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Abstract—Transposon mutagenesis experiments enable the identification of essential genes in bacteria. Deep-sequencing of mutant

libraries provides a large amount of high-resolution data on essentiality. Statistical methods developed to analyze this data have

traditionally assumed that the probability of observing a transposon insertion is the same across the genome. This assumption,

however, is inconsistent with the observed insertion frequencies from transposon mutant libraries ofM. tuberculosis. We propose a

modified Binomial model of essentiality that can characterize the insertion probability of individual genes in which we allow local

variation in the background insertion frequency in different non-essential regions of the genome. Using the Metropolis-Hastings

algorithm, samples of the posterior insertion probabilities were obtained for each gene, and the probability of each gene being essential

is estimated. We compared our predictions to those of previous methods and show that, by taking into consideration local insertion

frequencies, our method is capable of making more conservative predictions that better match what is experimentally known about

essential and non-essential genes.

Index Terms—Sequence analysis, essentiality, hierarchical models
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1 INTRODUCTION

KNOWLEDGE of which genes are essential for the growth
of an organism enables the development of new drugs

that target these genes, thus preventing its growth [1]. A
common way to determine which genes are essential in bac-
terial organisms is through transposon mutagenesis experi-
ments. In these experiments, large libraries of mutants are
created by subjecting individual bacilli to transposon muta-
tions. Transposons are small fragments of DNA that are
capable of inserting within the genome, thereby disrupting
the genomic regions where they insert. The Himar1 transpo-
son is frequently used in transposon mutagenesis experi-
ments, as it is known to insert at random TA dinucleotide
sites (“TA sites”) within the genome [2], [3], [4], [5], [6]. This
specificity to TA sites can be exploited through sequencing,
as the possible insertion locations can be known beforehand.

Early attempts to use transposon mutant libraries to
assess essentiality utilized micro-array hybridization to
determine which genes were being expressed and which
ones were not [7], [8], [9]. Although these methods were
capable of assessing which genes were disrupted, they did
not provide detailed information about where the insertions
took place. With the development of next-generation
sequencing, large libraries of transposon mutants can be
sequenced at the same time, providing high-resolution infor-
mation about which areas in the genome can be disrupted.

Various statistical methods have been developed to ana-
lyze the data obtained with deep-sequencing, and assess the

essentiality of bacterial organisms. Some of these methods
have examined the relative number of transposon insertions
that map to specific TA sites (“read counts”). For example,
Zhang et al. [10] developed a non-parametric test of mean
read counts to assess the essentiality requirements for win-
dows of TA sites throughout the genome.

In addition to read-counts, other methods have focused
on the relative frequency of the insertions (i.e., fraction of TA
sites disrupted). Blades and Broman [11] developed a Multi-
nomial model to characterize the essentiality of libraries that
had a small number of transposon insertions. This method
was used to assess the genes necessary for growth of M.
tuberculosis in vitro and in lung [12], [13]. Recently, we devel-
oped a Bayesian model of essentiality that used the Extreme
Value distribution to determine the probability of observing
large gaps devoid of any insertions that are characteristic of
essential regions [14], [15]. Using the Metropolis Hastings
(MH) algorithm, this methodwas able to avoid using a priori
estimates of parameter values, instead estimating them by
sampling from the corresponding posterior distributions.

One key assumption of this method is that the insertion
probability is the same for all non-essential genes. While
this assumption serves to simplify the statistical model, it is
unlikely that all genes (or all genes within a given class of
essentiality) share the same insertion probability. For
instance, GC-rich regions can be difficult to sequence suc-
cessfully, which may lead to incomplete sequence coverage
in certain genomic regions leading to depressed read-counts
and insertions. This could explain why PE_PGRS genes in
the M. tuberculosis genome have been previously observed
to contain large gaps devoid of insertions, and indeed have
been characterized as essential by some statistical models,
even though this family of genes is generally believed to be
non-essential [12], [16]. Furthermore, because Himar1-based
transposons have specificity to TA sites, and the distribution
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of TA sites within genes is variable, genes can contain dif-
ferent amount of TA sites within disruptable regions (for
example, in the N- and C- termini or within non-essential
domains), which can lead to differences in the number of
insertions observed.

This variability in insertion probability is evident in
libraries of M. tuberculosis transposon mutants [14]. Fig. 1
shows a histogram of the observed number of insertions
(gray bars) in regions previously predicted to be non-
essential [15]. Non-overlapping windows of 20 TA sites
were taken across non-essential regions, and the number
of insertions observed within the window was determined.
The observed distribution of insertions (gray bar) is more
dispersed than what would be expected if the insertion
probability were constant. In the case of a constant inser-
tion probability, the number of insertions would be distrib-
uted as Binomialðk jn; pÞ (black line). The over-dispersion
observed in the data suggests the variability must be due
to other factors aside from the stochastic nature of transpo-
son insertions.

The variability in insertion frequency throughout the
genome produces an inherent level of uncertainty when
modeling the data. We look at the role of uncertainty when
determining essentiality of genes. By modeling the local
insertion probabilities, the model allows for cases where a
gene may contain a lower insertion than average, yet still be
considered non-essential. To quantify the uncertainty in the
model we measure the entropy in the posterior probability
distribution of essentiality for libraries of different levels of
saturation.

In this paper, we present a hierarchical Bayesian method
for analyzing deep-sequencing data from transposon muta-
genesis experiments. Our method utilizes a Binomial likeli-
hood to model the insertions within the genes and a Beta
distribution to model the local insertion probability for each
gene. The Metropolis-Hastings algorithm is used to estimate
the parameters of the model and obtain the posterior proba-
bility of essentiality for each gene. The predictions of the

model were then compared to previous results, and the
effect of taking into consideration individual insertion prob-
abilities is examined.

Thus the main contribution of this paper is to show
how to extend Bayesian models of essentiality by relax-
ing the assumption of a global insertion frequency to a
Local Frequency Model (LFM), where each gene can
have its own local variation. This extension improves the
prediction of essential genes by taking into consideration
the variability of insertion probabilities observed in the
data. We show that modeling individual insertion proba-
bilities results in more conservative predictions which
are consistent with expectations for libraries of transpo-
son mutants.

2 METHODS

The data obtained from sequencing the transposon mutant
libraries is mapped to the genome, and the amount of reads
matching individual TA sites (“read counts”) is determined.
The read counts were censored to a maximum value of 1,
representing whether an insertion was observed at a partic-
ular TA site or not (i.e., a value of 1 indicates at least one
insertion was observed, and a value of 0 indicates no inser-
tions were observed). This model assumes that the insertion
frequency is sufficient to determine the essentiality of genes.
Although potentially relevant information about essential-
ity might be lost by censoring the read counts, read counts
can also be unreliable if the sequencing was subject to PCR
bias or amplification [17].

Under this representation TA sites were treated as
Bernoulli events, with the presence or absence of an inser-
tion indicating a success or a failure. For each gene, the
number of TA sites and insertions it contains is determined,
and these were treated as a series of independent trials. In
addition, genes were assumed to belong to a mixture of two
classes of essentiality: essential and non-essential genes.
The insertion frequency for each of these classes of genes is
modeled through a mixture of Beta distributions. Finally,
the Metropolis-Hastings algorithm is used to sample from
the conditional distributions of the parameters, and the pos-
terior probability of a gene belonging to a class essential
class of genes is estimated.

2.1 Model

For the all genes i 2 f1 . . .Gg, let Yi ¼ ki; nif g represent the
data for the ith gene, consisting of the number of insertions,
ki, and the total number of TA sites, ni. Each gene i contains
a latent variable ui, which represents the insertion probabil-
ity for this gene. The genes were modeled as a mixture of
non-essential and essential genes, with an indicator vari-
able, Zi ¼ f0; 1g, indicating whether the ith gene belongs to
the class of non-essential (0) or essential (1) genes. The mix-
ture coefficient, v1, represents the probability of a gene
belonging to the essential class (with the probability of
belonging to the non-essential class v0 ¼ 1� v1).

2.1.1 Complete Data Likelihood

For each gene i, the likelihood of observing ki insertions out
of ni TA sites is given by a Binomial distribution with suc-
cess probability ui. Assuming genes are independent of

Fig. 1. Histogram of the number of insertions observed within windows of
20 TA sites (gray bars). The Binomial distribution (black line) is incapable
of fitting the over-dispersion of observed in the number of insertions.
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each other, the complete data likelihood is given by the
product of Binomial distributions over all the genes:

YG

i

Binomialðki jni; uiÞ: (1)

2.1.2 Prior Probabilities

The distribution of individual insertion probabilities, ui is
modeled by a mixture of two Beta distributions: one model-
ing the probability of insertion for “essential” genes, and
another modeling the insertion probability at non-essential
genes:

ui jZi ¼ 0 � Betaðk0r0; k0ð1� r0ÞÞ;
ui jZi ¼ 1 � Betaðk1r1; k1ð1� r1ÞÞ:

(2)

Under this parametrization (i.e., a ¼ kr and b ¼ kð1� rÞ),
the r parameter represents the mean insertion probability (i.
e., mean of the distribution). On the other hand, the k

parameter can be thought of as the number of observations.
This is because in the common parameterization the sum
aþ b can represent the number of Bernoulli trials depend-
ing on the application. Under this parameterization
aþ b ¼ krþ kð1� rÞ ¼ k. Thus, with larger values of k the
distribution becomes tighter around the mean (i.e., r).

Because the r parameters represent probabilities, requir-
ing support for values in the range 0; 1½ �, Beta distributions
were chosen as priors:

r0 � Betaða0;b0Þ;
r1 � Betaða1;b1Þ;

(3)

where a0, b0, a1, and b1 are hyper-parameters for the Beta
distribution.

As the k parameters require support for values in the
range 0; inf½ Þ, Gamma distributions were chosen as priors:

k0 � Gammaða0; b0Þ;
k1 � Gammaða1; b1Þ;

(4)

where a0, b0, a1, and b1 are hyper-parameters describing the
shape and scale of the respective distributions.

The prior distribution for the indicator variable, Zi, is
given by the Bernoulli distribution, with probability of suc-
cess v1, which represents the probability of a gene belong-
ing to the class of essential genes:

Zi � Bernoulliðv1Þ: (5)

Finally, the prior distribution for v1 is given by a Beta
distribution:

v1 � Betaðav;bvÞ: (6)

2.1.3 Full Joint Distribution

Using the likelihood function (1) and the prior distribu-
tions (2, 4, 3, 5, 6) described above, the full joint

distribution has the following form:

pðK;Q; k1; r1; k0; r0;Z;v1Þ

¼
YG

i

pðki jni; uiÞ � pðui j kZi
; rZi
Þ

� pðk1Þ � pðr1Þ � pðk0Þ � pðr0Þ � pðZi jv1Þ � pðv1Þ

(7)

¼
YG

i

Binomialðki jni; uiÞ � Betaðui j k1r1; k1ð1� r1ÞÞ½ �Zi

� Betaðui j k0r0; k0ð1� r0ÞÞ½ �1�Zi

�Gammaðk0 j a0; b0Þ � Betaðr0 ja0;b0Þ
�Gammaðk1 j a1; b1Þ � Betaðr1 ja1;b1Þ
� BernoulliðZi jv1Þ � Betaðv1 jaw;bwÞ;

(8)

where K ¼ fk1; k2; . . . ; kGg, Q ¼ fu1; u2; . . . ; uGg, and
Z ¼ fZ1; Z2; . . . ; ZGg.

2.1.4 Conditional Distributions

Below, the conditional distributions for the parameters of
the essential genes are given (the corresponding distribu-
tions for the non-essential parameters were defined in a
similar manner). For an individual insertion probability, the
conditional distribution is a Beta distribution with updated
parameters:

pðui j ki;k; r; Zi ¼ 1Þ
/ Betaðui j k1r1 þ ki; k1ð1� r1Þ þ ni � kiÞ:

The Beta distributions depend on parameters r1 and k1
which are distributed as follows:

pðk1 j ki; ui; r1; Zi ¼ 1Þ
/ Betaðui j k1r1; k1ð1� r1ÞÞ �Gammaðk j a1; b1Þ;

pðr1 j ki; ui; k1; Zi ¼ 1Þ
/ Betaðui j k1r1; k1ð1� r1ÞÞ � Betaðr1 ja1;b1Þ:

Finally, the individual indicator variable, Zi, is given by a
Bernoulli distribution:

pðZi ¼ 1 j ki; ui; k1; r1;v1Þ ¼ Bernoulli
p1

p1 þ p0

� �
;

where,

p1 ¼ Betaðui j k1r1 þ ki; k1ð1� r1Þ þ ni � kiÞ � v1;

p0 ¼ Betaðui j k0r0 þ ki; k0ð1� r0Þ þ ni � kiÞ � ð1� v1Þ:

2.2 Parameter Estimation

In order to estimate parameters of the model and the proba-
bility of the genes being essential, samples were obtained
through the Metropolis-Hastings algorithm. The Metropo-
lis-Hastings algorithm is a Markov Chain Monte Carlo
(MCMC) method that can be used to sample from arbitrary
functions which may be too difficult to sample from
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otherwise. Briefly, candidate values were generated from a
proposal distribution and then accepted or rejected accord-
ing to a ratio of the target function evaluated at the candi-
date value (xc) and the last value (xi�1) in the Markov chain:
MHRatio ¼ fðxcÞ

fðxi�1Þ.
Because the Binomial likelihood (1) and the Beta priors (2)

are conjugate, the resulting conditional distribution can be
easily sampled. However, this is not the case for the condi-
tional distributions of the r and k parameters. We use a
combination of Gibbs steps and MH steps to obtain samples
for all the parameters (see Algorithm 1).

Algorithm 1: Random-Walk Metropolis-Hastings

Result: MCMC Samples of the densities
pðZijY;Q; r; kÞ and pðuijY; r; kÞ for
i 2 f1 . . .Gg

Assign starting values to ui; r0; k0; r1; k1 and initialize Zi

based on proportion of insertions within individual genes.;
for j ¼ 1 to desired sample size do

//Gibbs step - ui
for i 1 to G do

Sample ui �
Beta(rkþ ki; kð1� rÞ þ ni � ki) ;

end

//MH step - r0 ;

Draw candidate parameter rc0 from Normal distribution,

N(rj�10 , v) and accept according to MH ratio
fðrc

0
Þ

fðri�1
0
Þ ;

//MH step - k0
Draw candidate parameter kc0 from Normal distribution,

N(kj�10 , v) and accept according to MH ratio
fðkc

0
Þ

fðki�1
0
Þ

//MH step - r1
Draw candidate parameter rc1 from Normal distribution,

N(rj�11 , v) and accept according to MH ratio
fðrc

1
Þ

fðri�1
1
Þ

//MH step - k1
Draw candidate parameter kc1 from Normal distribution,

N(kj�11 , v) and accept according to MH ratio
fðkc

1
Þ

fðki�1
1
Þ

LetKz equal the number of genes with
Zj
i ¼ 1

Let G be the total number of genes
Sample v

ðjÞ
1 � Betaðaw þKz;bw þG�KzÞ

//Gibbs step - Zi

for i 1 to G do
p1 ¼ pðkijZi ¼ 0; r1; k1Þ � v1

p0 ¼ pðkijZi ¼ 0; r0; k0Þ � ð1� v1Þ
Sample Z

ðjÞ
i � Bernoullið p1

p1þp0Þ
end

end
Algorithm 1: Random-walk Metropolis-Hastings algorithm
for sampling values of ui and Zi for all genes i

3 RESULTS

Our method was applied to deep-sequencing data from
mutant libraries of the H37Rv strain of M. tuberculosis [14],

[15]. The library was grown in minimal media and 0.1 per-
cent glycerol. The surviving mutants were sequenced with
an Illumina GAII sequencer, with a read length of 36 bp,
producing 6 to 8 million reads. These reads were mapped to
the H37Rv genome, producing read counts at each TA site
in the genome.

The H37Rv genome is 4.41 million bp long and contains
3,989 open-reading frames (ORFs) [18]. Of these ORFs, 3,947
contain at least 1 TA site, with an average of 15.9 TA sites
per ORF. The remaining 42 ORFs, which do not contain a
TA site, were not considered in this analysis as their essenti-
ality cannot be determined with libraries built with the
Himar1 transposon.

A sample of 52,000 values was obtained with the
Metropolis Hastings algorithm. In order to make sure
that the MCMC chain converged before parameters were
estimated, the first 2,000 samples were discarded as part
of the burn-in period. The remaining 50,000 samples
were used to estimate the posterior mean of the parame-
ters of the model. The acceptance rate for the r0 and r1
parameters was 60 and 62 percent, and the acceptance
rate for the k0 and k1 parameters was 67 and 72 percent
respectively. Multiple chains of the MH sampler were
run in an attempt to verify that the sampler was not
trapped in local minima, and was converging to the
same area in parameter space.

3.1 Insertion Frequencies

Samples of the individual probabilities were obtained for all
genes. The mean insertion frequency, ui, was estimated
from these samples. Fig. 2 contains a density plot of the
mean insertion probability (black-line). The plot shows two
peaks (u ¼ 0:052 and u ¼ 0:721) corresponding to the mix-
ture of essential and non-essential genes. For comparison,
the insertion frequency observed in the data (i.e., ki

ni
) is plot-

ted as well (gray dashed line). The mean insertion

Fig. 2. Kernel density estimates for the mean posterior insertion proba-
bility (black-solid) and observed insertion frequency (gray-dashed) for all
the genes.
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probability resembles the observed frequency, with sharper
peaks at the posterior modes.

The samples of insertion probability for the genes
reflect our expectations for essential and non-essential
genes. Fig. 3 shows density plots of the samples for
DnaA (Rv0001) and MmpL11 (Rv0202c). DnaA is a
known essential gene involved in DNA repair. It contains
a total of 32 TA sites with a single insertion in the C-ter-
minus. Its mean insertion probability is ui ¼ 0:044, corre-
sponding to the small probability of observing an
insertion in this essential gene. On the other hand,
MmpL11 is a transmembrane transport protein deter-
mined to be non-essential in knock-out experiments [19].
It contains insertions in 20 out of 39 TA sites, with a
mean insertion probability of ui ¼ 0:551, consistent with
expectations of non-essential genes.

3.2 Essentiality Results

To estimate the probability of a gene being essential, the
sample of individual essentiality values, Zi, was averaged
for all genes (Zi ¼ 1

n

P
Zi). A method analogous to the

Benjamini-Hochberg procedure for posterior probabilities
was used to obtain the thresholds of essentiality. While the
Benjamini-Hochberg procedure is designed for p-values, it
can be modified to control the false discovery rate (FDR) for
posterior probabilities [20]. In similar fashion to the Benja-
mini-Hochberg procedure, posterior probabilities are
ordered in ascending order. Starting from the smallest pos-
terior probability, the ratio ai

n is compared to the difference
in posterior probability at position i and the mean posterior
probability of the previous positions, 1 . . . i� 1. Setting the
FDR at 5 percent, this method produces the following
thresholds: genes with Zi > 0:99304 were classified as
essential, and genes with Zi < 0:0391 were classified as
non-essential. Those genes that do not meet these thresholds
were classified as uncertain.

3.2.1 Comparison to the TraSH Method

The essentiality of the M. tuberculosis genome has been
assessed before, through the Transposon Site Hybridization
method (TraSH) [8], [9]. This method quantifies the amount
of fluorescence that is observed in probes that hybridize to
each of the genes in the genome [7]. Hybridization ratios
were obtained from libraries of M. tuberculosis grown in rich
media and glucose, and these were used to characterize
genes as essential, non-essential or growth-defect (repre-
senting those genes for which transposon insertion leads to
reduced growth rate). Genes for which the hybridization
ratio could not be obtained were classified as “No-Data”.

Table 1 shows a comparison of the results from the
TraSH method and the Local Frequency Model, presented
as a confusion matrix. Of the 614 genes predicted to be
essential by TraSH, 28 were predicted to be non-essential by
the Local Frequency Model. Although these genes were pre-
dicted to be essential by the TraSH experiments, they con-
tained a large number of insertions in the library analyzed
(average ui ¼ 0:72). This high insertion frequency suggests
the discrepancy could be due to differences in the growth
media between the two libraries.

In addition to these 28 genes, the methods disagree on
36 other genes which were classified as essential by the
Local Frequency Model and non-essential by TraSH. Simi-
larly, these genes contain a small number of insertions
(average u ¼ 0:03) in the library, which suggests that these
genes were essential in the library analyzed, and the dis-
crepancy may be due to the difference in the construction of
the libraries.

A significant difference between the methods is the pres-
ence of the “Uncertain” class of genes for the Local Fre-
quency Model. The LFM classifies around a quarter (1,371)
of the genes to be uncertain. This is because there is inherent
ambiguity in interpreting the insertion patterns in certain
regions, necessitating a new category for representing those
genes whose essentiality cannot be confidently determined
through the data.

Tables 2 and 3 contain comparisons between the TraSH
method and the Global Frequency Model (GFM) and
0Extreme Value Model (EVM) described in Sections 3.2.2
and 3.2.3.

Both of these models classify more genes as essential
than the TraSH method (709 for the GFM and 668 for the
EVM respectively, compared to 614 for TraSH). Approxi-
mately 15 percent of those genes are classified as non-
essential by TraSH, a higher percentage than the LFM (8

Fig. 3. Kernel density estimates for the posterior insertion probability of
DnaA (Rv0001), a known essential gene involved in DNA repair, and
MmpL11 (Rv0202c), a known non-essential gene believed to function as
a transmembrane protein.

TABLE 1
Essentiality Comparison between the TraSH Method

and the Local Frequency Model

Local Frequency Model

Ess. Unc. Non. Ess. Total

T
ra
S
H Ess. 329 257 28 614

Growth-Def. 5 20 17 42
Non. Ess. 36 682 1,796 2,514
No-Data 80 412 285 777

Total 450 1,371 2,126 3,947
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percent). This phenomena is also true for non-essential
genes where both the GFM and the EVM classify more
genes as non-essential (2,635 and 2,693, respectively), and
contain a larger disagreement.

These methods also predict less uncertain genes (603 for
the GFM and 342 for the EVM) compared to the Local Fre-
quency Model (1,371). This is partly due to the fact that the
Local Frequency Model also estimates individual insertion
probabilities, instead of assuming these parameters to be
globally shared. However the Global Frequency and
Extreme Value Models may also not be adequately captur-
ing the uncertainty that is present in the data. We discuss
these results in more depth in the corresponding sections
(Sections 3.2.2 and 3.2.3), and discuss the issue of uncer-
tainty in Section 3.3.

3.2.2 Comparison to the Global Frequency Model

To determine the effect of relaxing the assumption of a
constant insertion frequency, we compared our results to a
Binomial model with global insertion frequencies. Two
“global” insertion frequencies, u0 and u1, are shared across
the genes belonging to a given class of essentiality (i.e.,
essential and non-essential genes). Using Gibbs sampling,
samples for the parameters u0 and u1 were obtained, as
well as the essentiality assignments Zi. Estimates of the
probability of essentiality were calculated by averaging the
samples, as in the Local Frequency Model. After running
the Gibbs sampling procedure for 52,000 iterations, esti-
mates for the parameters were as follows: u0 ¼ 0.684 �
0.002 and u1 ¼ 0.102 � 0.002, implying a 68.4 percent inser-
tion density in non-essential genes and 10.2 percent in
essential genes.

Table 4 compares the results from the Local Frequency
and Global Frequency Models. Overall, the Local

Frequency Model is more conservative than the Global Fre-
quency Model, predicting more uncertain genes (1,371 ver-
sus 603). In fact, all 709 genes classified as essential by the
Global Frequency Model are classified as either essential
(450) or uncertain (259) in the Local Frequency Model. In
addition, all 450 genes classified as essential by the Local
Frequency Model are also classified as essential by the
Global Frequency Model. The Local Frequency Model’s
tendency to be conservative is also true for non-essential
genes, where the Global Frequency Model predicts 2,635
non-essential genes, while the Local Frequency Model pre-
dicts 2,126 of these to be essential and classifies the rest
(509) as uncertain.

This tendency to be more conservative in its predictions
is due to the fact that the Local Frequency Model is able to
capture the uncertainty that exists with smaller genes. By
sampling from a Beta-Binomial model, the lower number
of TA sites (i.e., Bernoulli trials) leads to an increased vari-
ance. Fig. 4 shows a density plot of the sampled insertion
density for PPE5, PPE19, and RpmB. All these genes have
an observed insertion density of 0.7 (i.e., kini ¼ 0:7), however
they have different number of TA sites (PPE5 ¼ 135, PPE19
¼ 10, and RpmB ¼ 5). While the Global Frequency Model
classifies all these genes as non-essential, the Local

TABLE 4
Essentiality Comparison between the Global Frequency Model

and the Local Frequency Model

Local Frequency Model

Ess. Unc. Non. Ess. Total

GFM

Ess. 450 259 0 709
Unc. 0 603 0 603

Non. Ess. 0 509 2,126 2,635

Total 450 1,371 2,126 3,947

Fig. 4. Insertion density for PPE5 (solid), PPE19 (dashed) and RpmB
(dot-dash). All three genes contained an observed insertion frequency of
0.7, although they were different sizes (# of TA sites). The larger vari-
ance in the insertion density for PPE19 and rmpB reflects the greater
uncertainty that exists in smaller genes.

TABLE 3
Essentiality Comparison between the TraSH Method

and the Extreme Value Model

Extreme Value Model

Ess. Unc. Non. Ess. Short Total

T
ra
S
H Ess. 430 75 81 28 614

Growth-Def. 9 4 28 1 42
Non. Ess. 94 151 2,131 138 2,514
No-Data 135 112 453 77 777

Total 668 342 2,693 244 3,947

TABLE 2
Essentiality Comparison between the TraSH Method

and the Global Frequency Model

Global Frequency Model

Ess. Unc. Non. Ess. Total

T
ra
S
H Ess. 443 110 61 614

Growth-Def. 12 5 25 42
Non. Ess. 105 295 2,114 2,514
No-Data 149 193 435 777

Total 709 603 2,635 3,947
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Frequency Model classifies RpmB as uncertain because it
takes into account the increased uncertainty due to the
smaller number of TA sites. The “shifting” of the mode of
these distributions is due to the fact that smaller genes
will regress towards the mean of the distribution of non-
essential insertion frequencies (i.e., r0 ¼ 0:69) as they are
more strongly affected by this parameter.

3.2.3 Comparison to the Extreme Value Model

Previously we developed a Bayesian model for gene essenti-
ality that utilized the Extreme Value distribution to deter-
mine the likelihood of observing a run of consecutive TA
sites lacking insertions. By taking the order of insertions
into account, this method enabled the identification of
domains within genes that contained both essential and
non-essential regions. This is in contrast to the Binomial
model which does not take into consideration the order of
TA sites. These two models of essentiality are compared in
Table 5.

As with the Global Frequency Model, the Local Fre-
quency Model is more conservative than the Extreme Value
Model, classifying 1,371 of the genes as uncertain in contrast
to the 342 classified by the Extreme Value Model. Among
those genes are members of the MmpL protein family (e.g.,
MmpL4, MmpL8 and MmpL9), which are believed to be
involved transport of lipids and glycolipids. Within this
family of proteins, only MmpL3 has been shown to be
essential in knockout experiments [19]. The Local Frequency
Model classifies MmpL3 as essential and the remaining
members of this family of proteins as either uncertain or
non-essential. In contrast, the Extreme Value Model classi-
fies MmpL4, MmpL8 and MmpL9 as essential because they
contain gaps in insertion pattern that are longer than
expected, despite also containing a relatively high insertion
frequency elsewhere in the gene. By being more conserva-
tive in its predictions, the Local Frequency Model is able to
more accurately predict the non-essentiality of genes like
most of those in the MmpL family of proteins.

Of the 450 genes classified as essential by the Local Fre-
quency Model, only four of these were classified as non-
essential or uncertain by the Extreme Value Model. All four
genes have a small number of insertions (observed insertion
density between 0.09-0.14), suggesting these genes are truly
essential. Indeed, although the total number of TA sites in
these genes ranges from 20-37, the length of the maximum
run of non-insertions ranges from eight to 12 TA sites. This
suggests that the few insertions observed were capable of

interrupting the run of non-insertions (e.g., one or two
insertions occur in the middle of an otherwise empty gene),
making them appear to be non-essential or uncertain to the
Extreme Value Model (as the run of non-insertions was not
sufficiently long).

Because the Local Frequency Model makes more conser-
vative predictions depending on the size of the gene, it can
make predictions even for those genes which contain only a
very small number of TA sites within their boundaries. In
contrast, the Extreme Value Model ignores genes that are
deemed too short (labeled ”Short”) by taking a threshold on
length (i.e., <3 TA sites or a span of nucleotides <150 bp )
and therefore excluding them from the analysis. Out of 244
genes classified as “Short” by the Extreme Value Model, the
Local Frequency Model classifies 164 genes as “uncertain”,
without the need of an ad-hoc threshold on gene length.

As mentioned before, a potential downside of the Bino-
mial model is that it does not take into consideration the
order of insertions and therefore can miss essential domains
within genes. For example, genes Rv3910 and Rv0018c have
been shown to code for essential protein domains involved
in cell wall synthesis [21]. While the Extreme Value Model
is capable of identifying these genes as essential, the Local
Frequency Model classifies them as uncertain.

3.2.4 Effect of the Essentiality Threshold

Although the thresholds on the posterior probabilities of
essentiality were determined through the same method for
all Bayesian models (analogous to the Benjamini-Hochberg
procedure for posterior probabilities [20]), this method
leads to different thresholds depending on the posterior
probabilities of the genes (originally, 0.9930, 0.9900, and
0.9902 for the Local Frequency Model, Global Frequency
Model and Extreme Value Model, respectively). This differ-
ence in the thresholds of essentiality may affect the number
of essential (and non-essential) genes predicted by the mod-
els, as well as the agreement between them. To assess the
effect of the threshold on the predictions of essential genes,
we reduced the threshold on the posterior probability essen-
tiality (from >0:99 to >0:80) and determined the number of
essential genes predicted by the models (Fig. 5).

As can be seen, the number of essential genes predicted
by the models increases as the essentiality threshold is
relaxed. However with the Local Frequency Model predicts
less essential genes than the other models, making more
conservative predictions despite the relaxation of the
threshold. The overlap between the models also increases as
the essentiality threshold is relaxed. These observations are
also true in non-essential genes, where the Local Frequency
Model is also more conservative in its predictions.

3.3 Capturing Uncertainty in the Data

As mentioned before, the predictions made by the Local
Frequency Model are more conservative than the other
models studied. This is primarily due to the fact that it esti-
mates the local insertion frequencies for each of the genes.
For instance, consider a gene with an insertion count just
below the expected insertion frequency for non-essential
genes; the Global Frequency Model would classify this gene
as essential with relatively high confidence. However, the

TABLE 5
Essentiality Comparison between the Extreme
Value Model and the Local Frequency Model

Local Frequency Model

Ess. Unc. Non. Ess. Total

EVM

Ess. 446 222 0 668
Unc. 2 300 40 342

Non. Ess. 2 685 2,006 2,693
Short 0 164 80 244

Total 450 1,371 2,126 3,947
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extra degree of freedom in the Local Frequency Model (ui)
offers another explanation for the data. The observed num-
ber of insertions could be low for this gene in general,
despite being non-essential. Therefore, the Local Frequency
Model allows for more variability in the classification of
genes, hence the posterior distribution is more diffuse. To
visualize this effect on the posterior probability of essential-
ity, the Zi values for all genes were plotted in ascending
order for the different models (Fig. 6). The probability of
essentiality for the genes increases much more gradually in
the Local Frequency Model compared to the other models.
By estimating the local probability of insertion for all genes,
instead of depending on a global parameter shared by
genes, the model is capable of capturing the uncertainty in

the data which would otherwise be missed by models
which assume a global insertion probability. In contrast, the
Global Frequency Model calls most genes either essential or
non-essential with too high of confidence, and very few
genes in between (603, 0:0391 < p < 0:99304; see Table 4)
are labeled uncertain.

While the uncertainty captured by the Local Frequency
Model is due to the individual insertion probabilities (and
the varying sizes of the genes), the uncertainty can also
be affected by how many insertions are represented in
the transposon library. The lower the saturation of the
library (i.e., the less mutants containing insertions at differ-
ent locations), the more difficult it is to distinguish between
essential and non non-essential regions.

To assess the effect of the level of saturation of the library
on the estimates of essentiality, the Local Frequency Model
was used to analyze libraries spanning different levels of
saturation. Libraries were artificially created from the origi-
nal glycerol library (analyzed above), by setting read-counts
of random TA sites to zero throughout the genome. This
process was used to create libraries having a saturation
(insertion density) ranging from 18 to 50 percent. Fig. 7
shows the resulting posterior probability distributions for
these libraries compared to the original glycerol library.

As the saturation of the library decreases, the slope of
the resulting distribution of essentiality decreases as
well, reflecting the increased uncertainty that occurs
with sparser data sets. The increase in uncertainty leads
to a decrease in the number of essential genes predicted
for the respective libraries. The increased uncertainty is
also reflected in the distribution of insertion probabilities
for the genes. Fig. 8 shows the distribution of the inser-
tion probabilities estimated by the Local Frequency
Model for the different libraries.

The two peaks of the distribution (representing the two
classes of genes), slowly shift closer to the global insertion
frequency in the library, increasing the uncertainty of classi-
fying genes in between the two peaks. Once the saturation

Fig. 6. Posterior probability of essentiality (Zi) in ascending order for the
Extreme Value Model , Global Frequency Model and Local Frequency
Model.

Fig. 7. Posterior probability of essentiality (Zi) in ascending order for
transposon libraries of different insertion density. Mean insertion density
for the original glycerol data set is 52 percent.

Fig. 5. Number of essential genes predicted by the Local Frequency
Model (circle), Global Frequency Model (triangle), and the Extreme
Value Model (cross) as a function of the threshold on the probability of
essentiality. The Local Frequency Model predicts less essential genes,
even as the threshold is relaxed.
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of the library reaches a critical point (�16 percent) the two
peaks collapse into one, making the two category of genes
effectively indistinguishable from each other.

To measure the changes in uncertainty, the mean entropy
of the posterior probability of essentiality was estimated
(H ¼ � 1

G

PG
i pðZiÞ log pðZiÞ) for each of the different data

sets. As expected, the entropy increases as the saturation of
the data set diminishes (Fig. 9), reflecting the increased
uncertainty that is captured by the Local Frequency Model
by taking into consideration local insertion frequencies.
Table 6 shows a breakdown of the predictions by the Local
Frequency Model on the different libraries. The number of
uncertain genes increases as the saturation of the library
decreases, coinciding with the reduction of the space
between peaks in Fig. 8.

The higher entropy is also observed amongst the differ-
ent models, where the Local Frequency Model shows the
highest mean entropy (0.162), followed by the Global Fre-
quency Model (0.051) and the Extreme Value Model (0.037).

4 CONCLUSIONS

The intricacies of next-generation sequencing data necessi-
tate the development of methods that can analyze this data
in a robust way. Although assuming a global insertion fre-
quency can simplify the statistical analysis of transposon
mutagenesis data, it does not accurately represent patterns
observed in real data, or realistic expectations about the
variability of insertions in genes. We developed a Bayesian
model that estimates the probability of essentiality for all
the genes, taking into consideration the individual inser-
tion probabilities. We applied this model to a library of
M. tuberculosis transposon mutants, and found several
cases which highlight the benefit of assuming an individ-
ual insertion frequency.

The insertion frequency of genes is not expected to be
globally constant across the genes. Differences in sequenc-
ing coverage or errors in mapping reads to the genome can
lead to different insertion frequencies between genes, even
among those with the same class of essentiality (i.e., essen-
tial or non-essential genes). In addition, the observed inser-
tion frequency can be affected by the growth rate of the
tranposon mutants. The severity of the growth-impairment
resulting from the disruption of these genes will affect the
number of viable mutants available for sequencing, and
therefore the relative frequency of insertions observed for a
given gene.

These effects, in addition to the stochastic nature of trans-
poson insertions, are a source of uncertainty in the insertion
data. By modeling the insertion frequency for each gene,
these effects can be taken into consideration while they
would otherwise be missed by assuming a global insertion
frequency. Although increasing the degrees of freedom of a
model may lead to over-fitting, we show that the predic-
tions for the Local Frequency Model exhibit higher entropy
than alternative models while also matching expectations of
essentiality for M. tuberculosis. The entropy increases as the
saturation of the library decreases, resulting in a increased
number of uncertain genes being predicted due to the natu-
ral loss of statistical power.

By taking into consideration the uncertainty in the data,
more accurate predictions can be made. Previous methods
which assumed a global insertion frequency have been

TABLE 6
Essentiality Results for Libraries with Different

Levels of Saturation

Saturation Essential Uncertain Non-Essential

18% 2 2,409 1,536
20% 2 2,296 1,649
30% 66 1,822 2,059
40% 334 1,592 2,021
50% 438 1,438 2,071

Glycerol 450 1,371 2,126

Mean insertion density for the original glycerol data set is 52 percent.

Fig. 8. Kernel density estimate of mean insertion probabilities (ui) for
libraries different levels of saturation. Mean insertion density for the origi-
nal glycerol data set is 52 percent.

Fig. 9. Shannon entropy of the posterior probability of essentiality for the
LFM on data sets with different levels of saturation. Mean insertion den-
sity for the original glycerol data set is 52 percent.
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susceptible to these problems. For example, although
PE_GRS genes and several MmpL genes have been shown
to be non-essential through knock-out experiments [16],
some of these genes have been characterized as essential by
previous statistical methods. A possible reason for this
might be that these genes contain regions with high GC con-
tent that are difficult to sequence, leading to stretches within
the gene that are devoid of insertions.

While our Binomial model is capable of modeling the
insertion frequencies among the genes, it does so by consid-
ering only the presence or absence of insertions, and not the
number of reads. Although the number of reads might be
susceptible to problems in sequencing (e.g., PCR amplifica-
tion), it has been successfully used to assess essentiality
before [10], [22]. In addition, our method does not take into
consideration the order of insertions (or non-insertions). A
method we have previously developed, assessed the proba-
bility of observing “gaps”, or a series of TA sites lacking
insertions in a row. By using the Extreme Value distribution
to quantify the statistical significance of these regions lack-
ing insertions, this method was capable of identifying genes
which contained essential and non-essential regions (like an
essential domain). However, that method assumed a global
insertion frequency, which meant it suffers from the limita-
tions outlined before. A promising extension of our work
may be to augment the Extreme Value Model to allow for
local insertion probabilities at individual genes, therefore
capturing the uncertainty that exists in transposon muta-
genesis data and improving the assignments of essentiality.
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