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nature never encountered. Understanding proteins’ role in
disease can also help us understand the disease itself and
design drugs that prevent or cure the disease (see the side-
bar “Proteins”).

Protein structures are most commonly determined by x-
ray crystallography, an experimental technique.1 Crystal-
lography involves many difficult steps, from cloning and
crystallization to data collection and phasing, but they can
be automated through robotics.2 The final step is building
the protein model to fit the experimental data. This requires
an experienced crystallographer and an appreciable time
commitment and has been resistant to automation. Build-
ing the protein model involves determining the coordinates
of the atoms that make up the protein by interpreting an
electron density map (derived from x-ray diffraction data
by a Fourier transform; see the “X-ray Crystallography”
sidebar). In the past, a crystallographer built the model
manually by applying biophysical and chemical knowl-
edge to visually interpret the density patterns and by decid-
ing how best to fit the atoms into the density. This tradi-
tional approach is both time-consuming and error prone.
Time is no longer a luxury crystallographers can afford
given the growth of structural genomics initiatives that gen-
erate thousands of potential candidates for structural deter-
mination.3 Although several automated methods for model
building are available, they’re geared toward higher-reso-
lution data.4–8 They often don’t build good models when
the x-ray data resolution is around 2.5 angstroms (Å) or
lower, as is typical with larger macromolecules, particu-
larly when the data collection occurred in the local labo-
ratory as opposed to a synchrotron.

TEXTAL is a successfully deployed system for automated
model-building in protein x-ray crystallography. It repre-
sents a novel solution to an important, complex real-world
problem using various AI and pattern recognition algo-

rithms. TEXTAL takes a model-building approach based on
real-space density pattern recognition, similar to how a
human crystallographer would work. This approach poten-
tially tolerates more noise and has been optimized for
medium-resolution x-ray data in the 2.4 Å to 3.0 Å range.
TEXTAL first tries to predict the coordinates of the alpha-carbon
(C�) atoms in the protein’s connected backbone using a neural
network. It then analyzes the density patterns around each C�
atom and searches a database of previously solved struc-
tures for regions with similar patterns. TEXTAL determines
the best match, retrieves the coordinates for that region, and
fits them to the unknown density. TEXTAL concatenates these
local models into a global model and subjects them to vari-
ous subsequent refinements to produce a complete protein
model automatically. The whole process typically takes
between 15 minutes and three hours, depending on the pro-
tein’s size. Figure 1 shows TEXTAL’s results on a test protein,
CZRA, which has the Protein Data Bank code 1R1V.

How TEXTAL works
TEXTAL begins with either an electron density map or

structure factors (x-ray diffraction data) as input, along with
an amino acid sequence and information about the symme-
try of the crystal used. It outputs a Protein Data Bank file
containing the solution structure. TEXTAL combines AI, pat-
tern matching, and non-AI methods into three principal
phases (see figure 2) that mimic how a human crystallogra-
pher would solve an unknown structure:

1. CAPRA, the C-Alpha Pattern Recognition Algorithm,
determines where the C� atoms should be placed via
a neural network. It also decides how to connect them
to form the protein’s core scaffolding by using heuris-
tic search methods and case-based reasoning.9

2. LOOKUP then models the density surrounding each C�
atom determined by CAPRA. It does this by comparing
the unknown density in a sphere about the atom to a
known database using pattern matching and nearest-
neighbor learning.9 LOOKUP concatenates these local
models to form the full protein structure. Recently, we
incorporated an optimization phase into LOOKUP based
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on the Nelder-Meade simplex. This not
only improved the fit of the side chains
to their density but also TEXTAL’s abil-
ity to pick the correct amino acid type.

3. Post-processing encompasses numer-
ous steps that further refine the solu-
tion from LOOKUP by incorporating
sequence information (sequence align-
ment) and further optimize the fit of
the modeled side chains with their
density (real-space refinement).

AI technology in TEXTAL

AI techniques are well suited to automate
the complex decision-making processes in-
volved in electron density map interpretation.

Previous AI-related work in this area includes
expert systems and molecular scene analy-
sis.4,6 TEXTAL adopts a divide-and-conquer
approach that decomposes the problem into
pieces that can be solved independently, some
of them by AI methods. The various uses of
AI technology in TEXTAL are described next.

Neural network to locate C� atoms
TEXTAL determines the C� atoms’locations

in the unknown model using a feed-forward
neural network, with one layer of 20 hidden
units and sigmoid thresholds.9 TEXTAL feeds
38 numerical features—rotationally invariant
descriptions of the local density, such as sta-
tistical moments and the moments of iner-

tia—to the network, which outputs the pre-
dicted distance between each candidate posi-
tion and the real C�. CAPRA then uses these
predictions to pick those most likely closest
to the real C� positions, factoring in con-
straints such as the expected distances
between C� atoms. The network is trained on
a set of candidate points in maps of solved
proteins where the distances to the real C�
atoms are known. TEXTAL optimizes the net-
work weights using back-propagation.

Heuristic search to build chains
After TEXTAL determines the C� posi-

tions, it connects them using a heuristic
search algorithm that emulates the reason-
ing experienced crystallographers would
use in building their models, such as knowl-
edge of secondary-structural motifs and
stereochemical constraints.9

Case-based reasoning to connect chains
Noisy data (and maps) make building

chains challenging because noise can cause
breaks to appear where a chain should be
connected or make connections where there
should be none. In practice, unconnected
chains determined by CAPRA based on dis-
continuous density isn’t an uncommon
problem. It’s often a problem near proteins’
termini and surface, where the molecule
tends to be more mobile and hence poorly
resolved. TEXTAL applies case-based rea-
soning to “stitch” together these split chains
using a method similar to that proposed by
T. Alwyn Jones and Søren Thirup.5,9 TEXTAL

searches a database of solved density frag-
ments (and their chains) using a window of
consecutive C� atoms by superimposing
the known fragments over the potential
unknown matches. If a match is sufficiently
close and the density sufficiently strong,
the missing C� atoms can be inserted from
the database template.

Figure 1. The results of running TEXTAL on a test protein, CZRA, whose true structure
was known. The C� chains TEXTAL found are white, and the true structure is green. 
(a) There’s close agreement except for the loop at the bottom, which is poorly resolved
in the electron density map. (b) A close-up of some side chains that TEXTAL found. The
agreement is close, not only in side chain type but also in positioning.

(a) (b)

Proteins are macromolecules consisting principally of amino
acids, of which 20 commonly occur in nature.1,2 A protein’s
basic organization is a backbone, formed by a regular, repeat-
ing series of peptide bonds that link the amino acids. Hanging
off the backbone are side chains, which are different for each
amino acid. They connect to the backbone at a specific carbon
atom called the alpha-carbon (c�). These polypeptides typically
fold up onto themselves into a compact 3D structure to be-
come biologically active. A protein’s basic topology is often
described by the path of its backbone, consisting of helical

fragments and parallel strands (this local topology is called the
secondary structure), all of which pack together into complex
shapes. The side chains then fill the space between the back-
bone elements.
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Case-based reasoning to 
model side chains

TEXTAL models side chains using LOOKUP,
which takes the set of C� chains (output by
CAPRA) as input and uses case-based reason-
ing and nearest-neighbor learning to effec-
tively and efficiently retrieve, from a database,
spherical regions (of 5 Å radius) that are struc-
turally similar to regions from the unsolved
map.9 TEXTAL compares the 5 Å spherical
regions centered on C� atoms in the backbone
model CAPRA produced to a large database of
50,000 regions from 200 maps of proteins (for
which the local structures of the regions are
known and cover a wide range of structural
motifs in proteins). TEXTAL retrieves and
assembles the matching local structures to
gradually produce a preliminary model,
which we can further refine by postprocess-
ing routines. We find matching regions via a

similarity metric that uses 76 numeric fea-
tures to locally characterize the spherical
regions.

Feature weighting for 
pattern recognition

A key requirement for accurately determin-
ing similarity in LOOKUP is correctly choosing
features to be used in the similarity metric. In
TEXTAL, experts determined the 76 numeric
features on the basis of domain knowledge as
well as intuitions on what would be relevant in
discriminating electron density patterns. But
not all features might be relevant in all situa-
tions. Irrelevant features effectively introduce
noise in the data and can mislead pattern
matching. So, we use SLIDER, a feature-weight-
ing algorithm that evaluates how well a given
feature-based distance measure (that uses the
weights) ranks the matches of an instance rel-

ative to its mismatches.10 We do this for a set
of instances, and the average ranking of the
matches reflects how good the weight vector is.

But the space of continuous weight vectors
is exponentially large, and an exhaustive search
is clearly intractable. So, we use a heuristic to
greedily search only those weights that affect
the ranking of matches (if we slide the weight
of a feature from 0 to 1, the ranking will change
at a weight where an instance is equidistant to
a match and a mismatch in Euclidean space).
This strategy makes the search efficient and
effective.

Linear discriminant analysis 
to detect disulfide bridges

A disulfide bridge is a covalent bond
between the sulfur atoms of two cysteine
amino acids from the same or neighboring
polypeptide chains. Disulfide bridges occur
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Figure 2. Solving an unknown structure: (a) the raw electron density for a protein without any model built, (b) the medial axis of
the density that CAPRA found (in cyan) along with the predicted C� atoms (in white), (c) the connected chain (an alpha-helix) that
CAPRA built, and (d) LOOKUP’s results, fitting entire amino acids into the density forming the whole model.

(c) (d)

(a) (b)



about once in every four proteins. In TEXTAL,
a linear discriminant model detects disulfide
bridges, using training that optimizes the
model’s parameters.11 Positive and negative
training examples of disulfide bridges are
represented by the same 76 features used in
LOOKUP. This classification method projects
the high-dimensional data onto an optimal
line in space along which classification is
performed using a single threshold to distin-
guish between disulfide bridge and non-
bridge classes.

Deployment
Initiated in 1998, the TEXTAL project stems

from collaboration between researchers from
the Departments of Computer Science and
Biochemistry and Biophysics at Texas A&M
University. TEXTAL now consists of 100,000
lines of C, C++, Perl (Practical Extraction and
Report Language), and Python code and runs

on various versions of Irix, Linux, Solaris,
Mac OS, and Windows. We use the Concur-
rent Versions Systems (www.nongnu.org/cvs)
to coordinate software development and
maintenance. 

We’ve deployed TEXTAL in various ways:

• WebTex is a Web-based interface (http://
textal.tamu.edu:12321) where registered
users can upload their maps. Our servers
process them, and the models TEXTAL out-
puts are automatically sent back in an
email. We launched WebTex in June 2002;
about 120 users in 70 research institutions
from 20 countries currently use it, both
from industry and academia. 

• Linux and OSX distributions, available
since September 2004, are available at
http:// textal.tamu.edu:12321.

• TEXTAL is also the structure determination
component of the Python-based Hierarchical

Environment for Integrated Crystallography
(www.phenix-online.org), an integrated
crystallographic computing environment.
PHENIX’s other main components are the
Computational Crystallography Toolbox,
PHASER, SOLVE, and RESOLVE. PHENIX was
released in July 2003 as an alpha test ver-
sion; PHENIX’s public release was in April
2005.8,12,13

TEXTAL, by necessity, has been an inter-
disciplinary project requiring immersion in
structural biology to understand the scien-
tific problems and to find a common tongue
for discussing the issues and their solutions.
This has required cross-training students and
interaction with the crystallographic com-
munity. Participation in crystallographic and
structural biology conferences and work-
shops has been essential to developing intu-
ition about these problems to intelligently
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Although a protein’s sequence largely determines its 3D struc-
ture, accurately predicting the structure from the sequence
alone is nontrivial. The Levinthal paradox says that a random-
walk folding algorithm would successfully fold a protein only
on a cosmological time scale.1 Considerable progress has
been made in ab initio protein structure prediction using
methods ranging from molecular dynamics and hidden
Markov models to fragment-based approaches. However,
none have been able to robustly predict the structure, par-
ticularly on proteins with novel sequences and folds.2–4 For-
tunately, we can use experimental methods to determine a
protein’s structure.

X-ray crystallography is the most widely used technique to
accurately determine protein structure.5 After a protein is puri-
fied and crystallized, an x-ray beam is directed through the
crystal at various angles. The interaction of the x-ray with the
electrons in the protein’s atoms, locked in the crystal’s rigid
lattice, produces a set of diffraction patterns. We can acquire
these patterns and process them into a set of amplitudes for
Fourier coefficients (known as structure factors), representing
the Fourier transform of the protein’s electron density con-
volved with the crystal’s repeating lattice. By taking the inverse
Fourier transform, we can reconstruct the electron density, at
least in principle. The diffraction phases are necessary to com-
plete the transform, but these aren’t directly available. We
can, however, estimate or approximate these using various
techniques, such as molecular replacement, multiple isomor-
phous replacement, multiwavelength anomalous diffraction,
and sulfur anomalous diffraction. The data is also collected
only to a certain resolution, described in angstroms (Å). The
resolution determines how fine a structure can be resolved,
owing to experimental constraints.

Once we’ve generated a map by combining the observed
diffraction intensities with the estimated phases, we must

build a model for it. Traditionally, this involves a crystallogra-
pher sitting for days or weeks at a graphics workstation, visu-
ally interpreting the density, placing atoms for the backbone,
and fitting side chains into the remaining density. Noise in the
experimental data can cause perturbations in the density, such
as breaks in the backbone continuity. Additionally, some parts
of the protein might be mobile, even in a crystal (such as at the
protein’s surface), causing the corresponding density to appear
diffuse, if not nonexistent. Finally, if the data’s resolution is
low (that is, greater than 2.5 Å), the density might appear
blurred and difficult to resolve, requiring the crystallographer
to rely on a great deal of background knowledge about typical
protein structures to make decisions on the best way to model
the density, such as typical backbone angles, secondary-structure
composition, common side-chain configurations, and long-
range interresidue contacts.
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design and apply AI techniques. It’s also nec-
essary to understand crystallographic data’s
subtleties, such as data scaling, thermal
vibration’s effect (B-factors), and other noise
sources, which adversely impact pattern
recognition. A deeper understanding of the
more mundane but practical tasks that crys-
tallographers face, such as handling differ-
ent data formats and understanding data rep-
resentation conventions, is also important.

Despite the difficulties in integrating
multiple disciplines and expertise, protein
crystallography has proved to be rich and
rewarding. It’s a domain with many prob-
lems to which we can apply AI.

Future plans for TEXTAL include expand-
ing the range of resolutions for which it’s
optimized by constructing different data-
bases and neural networks and selecting the
appropriate database depending on the data.
We plan to apply the TEXTAL approach to
identifying DNA and RNA. We’re also
working on incorporating automated detec-
tion of noncrystallographic symmetry
within TEXTAL.
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For more information on this or any other com-
puting topic, please visit our Digital Library at
www.computer.org/publications/dlib.
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