
Distance Metric Learning through Optimization of Ranking

Kreshna Gopal and Thomas R. Ioerger
Department of Computer Science, Texas A&M University

{kgopal, ioerger}@cs.tamu.edu

Abstract

Data preprocessing is important in machine

learning, data mining, and pattern recognition. In
particular, selecting relevant features in high-
dimensional data is often necessary to efficiently
construct models that accurately describe the data. For
example, many lazy learning algorithms (like k-
Nearest Neighbor) rely on feature-based distance
metrics to compare input patterns for the purpose of
classification or retrieval from a database. In previous
work, we introduced Slider, a distance metric learning
method that optimizes the weights of features in a
protein model-building application (where features are
used to describe patterns of electron density around
protein macromolecules). In this work, we demonstrate
the usefulness of Slider as a general method for
classification, ranking and retrieval, with results on
several benchmark datasets. We also compare it to
other well-known feature selection or weighting
methods.

1. Introduction

1.1. Distance metric learning, feature

weighting, and ranking

Accurate distance measures are critical to many
classification, clustering, and retrieval applications.
Automated learning of distance metrics is thus widely
studied [1], and is closely related to feature selection
[2], feature weighting [3], and feature interaction.
Learning a distance metric is also related to the
problem of ranking [4], especially in learning methods
like k-Nearest Neighbor and case-based reasoning,
where a set of instances are typically ranked based on
similarity to a given query instance.

Algorithms for feature selection, learning distance
metrics, or learning to rank face numerous challenges
when applied to real-world problems. A recent trend is
the emergence of applications with large numbers of

features (tens or even hundreds of thousands), such as
text classification [5], gene expression array analysis,
and other genomics applications [6]. In many
applications, class labels may not be available [7] – we
may instead only know if certain pairs of instances are
similar or different.

We argue that learning a distance metric by
adjusting the metric proportionately to distances in
feature space can lead to data overfitting, especially in
complex and noisy domains. Learning a metric from
inaccurate and disproportionate feature values can be
misleading. A distance value is mostly used in relative
comparison among instances, or ranking of instances,
based on similarity to a query. This motivates our
design for learning a distance metric for the purpose of
ranking, through the use of heuristics that try to
optimize ranking.

1.2. Feature weighting with Slider

In previous work [8], we presented a distance metric
learner called Slider for a specific domain (protein
structure determination by X-ray crystallography). In
this paper, we discuss the effectiveness of Slider as a
general distance metric learner. We show empirical
results in several benchmark datasets, and compare
Slider to other approaches to feature selection and
feature weighting.

Like many other feature selection and weighting
algorithms, Slider starts with an initial set of weights,
iteratively selects and evaluates new weights, retains
the best ones, and stops when finding even better
weights seems unlikely, or is computationally too
expensive. The critical decisions that Slider makes in
every iteration are: (1) selecting a new weight vector
for evaluation – out of an exponentially large set of
options, and (2) evaluating the weight vector to
determine if it outperforms the current best one.

Slider uses the following heuristic to evaluate a set
of weights: given a training instance, we look at how
well the distance metric that uses the weights (like
weighted Euclidean) ranks an instance known to be
similar to the training instance, relative to a set of

Seventh IEEE International Conference on Data Mining - Workshops

0-7695-3019-2/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDMW.2007.113

201

known different ones. This is done for a set of training
examples, and the average rank of the similar instances
is a measure of how good the weight vector is.

Exhaustive search through a space of weights is
intractable. Therefore, given true matches and true
mismatches for examples, Slider focuses on only those
weights that cause each example to be equidistant to its
match and its mismatch in Euclidean space. These
“crossover” weights are the ones that will influence the
accuracy of ranking. Thus, by limiting the space of
weights to be searched, and identifying only the
weights that are more likely to make a significant
difference, the efficiency and effectiveness of learning
are largely ensured.

We emphasize the fact that Slider chooses weights
that try to maximize the number of instances for which
true matches are closer to training examples than
mismatches in weighted Euclidean space. An
alternative approach would be to find weights such the
aggregate distance between instances and matches is
smaller than that between instances and mismatches [1,
7, 9]. The objective function that Slider tries to
optimize is an NP-hard constraint satisfaction problem,
which justifies the use of a heuristic function (based on
ranking) to guide the search for optimal weights.

2. Related work

2.1. Feature relevance

A central problem in machine learning is that
irrelevant features tend to mask relevant ones, leading
to inefficient learning and inaccurate predictions [2].
Potentially useful features are generally defined by an
expert (or extracted by automated techniques), and a
subset of these features are automatically selected (or
highly weighted). Feature selection algorithms are
commonly categorized into two major groups: filters
and wrappers. This distinction is based on how feature
subsets are evaluated. Filter methods perform the
evaluation by using some properties of the features
involved, such as correlations, information gain,
dependencies, separability, etc. [10]. Wrapper methods
use part of the data sample to iteratively evaluate
subsets of selected features by running the induction
program itself, based on techniques such as cross-
validation [11]. The advantage of wrapper approaches
is that features are selected based on the bias of the
induction algorithm. The disadvantage of wrappers is
their high computational cost.

The feature selection problem can also be thought
of as a heuristic search over a space of states, each of
which represents a subset of features [2]. For example,
in forward selection, we start with an empty feature set

and iteratively add features; in backward elimination,
we start with all features, and then remove one feature
at a time. The organization of the search is also critical,
since an exhaustive search is intractable. Many feature
selection problems have been shown to be NP-hard
[12].

2.2. Distance metric learning

Another approach to determine feature relevance is
to apply a weighting function to features, which
effectively assigns degrees of relevance to features [3].
Most feature weighting methods employ some
variation of gradient descent, such as the perceptron
update rule, least-mean squares [13], and neural
network [14].

Fully weighted distance metrics are also often used,
such as the Mahalanobis distance, or one that
maximizes the ratio of intra-class variance to inter-
class variance [1]. A number of algorithms have been
proposed to learn a Mahalanobis distance e.g. Xing et
al. [7] adopt a convex optimization method based on
semidefinite programming for clustering. Shalev-
Shwartz et al. [15] propose a method to learn a
distance metric by defining a threshold for pairwise
distances between similar examples, and one for
different examples, and uses a loss function to induce
the difference between the thresholds. Goldberger et al.
[16] uses neighborhood component analysis and
gradient descent to minimize the probability of Nearest
Neighbor classification. Other methods proposed
include quadratic programming [9] and energy-based
models [17].

Distance metric learning can be global or local. In
the former, the learning aims at satisfying the
constraints of all labeled training data. In the latter,
constraints are satisfied only in the neighborhood of
the problem instance in feature space. Short and
Fukunaga [18] use Euclidean distance to first define a
neighborhood of the query, and then creates a new
local distance based on statistics of instances within the
neighborhood. Other methods proposed for local
distance metric learning include adapting the shape of
neighborhoods around query points to capture local
feature relevance [19] and local Linear Discriminant
Analysis [1].

2.3. Ranking

Learning a weighted distance metric for the purpose

of classification has been widely studied and
successfully applied. Nonetheless, we often wish to
retrieve instances, such as relevant documents from the
Web, or potentially useful planning solutions from a

202

plan library. In these applications, there is no explicit
classification, and similarity is usually measured by a
continuous metric. The objective is to retrieve and rank
rather than classify.

In RankNet [20], gradient descent and a
probabilistic cost function are used to rank search
results from the Web. Joachims [21] uses a support
vector machine approach for learning retrieval
functions of search engines. Cohen et al. [4] propose
other methods to combine multiple preference
functions to create an ordering, and apply them for
Web searches.

3. Methods

3.1. A two-phase case retrieval strategy

Consider a case-based reasoning system with a
database � consisting of� N cases, and a set of query
instances Q, each of which is represented by a set F of
numeric features. We define the distance between a
query q and case x in � by the weighted Euclidean
metric:

2

1

(,) ()
F

F i i i
i

d q x w q x
=

= −� (1)

where xi and qi are the ith feature of x and q respectively,
and wi is the weight of that feature. We compute dF(q,x)
for all x’s in � and rank the x’s according to their
distances to q in increasing order. Our aim in the
proposed filtering method is to rank as many truly
similar cases as possible in the top k ranked instances,
where k N� (e.g. k/N � 0.01). A more accurate (and
typically expensive) method can then be used rank the
k cases. If the features are properly selected (or
weighted), it will enrich the top k cases with more
matches, and increase the expected probability of
retrieving true matches. It will also imply affordance of
a smaller k, and hence more efficient retrieval.

3.2. The Slider algorithm

We now describe in details how Slider weights

features. First we consider two-component mixtures
(i.e. involving two features, where their weights sum
up to 1) and then extend it to an arbitrary number of
features. The distance metric we use is weighted
Euclidean – nonetheless this method can be applied to
Minkowski distances in general.

The weighted Euclidean distance between two
instances x and y, using two features i and j (with
weights wi and wj respectively, where wi + wj = 1) is
defined as:

{ } () ()22

, (,) i i i j j ji jd x y w x y w x y= − + − (2)

We can drop the square root in (2), since it is a
monotonic transformation i.e.

{ } () ()

() ()

22

,

22

(,)

(1)

i i i j j ji j

i i j j

d x y w x y w x y

w x y w x y

= − + −

= − − + −

 (3)

where w is set to wj, the weight of feature j. Consider
an instance x that has y as its closest neighbor
according to feature fi, and z as its closest neighbor
according to feature fj. As w “slides” from 0 to 1, there
is a weight wc at which d{i,j}(x,y) = d{i,j}(x,z). This point
is called a “crossover”. By expanding d{i,j}(x,y) =
d{i,j}(x,z), we get:

() () () ()2 22 2
(1) (1)i i j j i i j jw x y w x y w x z w x z− − + − = − − + −

 (4)
Solving for w, and setting it to wc, we get:

 () ()
() () () ()

2 2

2 22

i i i i
c

j j i i i i j j

x z x y
w

x y x y x z x z

− − −
=

− − − + − − −
 (5)

In other words, wc is a weight where there is a net
increase (or decrease) in accuracy of classification (or
ranking), depending on which of y and z is truly closer
to x (determined by an independent, objective metric).
When there is an increase in accuracy (i.e. the match is
closer to x than the mismatch, for all weights above wc),
it is referred to as “positive crossover”, and “negative
crossover” otherwise. We can find the crossover
weights for a training set of 3-tuples, and choose the
optimum weight w* that represents the best
compromise between positive and negative crossovers.

Crossover weights can also be determined by
considering two subsets of features (instead of just two
features). Consider two feature subsets A and B, with
corresponding Euclidean distances dA and dB

respectively. A composite metric, dA+B, can be defined
as dA+B(x,y) = wdA(x,y) + (1 – w)dB(x,y). As w is
increased from 0 to 1, it may cause a switch of
neighbors, as described earlier. Thus, w can be used to
determine the new weight vector that increases
accuracy, based on crossover points. In Slider, we
randomly choose one feature (singleton set A) and
evaluate it against all remaining features (set B).

Slider starts by assigning the same weight to all
features. It then uses a hill-climbing approach by
iteratively choosing a feature (randomly), adjusting its
weight to make the distance metric more accurate, and
stopping when there is no net increase in accuracy (in
terms of ranking).

After a weight vector is chosen (by using crossover
weights), it is evaluated based on how well the
corresponding weighted Euclidean distance ranks
matches relative to mismatches. We use an independent
validation set V for this evaluation. For each instance in

203

V, we find a true match from a database �. Our goal is
to estimate the average rank of the match against any
sample of mismatches drawn from �. Given a weight
vector w

��

 that we want to evaluate, we define the rank

(),R v w
��

 for an instance v in V as the average rank over

a set � of n sets of mismatching instances from �. Let
� = {�1 , �2 , …, �n}. (),R v w

��

 is defined as:

 () ()
1

1
, , ,

n

i
i

R v w rank v w
=

= Φ
Φ �

�� ��

 (6)

where rank(v,�i, w
��

) is the rank of the match of
validation instance v (relative to all instances in �i),
using the underlying metric with weight vector w

��

.
Note that lower rank implies more similar to the query
instance (i.e. the match should ideally have rank = 1).
For practical purposes, we estimate R using a randomly
drawn sample of 100 mismatches (singleton set �)
from our database. Then we compute the average R
over all instances v in V i.e.

() 1
, (,)

v V

R V w R v w
V ∈

= �
�� ��

 (7)

The pseudo-code of Slider is given in Figure 1.

 Inputs:
 1. Training set T of ‹instance, match, mismatch› 3-tuples;
 2. Validation set V – for each instance in V, 1 match & 100
 mismatches;
 3. Set F of features.
 Output: Optimized weight vector *w

���

 = ‹w1*, w2*, …, w|F|*›

 Initialize weights uniformly i.e. wi = 1/|F|, 1� i � |F|.
 repeat
 Select feature ƒ randomly.
 Set wƒ to 0 and adjust other weights proportionally so that
 they add up to 1.
 Find all crossover points from T by sliding wƒ from 0 to 1.
 Find “optimum” weight of ƒ, wƒ*.
 Set wƒ to wƒ* and other weights are proportionally
 decreased to keep sum of weights 1.
 Compute mean rank of matches for new weight vector,
 (),R V w

��

 using (7).

 if (),R V w
��

decreases (improves) then

 best weights *w
���

 is set to w
��

.

 until (),R V w
��

 reaches a plateau or number of iterations

 exceeds a threshold.
 return *w

���

Figure 1. The Slider algorithm.

4. Empirical results

4.1. Bioinformatics application

In this section we present empirical results on Slider
from the protein crystallography domain, based on a
system that interprets electron density maps to
determine the 3D structures of proteins [8]. We use this
domain to compare Slider to other feature selection and
weighting methods.

The protein model-building program searches a
database of about 50,000 spherical regions of electron
density patterns to find matches to help interpret
regions in a new electron density map. Given an
electron density pattern for a spherical region in an
unknown map, 400 putatively similar patterns are pre-
selected from the database, using a computationally
efficient weighted distance metric, based on 76
rotation-invariant features that characterize the local
density (the features used are described in [8]). These
filtered cases are then re-evaluated by a more
expensive density correlation measure to determine
truly matching structural fragments.

Figure 2 illustrates how the weighted Euclidean
metric (with weights determined by Slider) performs
compared to the non-weighted Euclidean distance in
the retrieval of matches in the top k = 400 cases (from
the database of about 50,000 cases). We compare the
two metrics for various tolerances in defining
similarity, using density correlation. (Density
correlation ranges from 0 to 1; if the absolute best
match has a correlation of 0.90, then with a tolerance
of 0.01, all cases with correlation between 0.89 and
0.90 are considered to be similar – all others are
different.) With feature weights determined by Slider,
about twice as many matches are found at each level of
tolerance (as opposed to uniform weights). These
trends are also observed for other feature-based
similarity metrics, such as Manhattan or Minkowski
distance of order 3.

In Figure 3, we show that Slider outperforms
several other standard feature selection and weighting
methods. In all the algorithms we use the mean rank of
matches [R , as defined in (7)] to tune the weights.
Figure 3 shows the retrieval accuracy for the weighted
Euclidean distance metric using Slider weights,
uniform weights (i.e. non-weighted), and weights
determined by the following algorithms:

(1) DIET [22] is a wrapper approach that searches a
space of p+1 discrete possible weights: 0, 1/p, 2/p, …,
(p -1)/p, 1 (the results shown are based on p = 10). The
operators in this heuristic search replace the current
weight of a feature by either the next larger or smaller

204

value in the allowed set based on improvement in
ranking.

(2) Sequential forward and backward selection (SFS
and SBS) start from an empty and full set of features
respectively, and greedily add or remove one feature at
a time.

(3) A Linear Programming (LP) approach that tries
to optimize the aggregate difference in the (squared)
distance values between instance and their matches and
mismatches. We used GLPK (GNU Linear
Programming Kit) to solve the optimization problem.

Effectiveness of case retrieval using Euclidean
distance (k = 400)

0

5

10

15

20

25

30

35

40

0.01 0.02 0.03 0.04 0.05

Tolerance

A
ve

ra
ge

 n
um

be
r

of
 m

at
ch

es

fo
un

d
in

 to
p

k
=

40
0

Non-weighted

Weighted

Figure 2. Weighted Euclidean distance places more
matches in the top 400 cases than non-weighted
Euclidean distance (the weights are determined by Slider)
in the protein crystallography domain. This is true for
various values of tolerance, which determines how lenient
we are in defining similarity – with higher tolerance,
more cases will qualify as being similar.

Effectiveness of case retrieval using various
weighted Euclidean distances (k = 400)

0

5

10

15

20

25

30

35

40

0.01 0.02 0.03 0.04 0.05

Tolerance

A
ve

ra
ge

 n
um

be
r

of
 m

at
ch

es
 fo

un
d

in

to
p

k
=

40
0

Uniform weights

SFS

DIET

LP

SBS

SLIDER

Figure 3. Slider is more effective in weighting features
(such that true matches are highly ranked and retrieved)
as compared to other algorithms.

4.2. Slider for classification: UCI datasets

In this section, we present empirical results on how

Slider performs for classification, using the following
datasets from the UCI repository
(www.ics.uci.edu/~mlearn/MLRepository.html): Wine,
Ionosphere, Isolet, Pima Indian Diabetes, Iris, and
Letter Recognition. In Table 1, we compare non-
weighted Euclidean distance to the metric that Slider
learns, based on three criteria (the results are for 10 test
sets, each with 100 examples): (1) the accuracy of 1-
Nearest Neighbor classification; (2) the rank of a
match relative to 10 mismatches (i.e. R), averaged
over the test set; (3) the “density” of matches in the top
10% of the database i.e. instances closest to the query.
This is compared to the number of matches per
instance for the entire database. The results for this
criterion show how the distance metrics “enrich” the
10% closest neighbors with matches.

We observe that the weighted Euclidean distance
(with weights determined by Slider) outperforms
Euclidean distance with uniform weights in terms of all
the three criteria mentioned above. (For simplicity we
report results on 1-NN and rank relative to 10 instances.
Nonetheless, similar trends are observed for larger
neighborhoods and more mismatches for ranking.)
Even in cases where the improvement in nearest
neighbor classification is not significant (e.g. Iris and
Letter Recognition), we observe that the improvement
based on the latter two measures is still significant.

5. Conclusion

In this paper, we argue that distance metrics should
be tuned so that they are effective in properly ranking
similar patterns relative to different ones. To this end,
we propose Slider, an algorithm both selects and
evaluates feature weights based on ranking. We
showed how Slider performs on benchmark datasets. It
improves nearest neighbor classification, compared to
Euclidean distance with uniform weights. Furthermore,
Slider ranks matches better relative to mismatches, and
“enriches” the neighborhoods of query instances with
more matches.

We also show the effectiveness of Slider in a
complex, noisy real-world bioinformatics application,
where we compared Slider to other feature selection
algorithms. The distance metric learning and case
retrieval methods we propose are potentially useful in
other domains, especially those with high-dimensional
and noisy data, expensive case matching, large
databases, and the objective to rank instances (like
Web pages), or retrieve as many good instances from a
database.

205

Table 2. Comparing Euclidean distance with uniform weights to the metric learned by Slider, based on three criteria: (1)
the percentage accuracy of 1-NN classification; (2) R , the rank of a match relative to 10 mismatches; (3) the number of
matches in the top 10% instances. We also show the ratio of the total number of matches to the size of the database (in the
“Entire database” column). The results are for 10 test sets (each with 100 examples).

1-NN R No. of matches per instance
Dataset

Euclidean Slider Euclidean Slider Entire
database

Top 10%
Euclidean

Top 10%
Slider

WINE 78 ± 4.4 96 ± 1.7 3.4 ± .2 1.7 ±. 2 .34 ± .01 .62 ± .02 .88 ± .02
IONOSPHERE 87 ± 1.7 92 ± 1.9 4.7 ± .3 3.9 ± .4 .54 ± .01 .73 ± .02 .79 ± .03

ISOLET 84 ± 3.2 87 ± 4.2 1.8 ± .1 1.7 ± .2 .04 ± .00 .27 ± .01 .29 ± .01
PIMA INDIAN DIA. 67 ± 4.4 70 ± 4.8 5.6 ± .2 5.2 ± .2 .54 ± .02 .63 ± .02 .66 ± .01

IRIS 96 ± 2.2 95 ± 2.3 1.8 ± .1 1.5 ± .2 .33 ± .00 .87 ± .01 .89 ± .01
LETTER REC. 95 ± 1.3 96 ± 1.8 3.7 ± .3 3.3 ± .3 .04 ± .00 .14 ± .01 .17 ± .01

6. References

[1] T. Hastie and R. Tibshirani, “Discriminant adaptive
nearest neighbor classification and regression,” Advances in
Neural Information Processing Systems, 8, pp. 409-415,
1996.
[2] A.L. Blum and P. Langley, “Selection of relevant features
and examples in machine learning,” Artificial Intelligence,
vol. 97, pp. 245-271, 1997.
[3] N. Littlestone, “Learning quickly when irrelevant
attributes abound: a new linear threshold algorithm,”
Machine Learning, vol. 8, pp. 293-321, 1992.
[4] W.W. Cohen, R.E. Schapire, and Y. Singer, “Learning to
order things,” Advances in Neural Processing Systems, vol.
10, Denver: MIT Press, 1997.
[5] G. Forman, “An extensive empirical study of feature
selection metrics for text classification,” Journal of Machine
Learning Research, 3, pp. 1289-1305, 2003.
[6] M. Berens, H. Liu, and L. Yu, “Fostering biological
relevance in feature selection for microarray data,” IEEE
Intelligent Systems, 20(6), pp. 71-73, 2005.
[7] E.P. Xing, A.Y. Ng, M.I. Jordan, and S. Russell,
“Distance metric learning, with application to clustering with
side-information,” Advances in Neural Processing Systems,
15, pp. 505-512, 2003.
[8] K. Gopal, T.D. Romo, J.C. Sacchettini, and T.R. Ioerger,
“Determining relevant features to recognize electron density
patterns in X-ray protein crystallography,” Journal of
Bioinformatics & Computational Biology, 3(3), pp. 645-676,
2005.
[9] W. Tsang and J.T. Kwok, “Distance metric learning with
kernels,” Proc. of the International Conference on Artificial
Neural Networks, pp. 126-129, 2003.
[10] K. Kira and L.A. Rendell, “A practical approach to
feature selection,” Proc. of the 9th International Conference
on Machine Learning, pp. 249-256, 1992.
 [11] G. John, R. Kohavi, and K. Pfleger, “Irrelevant features
and the subset selection problem,” Proc. of the 11th

International Conference on Machine Learning, pp. 121-129,
1994.
[12] A.L. Blum and R.L. Rivest, “Training a 3-node neural
networks in NP-complete,” Neural Networks, 5, pp. 117-127,
1992.
[13] B. Widrow and M.E. Hoff, “Adaptive switching
circuits,” Proc. of the 3rd Annual Workshop on
Computational Learning Theory, pp. 371-383, 1990.
[14] S. Baluja and D. Pomerleau, “Dynamic relevance:
vision-based focus of attention using artificial neural
networks,” Artificial Intelligence, vol. 97, pp. 381-395, 1997.
 [15] S. Shalev-Shwartz, Y. Singer, and A.Y. Ng, “Online
and batch learning of pseudo-metrics,” Proc. of the 21st
International Conference on Machine Learning, pp. 94,
2004.
[16] J. Goldberger, S. Roweis, G. Hinton, and R.
Salakhutdinov, “Neighbourhood Component Analysis,”
Neural Information Processing Systems,” 17, pp. 513-520,
2004.
[17] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a
similarity metric discriminately, with application to face
recognition,” Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 539-546, 2005.
[18] R. Short and K. Fukunaga, “A new nearest neighbor
distance measure,” Proc. of the 5th IEEE International
Conference Pattern Recognition, pp. 81-86, 1980.
[19] C. Domeniconi, J. Peng, and D. Gunopulos, “An
adaptive metric machine for pattern classification,” Advances
in Neural Processing Systems, 13, pp. 451-457, 2002.
[20] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds,
N. Hamilton, and G. Hullender, “Learning to rank using
gradient descent,” Proc. of the 22nd International Conference
on Machine Learning, pp. 89-96, 2005.
[21] T. Joachims, “Optimizing search engines using
clickthrough data,” Proc. of the 8th ACM Conference on
Knowledge Discovery and Data Mining, pp. 133-142, 2002.
[22] R. Kohavi, P. Langley, and Y. Yun, “The utility of
feature weighting in nearest-neighbor algorithms,” Lecture
Notes in Computer Science, 1224, pp. 85-92, 1997.

206

