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Abstract 
 
Data preprocessing is important in machine 

learning, data mining, and pattern recognition. In 
particular, selecting relevant features in high-
dimensional data is often necessary to efficiently 
construct models that accurately describe the data. For 
example, many lazy learning algorithms (like k-
Nearest Neighbor) rely on feature-based distance 
metrics to compare input patterns for the purpose of 
classification or retrieval from a database. In previous 
work, we introduced Slider, a distance metric learning 
method that optimizes the weights of features in a 
protein model-building application (where features are 
used to describe patterns of electron density around 
protein macromolecules). In this work, we demonstrate 
the usefulness of Slider as a general method for 
classification, ranking and retrieval, with results on 
several benchmark datasets. We also compare it to 
other well-known feature selection or weighting 
methods.  
 
 
1.  Introduction 
 
1.1. Distance metric learning, feature 

weighting, and ranking  
 

Accurate distance measures are critical to many 
classification, clustering, and retrieval applications. 
Automated learning of distance metrics is thus widely 
studied [1], and is closely related to feature selection 
[2], feature weighting [3], and feature interaction. 
Learning a distance metric is also related to the 
problem of ranking [4], especially in learning methods 
like k-Nearest Neighbor and case-based reasoning, 
where  a  set  of instances are typically ranked based on 
similarity to a given query instance. 

Algorithms for feature selection, learning distance 
metrics, or learning to rank face numerous challenges 
when applied to real-world problems. A recent trend is 
the emergence of applications with large numbers of 

features (tens or even hundreds of thousands), such as 
text classification [5], gene expression array analysis, 
and other genomics applications [6]. In many 
applications, class labels may not be available [7] – we 
may instead only know if certain pairs of instances are 
similar or different.  

We argue that learning a distance metric by 
adjusting the metric proportionately to distances in 
feature space can lead to data overfitting, especially in 
complex and noisy domains. Learning a metric from 
inaccurate and disproportionate feature values can be 
misleading. A distance value is mostly used in relative 
comparison among instances, or ranking of instances, 
based on similarity to a query. This motivates our 
design for learning a distance metric for the purpose of 
ranking, through the use of heuristics that try to 
optimize ranking.  
 
1.2. Feature weighting with Slider  
 

In previous work [8], we presented a distance metric 
learner called Slider for a specific domain (protein 
structure determination by X-ray crystallography). In 
this paper, we discuss the effectiveness of Slider as a 
general distance metric learner. We show empirical 
results in several benchmark datasets, and compare 
Slider to other approaches to feature selection and 
feature weighting.  

Like many other feature selection and weighting 
algorithms, Slider starts with an initial set of weights,  
iteratively selects and evaluates new weights, retains 
the best ones, and stops when finding even better 
weights seems unlikely, or is computationally too 
expensive. The critical decisions that Slider makes in 
every iteration are: (1) selecting a new weight vector 
for evaluation – out of an exponentially large set of 
options, and (2) evaluating the weight vector to 
determine if it outperforms the current best one.   

Slider uses the following heuristic to evaluate a set 
of weights: given a training instance, we look at how 
well the distance metric that uses the weights (like 
weighted Euclidean) ranks an instance known to be 
similar to the training instance, relative to a set of 
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known different ones. This is done for a set of training 
examples, and the average rank of the similar instances 
is a measure of how good the weight vector is.  

Exhaustive search through a space of weights is 
intractable. Therefore, given true matches and true 
mismatches for examples, Slider focuses on only those 
weights that cause each example to be equidistant to its 
match and its mismatch in Euclidean space. These 
“crossover” weights are the ones that will influence the 
accuracy of ranking. Thus, by limiting the space of 
weights to be searched, and identifying only the 
weights that are more likely to make a significant 
difference, the efficiency and effectiveness of learning 
are largely ensured.  

We emphasize the fact that Slider chooses weights 
that try to maximize the number of instances for which 
true matches are closer to training examples than 
mismatches in weighted Euclidean space. An 
alternative approach would be to find weights such the 
aggregate distance between instances and matches is 
smaller than that between instances and mismatches [1, 
7, 9]. The objective function that Slider tries to 
optimize is an NP-hard constraint satisfaction problem, 
which justifies the use of a heuristic function (based on 
ranking) to guide the search for optimal weights.  
 
2. Related work 
 
2.1. Feature relevance 
 

A central problem in machine learning is that 
irrelevant features tend to mask relevant ones, leading 
to inefficient learning and inaccurate predictions [2]. 
Potentially useful features are generally defined by an 
expert (or extracted by automated techniques), and a 
subset of these features are automatically selected (or 
highly weighted). Feature selection algorithms are 
commonly categorized into two major groups: filters 
and wrappers. This distinction is based on how feature 
subsets are evaluated. Filter methods perform the 
evaluation by using some properties of the features 
involved, such as correlations, information gain, 
dependencies, separability, etc. [10]. Wrapper methods 
use part of the data sample to iteratively evaluate 
subsets of selected features by running the induction 
program itself, based on techniques such as cross-
validation [11]. The advantage of wrapper approaches 
is that features are selected based on the bias of the 
induction algorithm. The disadvantage of wrappers is 
their high computational cost.   

The feature selection problem can also be thought 
of as a heuristic search over a space of states, each of 
which represents a subset of features [2]. For example, 
in forward selection, we start with an empty feature set 

and iteratively add features; in backward elimination, 
we start with all features, and then remove one feature 
at a time. The organization of the search is also critical, 
since an exhaustive search is intractable. Many feature 
selection problems have been shown to be NP-hard 
[12].  
 
2.2. Distance metric learning 
 

Another approach to determine feature relevance is 
to apply a weighting function to features, which 
effectively assigns degrees of relevance to features [3]. 
Most feature weighting methods employ some 
variation of gradient descent, such as the perceptron 
update rule, least-mean squares [13], and neural 
network [14].     

Fully weighted distance metrics are also often used, 
such as the Mahalanobis distance, or one that 
maximizes the ratio of intra-class variance to inter-
class variance [1]. A number of algorithms have been 
proposed to learn a Mahalanobis distance e.g. Xing et 
al. [7] adopt a convex optimization method based on 
semidefinite programming for clustering. Shalev-
Shwartz et al. [15] propose a method to learn a 
distance metric by defining a threshold for pairwise 
distances between similar examples, and one for 
different examples, and uses a loss function to induce 
the difference between the thresholds. Goldberger et al. 
[16] uses neighborhood component analysis and 
gradient descent to minimize the probability of Nearest 
Neighbor classification. Other methods proposed 
include quadratic programming [9] and energy-based 
models [17].  

Distance metric learning can be global or local. In 
the former, the learning aims at satisfying the 
constraints of all labeled training data.  In the latter, 
constraints are satisfied only in the neighborhood of 
the problem instance in feature space. Short and 
Fukunaga [18] use Euclidean distance to first define a 
neighborhood of the query, and then creates a new 
local distance based on statistics of instances within the 
neighborhood. Other methods proposed for local 
distance metric learning include adapting the shape of 
neighborhoods around query points to capture local 
feature relevance [19] and local Linear Discriminant 
Analysis [1].  
 
2.3. Ranking 

 
Learning a weighted distance metric for the purpose 

of classification has been widely studied and 
successfully applied. Nonetheless, we often wish to 
retrieve instances, such as relevant documents from the 
Web, or potentially useful planning solutions from a 
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plan library. In these applications, there is no explicit 
classification, and similarity is usually measured by a 
continuous metric. The objective is to retrieve and rank 
rather than classify.   

In RankNet [20], gradient descent and a 
probabilistic cost function are used to rank search 
results from the Web. Joachims [21] uses a support 
vector machine approach for learning retrieval 
functions of search engines. Cohen et al. [4] propose 
other methods to combine multiple preference 
functions to create an ordering, and apply them for 
Web searches.  
 
3. Methods 

 
3.1.  A two-phase case retrieval strategy 
   

Consider a case-based reasoning system with a 
database � consisting of� N cases, and a set of query 
instances Q, each of which is represented by a set F of 
numeric features. We define the distance between a 
query q and case x in � by the weighted Euclidean 
metric: 

2

1

( , ) ( )
F

F i i i
i

d q x w q x
=

= −�              (1) 

where xi and qi are the ith feature of x and q respectively, 
and wi is the weight of that feature. We compute dF(q,x) 
for all x’s in  � and rank the x’s according to their 
distances to q in increasing order. Our aim in the 
proposed filtering method is to rank as many truly 
similar cases as possible in the top k ranked instances, 
where k N� (e.g. k/N � 0.01). A more accurate (and 
typically expensive) method can then be used rank the 
k cases. If the features are properly selected (or 
weighted), it will enrich the top k cases with more 
matches, and increase the expected probability of 
retrieving true matches. It will also imply affordance of 
a smaller k, and hence more efficient retrieval.  
 
3.2. The Slider algorithm 

 
We now describe in details how Slider weights 

features. First we consider two-component mixtures 
(i.e. involving two features, where their weights sum 
up to 1) and then extend it to an arbitrary number of 
features. The distance metric we use is weighted 
Euclidean – nonetheless this method can be applied to 
Minkowski distances in general.  

The weighted Euclidean distance between two 
instances x and y, using two features i and j (with 
weights wi and wj respectively, where wi + wj = 1) is 
defined as: 

{ } ( ) ( )22

, ( , ) i i i j j ji jd x y w x y w x y= − + −            (2) 

We can drop the square root in (2), since it is a 
monotonic transformation i.e. 
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where w is set to wj, the weight of feature j. Consider 
an instance x that has y as its closest neighbor 
according to feature fi, and z as its closest neighbor 
according to feature fj. As w “slides” from 0 to 1, there 
is a weight wc at which d{i,j}(x,y) = d{i,j}(x,z). This point 
is called a “crossover”. By expanding  d{i,j}(x,y) = 
d{i,j}(x,z), we get: 

( ) ( ) ( ) ( )2 22 2
(1 ) (1 )i i j j i i j jw x y w x y w x z w x z− − + − = − − + −

                           (4)                      
Solving for w, and setting it to wc, we get: 
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In other words, wc is a weight where there is a net 
increase (or decrease) in accuracy of classification (or 
ranking), depending on which of y and z is truly closer 
to x (determined by an independent, objective metric). 
When there is an increase in accuracy (i.e. the match is 
closer to x than the mismatch, for all weights above wc), 
it is referred to as “positive crossover”, and “negative 
crossover” otherwise. We can find the crossover 
weights for a training set of 3-tuples, and choose the 
optimum weight w* that represents the best 
compromise between positive and negative crossovers. 

Crossover weights can also be determined by 
considering two subsets of features (instead of just two 
features). Consider two feature subsets A and B, with 
corresponding Euclidean distances dA and dB 

respectively. A composite metric, dA+B, can be defined 
as dA+B(x,y) =  wdA(x,y) + (1 – w)dB(x,y). As w is 
increased from 0 to 1, it may cause a switch of 
neighbors, as described earlier.  Thus, w can be used to 
determine the new weight vector that increases 
accuracy, based on crossover points. In Slider, we 
randomly choose one feature (singleton set A) and 
evaluate it against all remaining features (set B).  

Slider starts by assigning the same weight to all 
features. It then uses a hill-climbing approach by 
iteratively choosing a feature (randomly), adjusting its 
weight to make the distance metric more accurate, and 
stopping when there is no net increase in accuracy (in 
terms of ranking).  

After a weight vector is chosen (by using crossover 
weights), it is evaluated based on how well the 
corresponding weighted Euclidean distance ranks 
matches relative to mismatches. We use an independent 
validation set V for this evaluation. For each instance in 
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V, we find a true match from a database �. Our goal is 
to estimate the average rank of the match against any 
sample of mismatches drawn from �. Given a weight 
vector w

��

 that we want to evaluate, we define the rank 

( ),R v w
��

 for an instance v in V as the average rank over 

a set � of n sets of mismatching instances from �. Let 
� = {�1 , �2 , …, �n}. ( ),R v w

��

 is defined as: 

       ( ) ( )
1

1
, , ,

n

i
i

R v w rank v w
=

= Φ
Φ �

�� ��

               (6) 

where rank(v,�i, w
��

) is the rank of the match of 
validation instance v (relative to all instances in �i), 
using the underlying metric with weight vector w

��

. 
Note that lower rank implies more similar to the query 
instance (i.e. the match should ideally have rank = 1). 
For practical purposes, we estimate R using a randomly 
drawn sample of 100 mismatches (singleton set �) 
from our database. Then we compute the average R  
over all instances v in V i.e. 

( ) 1
, ( , )

v V

R V w R v w
V ∈

= �
�� ��

               (7) 

The pseudo-code of Slider is given in Figure 1.  
 
 

 Inputs: 
 1. Training set T of ‹instance, match, mismatch› 3-tuples;  
 2. Validation set V – for each instance in V, 1 match & 100  
      mismatches; 
 3.  Set F of features. 
 Output: Optimized weight vector *w

���

 = ‹w1*, w2*, …, w|F|*›  
   
 Initialize weights uniformly i.e. wi = 1/|F|, 1� i � |F|. 
 repeat  
     Select feature ƒ randomly. 
     Set wƒ to 0 and adjust other weights proportionally so that     
         they add up to 1.   
     Find all crossover points from T by sliding wƒ from 0 to 1. 
     Find “optimum” weight of ƒ, wƒ*. 
     Set wƒ to wƒ* and other weights are proportionally  
          decreased to keep sum of weights 1. 
     Compute mean rank of matches for new weight vector,  
          ( ),R V w

��

 using (7). 

     if ( ),R V w
��

decreases (improves) then   

             best weights *w
���

 is set to w
��

. 

 until  ( ),R V w
��

 reaches a plateau  or  number of iterations  

         exceeds a threshold. 
 return *w

���

 

 
Figure 1. The Slider algorithm. 

 
 

4. Empirical results 
 
4.1. Bioinformatics application 
 

In this section we present empirical results on Slider 
from the protein crystallography domain, based on a 
system that interprets electron density maps to 
determine the 3D structures of proteins [8]. We use this 
domain to compare Slider to other feature selection and 
weighting methods.  

The protein model-building program searches a 
database of about 50,000 spherical regions of electron 
density patterns to find matches to help interpret 
regions in a new electron density map. Given an 
electron density pattern for a spherical region in an 
unknown map, 400 putatively similar patterns are pre-
selected from the database, using a computationally 
efficient weighted distance metric, based on 76 
rotation-invariant features that characterize the local 
density (the features used are described in [8]). These 
filtered cases are then re-evaluated by a more 
expensive density correlation measure to determine 
truly matching structural fragments.  

Figure 2 illustrates how the weighted Euclidean 
metric (with weights determined by Slider) performs 
compared to the non-weighted Euclidean distance in 
the retrieval of matches in the top k = 400 cases (from 
the database of about 50,000 cases). We compare the 
two metrics for various tolerances in defining 
similarity, using density correlation. (Density 
correlation ranges from 0 to 1; if the absolute best 
match has a correlation of 0.90, then with a tolerance 
of 0.01, all cases with correlation between 0.89 and 
0.90 are considered to be similar – all others are 
different.)  With feature weights determined by Slider, 
about twice as many matches are found at each level of 
tolerance (as opposed to uniform weights). These 
trends are also observed for other feature-based 
similarity metrics, such as Manhattan or Minkowski 
distance of order 3.  

In Figure 3, we show that Slider outperforms 
several other standard feature selection and weighting 
methods. In all the algorithms we use the mean rank of 
matches [ R , as defined in (7)] to tune the weights. 
Figure 3 shows the retrieval accuracy for the weighted 
Euclidean distance metric using Slider weights, 
uniform weights (i.e. non-weighted), and weights 
determined by the following algorithms:   

(1) DIET [22] is a wrapper approach that searches a 
space of p+1 discrete possible weights: 0, 1/p, 2/p, …, 
(p -1)/p, 1 (the results shown are based on p = 10). The 
operators in this heuristic search replace the current 
weight of a feature by either the next larger or smaller 
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value in the allowed set based on improvement in 
ranking.    

(2) Sequential forward and backward selection (SFS 
and SBS) start from an empty and full set of features 
respectively, and greedily add or remove one feature at 
a time. 

(3) A Linear Programming (LP) approach that tries 
to optimize the aggregate difference in the (squared) 
distance values between instance and their matches and 
mismatches. We used GLPK (GNU Linear 
Programming Kit) to solve the optimization problem.  

 

Effectiveness of case retrieval using Euclidean 
distance (k = 400)
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Figure 2. Weighted Euclidean distance places more 
matches in the top 400 cases than non-weighted 
Euclidean distance (the weights are determined by Slider) 
in the protein crystallography domain. This is true for 
various values of tolerance, which determines how lenient 
we are in defining similarity – with higher tolerance, 
more cases will qualify as being similar.   
  

Effectiveness of case retrieval using various 
weighted Euclidean distances (k = 400)
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Figure 3. Slider is more effective in weighting features 
(such that true matches are highly ranked and retrieved) 
as compared to other algorithms. 
 

4.2. Slider for classification: UCI datasets 
 
In this section, we present empirical results on how 

Slider performs for classification, using the following 
datasets from the UCI repository 
(www.ics.uci.edu/~mlearn/MLRepository.html): Wine, 
Ionosphere, Isolet, Pima Indian Diabetes, Iris, and 
Letter Recognition. In Table 1, we compare non-
weighted Euclidean distance to the metric that Slider 
learns, based on three criteria (the results are for 10 test 
sets, each with 100 examples): (1) the accuracy of 1-
Nearest Neighbor classification; (2) the rank of a 
match relative to 10 mismatches (i.e. R ), averaged 
over the test set; (3) the “density” of matches in the top 
10% of the database i.e. instances closest to the query. 
This is compared to the number of matches per 
instance for the entire database. The results for this 
criterion show how the distance metrics “enrich” the 
10% closest neighbors with matches.   

We observe that the weighted Euclidean distance 
(with weights determined by Slider) outperforms 
Euclidean distance with uniform weights in terms of all 
the three criteria mentioned above. (For simplicity we 
report results on 1-NN and rank relative to 10 instances. 
Nonetheless, similar trends are observed for larger 
neighborhoods and more mismatches for ranking.) 
Even in cases where the improvement in nearest 
neighbor classification is not significant (e.g. Iris and 
Letter Recognition), we observe that the improvement 
based on the latter two measures is still significant.  
 
5. Conclusion 
 

In this paper, we argue that distance metrics should 
be tuned so that they are effective in properly ranking 
similar patterns relative to different ones. To this end, 
we propose Slider, an algorithm both selects and 
evaluates feature weights based on ranking. We 
showed how Slider performs on benchmark datasets. It 
improves nearest neighbor classification, compared to 
Euclidean distance with uniform weights. Furthermore, 
Slider ranks matches better relative to mismatches, and 
“enriches” the neighborhoods of query instances with 
more matches.  

We also show the effectiveness of Slider in a 
complex, noisy real-world bioinformatics application, 
where we compared Slider to other feature selection 
algorithms. The distance metric learning  and case  
retrieval methods we propose are potentially useful in 
other domains, especially those with high-dimensional 
and noisy data, expensive case matching, large 
databases, and the objective to rank instances (like 
Web pages), or retrieve as many good instances from a 
database.  
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Table 2. Comparing Euclidean distance with uniform weights to the metric learned by Slider, based on three criteria: (1) 
the percentage accuracy of 1-NN classification; (2) R , the rank of a match relative to 10 mismatches; (3) the number of 
matches in the top 10% instances. We also show the ratio of the total number of matches to the size of the database (in the 
“Entire database” column). The results are for 10 test sets (each with 100 examples). 
 

1-NN  R  No. of matches per instance 
Dataset 

Euclidean Slider Euclidean Slider Entire 
database 

Top 10% 
Euclidean 

Top 10% 
Slider 

WINE 78 ± 4.4 96 ± 1.7 3.4 ± .2 1.7 ±. 2 .34 ± .01 .62 ± .02 .88 ± .02 
IONOSPHERE 87 ± 1.7 92 ± 1.9 4.7 ± .3 3.9 ± .4 .54 ± .01 .73 ± .02 .79 ± .03 

ISOLET 84 ± 3.2 87 ± 4.2 1.8 ± .1 1.7 ± .2 .04 ± .00 .27 ± .01 .29 ± .01 
PIMA INDIAN DIA. 67 ± 4.4 70 ± 4.8 5.6 ± .2 5.2 ± .2 .54 ± .02 .63 ± .02  .66 ± .01 

IRIS 96 ± 2.2 95 ± 2.3 1.8 ± .1 1.5 ± .2 .33 ± .00 .87 ± .01 .89 ± .01 
LETTER REC. 95 ± 1.3 96 ± 1.8 3.7 ± .3 3.3 ± .3 .04 ± .00 .14 ± .01  .17 ± .01 
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