a) (b)

Fig. 3: Differences between the optimal continuous-time
trajectory and the trajectory produced by a sequence of
discrete inputs. Solid line shows continuous-time trajectory.
Shaded region shows the reachable space within ∆t. Dashed
line shows trajectory by a sequence of constant inputs.

V. EXPERIMENTS

We analyzed and tested a stable, 2-dimensional sys-
tem with the dynamics defined by the matrices A =
[[−1 2], [−1 − 4]] and B = [1 1]T , and evaluated the
effect of ∆t on policies learned by Q-learning. This system
is stable because A is negative definite. The time constants
of the system are: τ1 = 1

3 and τ2 = 1
2 . The system was

implemented in MATLAB using fourth order Runge-Kutta
methods to simulate the system dynamics with a time step
of ∆t = 0.001 seconds. The goal is to show that the accuracy
of the learned controller increases as ∆t→ 0.

We used the Q-learning algorithm to learn the weights of
the quadratic functions of the state variables. The system
is set in a random initial location for an episode and uses
an ε-greedy action selection mechanism [9] to explore the
state space. The actions available to the learner were those
between -10 and 10 with steps of 0.1 and the goal was to
reach (0,0).

As shown in Figure 4, as ∆t → 0 the value estimate
increases which represents a better control policy. This figure
was generated by, first, learning for each ∆t until the
Q-function converged which we defined as 10000 weight
updates with maximum weight changes of less than 10−12

or 5000 episodes completed. Second, we tested each policy
by setting x0 = (2,2) and running the system until the goal is
reached. The squared distance to the goal accumulated along
the trajectory is the value presented in the graph. Note that
V∆t plateaus below the lowest time constant of the system.
This suggests that there are diminishing returns to reducing
∆t further than the start of the plateau and that a ∆t of 0.01

would be adequate to learn a near-optimal controller given
the dynamics of the system.

Fig. 4: The value estimates from the learned policies as a
function of ∆t.

VI. DISCUSSION
In this paper, we have discussed how it is possible to

decompose a system into a transient response and a long
term response. The decomposition provides some insight as
to the selection of a control time for a given learner and
enables one to use methods such as value iteration to find
an optimal value function V∆t. We have shown that for a
quadratic cost (or reward) function the optimal value function
is also quadratic and it is representable by a weighted linear
combination of a quadratic basis set. Finally, we have shown
that as ∆t → 0 the approximation to the optimal value
function is more accurate and therefore we get better control
policies. This idea was corroborated by the tests on an
example dyanmical system where we see that the ∆t should
be less than the smallest time constant of the system in order
to generate a near-optimal policy.

REFERENCES

[1] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3, pp. 279–292, 1992.

[2] M. G. Lagoudakis and R. Parr, “Least-squares policy iteration,” J.
Mach. Learn. Res., vol. 4, pp. 1107–1149, Dec. 2003. [Online].
Available: http://dl.acm.org/citation.cfm?id=945365.964290

[3] W. L. Brogan, Modern Control Theory (3rd Ed.). Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1991.

[4] M. Johnson, R. Kamalapurkar, S. Bhasin, and W. E. Dixon,
“Approximate-player nonzero-sum game solution for an uncertain con-
tinuous nonlinear system,” Neural Networks and Learning Systems,
IEEE Transactions on, vol. 26, no. 8, pp. 1645–1658, 2015.

[5] F. L. Lewis, D. L. Vrabie, and V. L. Syrmos,
Reinforcement Learning and Optimal Adaptive Control. John
Wiley & Sons, Inc., 2012, pp. 461–517. [Online]. Available:
http://dx.doi.org/10.1002/9781118122631.ch11

[6] L. P. Kaelbling, M. L. Littman, and A. P. Moore,
“Reinforcement learning: A survey,” Journal of Artificial Intelligence
Research, vol. 4, pp. 237–285, 1996. [Online]. Available:
http://people.csail.mit.edu/lpk/papers/rl-survey.ps

[7] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
1st ed. Cambridge, MA, USA: MIT Press, 1998.

[8] R. Bellman, Dynamic Programming, 1st ed. Princeton, NJ, USA:
Princeton University Press, 1957.

[9] M. Tokic and G. Palm, KI 2011: Advances in Artificial Intelligence:
34th Annual German Conference on AI, Berlin, Germany, October 4-
7,2011. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, ch. Value-Difference Based Exploration: Adaptive Control
between Epsilon-Greedy and Softmax, pp. 335–346. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-24455-1 33

