
Intelligent Agents (Ch. 2)

• examples of agents
• webbots, ticket purchasing, electronic assistant,

Siri, news filtering, autonomous vehicles,
printer/copier monitor, Robocup soccer, NPCs in
Quake, Halo, Call of Duty...

• agents are a unifying theme for AI
• use search and knowledge, planning, learning...

• focus on decision-making

• must deal with uncertainty, other actors in
environment

7/27/2024 1

Characteristics of Agents

• essential characteristics

7/27/2024 2

1. agents are situated: can sense and
manipulate an environment that changes
over time

2. agents are goal-oriented
3. agents are autonomous

• other common (but not universal) aspects of agents:

1. adaptive (learns from experience)
2. optimizing (rational)
3. social (i.e. cooperative, teamwork, coordination)
4. life-like (e.g. in games, interactions with humans)

sensors,
percepts

actuators,
effectors,
actions

State1

State2

State3

Staten

Goals,
Knowledge Base,
Model of world

plan:
Action1

Action2

Action3

...

Environment

7/27/2024 3

• policy - mapping of states (or histories) to actions
• p(s)=a

• p(s1,...st)=at

• Performance measures:
• utility function, rewards, costs, goals

• mapping of states (or statesactions) into R,
S |-> or S,A |->

7/27/2024 4

Rational behavior
(rationality)

• rationality: "for each possible
percept sequence, a rational
agent should select an action
that is expected to maximize
its performance measure,
given the evidence provided
by the percept sequence and
whatever built-in knowledge
the agent has"

• colloquially, being rational
means "doing the right thing"

7/27/2024 5

Rationality

• select an action that is expected to maximize its
performance measure

• consider a set of possible outcomes, {oi}

• select the action i that leads to the outcome with
the highest payoff/reward, argmaxi payoff(oi)

• in uncertain (stochastic) environments, if an action
could lead to several outcome, take the average
outcome, weighted by probability

7/27/2024 6

Expectiminimax(s) =
u1(s) if is a terminal node
max{Expectiminimax(s’)|s’succ(s)} if max node
min{Expectiminimax(s’)|s’succ(s)} if min node
Ss’succ(s) P(s’) Expectiminimax(s’) if chance node

remember
Expectiminimax?

take action
that leads to
highest average
mm score over
children

Task Environments

• The architecture or design of an agent is strongly
influenced by characteristics of the environment

Discrete Continuous

Static Dynamic

Deterministic Stochastic

Episodic Sequential

Fully Observable Partially Observable

Single-Agent Multi-Agent

(read the
definitions and
examples in
the textbook)

7/27/2024 7

Agent Architectures

• Reactive/Reflex Agents
• stimulus-response

• condition-action lookup table

• efficient

• goals are implicit

• sense-decide-act loop

• OODA loop (observe-orient-decide-act)

sense

act decide
7/27/2024 8

State Action

S1 A1

S2 A2

S3 A3

... ...

Ghengis
(Rodney Brooks, MIT)

simple
reactive
controllers

7/27/2024 9

finite-state
machines are a
common alternative
to lookup tables

Simple Reflex Agent
sensors

What the world

is like now

What action I

should do now
Condition - action rules

effectors

E
n
v

iro
n
m

en
t

function SIMPLE-REFLEX-AGENT(percept) returns action

static: rules, a set of condition-action rules

state INTERPRET-INPUT (percept)

rule RULE-MATCH (state,rules)

action RULE-ACTION [rule]

return action

Stop after First match.

Rules should be prioritized.

7/27/2024 10

(This is specifically a Rule-based Reflex Agent.
Could also use a Lookup Table to selection action.)

Agent Architectures

• Rule-based Reactive Agents
• condition-action trigger rules

• if carInFrontIsBraking then InitiateBraking

• more compact than table
• issue: how to choose which rule to fire?

• must prioritize rules, if more than one rule can fire

• implementations
• if-then-else cascades
• CLIPS; JESS - Java Expert System
• Subsumption Architecture (Rodney Brooks, MIT)

• hierarchical - design behaviors in layers
• e.g. obstacle avoidance overrides moving toward goal

7/27/2024 11

Agent Architectures

• Model-based Agents
• use local variables to represent and remember

the state of the world and infer unobservable
aspects

7/27/2024 12

Model-based agent

function MODEL-BASED-REFLEX-AGENT (percept) returns action

static: state, a description of the current world state

rules, a set of condition-action rules

state UPDATE-STATE (state, percept)

rule RULE-MATCH (state, rules)

action RULE-ACTION [rule]

state UPDATE-STATE (state, action) // predict, remember

return action
7/27/2024 13

Agent Architectures

• Knowledge-based Agents
• knowledge base containing logical rules for:

• inferring unobservable aspects of state

• inferring effects of actions

• inferring what is likely to happen

• use inference algorithm to decide what to do next,
given state and goals
• use forward/backward chaining, natural deduction,

resolution...

• prove: PerceptsKBGoals |= do(ai) for some action ai

7/27/2024 14

• Proactive agents
• (in contrast to Reactive agents)

• more than just stimulus-response - reason about what is
going to happen

• proactive agents don't just take actions for immediate
payoff - they think several steps ahead, because
achieving some goals/rewards takes multiple actions

• typically, proactive agents are knowledge-based,
because they have to do more complex reasoning

• we will talk about 2 specific architectures for designing
proactive agents: Planning Agents, and Utility-based
Agents (MDPs and RL)...

7/27/2024 15

Agent Architectures

• Goal-based Agents (Planning Agents)
• search for plan (sequence of actions) that will

transform Sinit into Sgoal

• state-space search
(forward from Sinit, e.g.
using A*)

• goal-regression
(backward from Sgoal)
• reason about effects of

actions

• SATplan, GraphPlan,
PartialOrderPlan (POP)...7/27/2024 16

Goal-based agents

Agenda - plan; sequence
of things I am in the

middle of doing...

note: plans must be maintained on an agenda and
carried out over time - these are intentions

7/27/2024 17

Agent Architectures

• Utility-based Agents
• utility function: maps states to real values,

quantifies "goodness" of states, u(s)→

• agents select actions to maximize utility
• sometimes payoffs are immediate (think

"reactive")
• othertimes payoffs are delayed:

• Sequential Decision Problems
• maximize long-term reward

7/27/2024 18

Markov Decision Problems (MDPs)

• transition function: T(s,a)→S
• outcomes of actions

• could be probabilistic (distribution over successors states)

• reward/cost function: R(s,a)→

• “plans” are encoded in policies
• mappings from states to actions: p:S→A

• Markov property: probabilities only depend on current state

• the goal: maximize reward over time
• long-term discounted reward

s1 s2 s3 s4
a1 a2 a3 s4

rewards:
r1 r2 r3 r4

7/27/2024 19

Multi-Agent Systems

• Collaborative Agents
• competition (Minimax) vs. collaboration

• collaboration: is there a way agents can work
together so they mutually benefit?

• "open" agent environment: assume all agents are
self-interested (have their own utility function)

7/27/2024 27

Market-based methods for Multi-
Agent Systems
• mechanisms to incentivize collaboration

• contract networks - agents make bids to do tasks for each
other, negotiate price, make commitments

• auctions - agents bid on resources
• first-price, second-price, open vs sealed bid, asc vs descending

• strategy to maximize utility?

• bidding on combinations of resources is more complicated

• consensus algorithms - voting (weight choices by utility)

• important issues:
• do these mechanisms incentivize agents to be rational and bid

their true values?; are they free of exploitation/manipulation?

• efficiency: do these mechanisms maximize social benefit?
(sum of utility of outcomes over all agents)

7/27/2024 28

Methods for Collaborative Agents
• Agent Teamwork

• shared goals, joint intentions
• assume teammates are not just self-interested
• teammates can compensate for each other if a team goal

is at risk
• well-defined roles, responsibilities
• communication among teammates is key

• BDI - modal logic for representing Beliefs, Desires
(goals), and Intentions (actions) of other agents
• Bel(self,empty(ammo))

Bel(teammate,¬empty(ammo))
Goal(teammate,shoot(gun))
→ Tell(teammate,empty(ammo))

• intentions are actions that we select and commit to, which
means we plan to do them (or keep trying till we succeed)

• modal operators go beyond FOL: Bel(<agt>,<sentence>)

7/27/2024 29
cannot be a predicate, has sentence as argument

