Limitations of First-Order Logic

* FOL is very expressive, but...consider how to translate
these:
* "most students graduate in 4 years"
* Vxstudent(x) - duration(undergrad(x))<years(4) (all???)
* "only a few students switch majors"

* ds,m1,m2,t1,t2 student(s)*major(s,m1,t1)Amajor(s,m2,t2)
Amlzm2 A t1#£t2 (exists???)

 "all birds can fly, except penguins, stuffed birds, plastic birds,
birds with broken wings..."

* The problem(s) with FOL involve expressing:
 default rules & exceptions
» degrees of truth

 strength of rules




Add rule strengths or priorities

* label each rule with a number indicating its
"strength" or "degree of belief"

* stronger rules override conclusions from weaker
rules

penguin(x) 2,4 —flies(x)

bird(x) =, 5 flies(x)
* an old ad-hoc approach (with unclear semantics)
e common approach in early Expert Systems
* "salience" attribute of rules in CLIPS



Probability (Ch. 12)

* an alternative route to encoding default rules like "most
birds fly" is to quantify it using probability, p(fly | bird)=0.95

* probabilistic reasoning has had a major impact on Al over
the years

e conferences and journals on UAI (Uncertainty in Al)

* probabilistic models has led to major algorithms like:
Hidden Markov Models (applications to speech, genomics...)
SLAM (simultaneous localization and mapping) for robotics
Bayesian networks/graphical models (as knowledge bases)
Kalman filters, ICA, POMPDs, ...

Reinforcement Learning



Axioms of Probability

 for event e: 0<P(e)<1
* for mutually exclusive events e;..e, : 2. P(e,) =
* negation: P(-e) = 1-P(e)

* Kolmogorov axiom for non-exclusive events:
P(avb)=P(a)+P(b)-P(a,b)



Prior and Conditional Probabilities

* encode knowledge in the form of prior probabilities
and conditional probabilities
* P(x speaks portugese)=0.012
* P(x is from Brazil)=0.007 prior probs
* P(x speaks portugese|xis from Brazil)=0.9
* P(x flies|x is a bird)=0.9 (?)

* inference is done by calculating posterior
probabilities given evidence (using Bayes' Rule)

e compute P(cavity | toothache, flossing, dental history,
recent consumption of candy...)

e compute P(fed will raise interest rate |
unemployment=5%, inflation=0.5%, GDP=2%, recent
geopolitical events...)

conditional probs



Bayes' Rule

* product rule : joint prob P(A,B) = P(A|B)*P(B)
 P(A|B) is read as "probability of A given B"
* in general, P(A,B)#P(A)*P(B) (unless A and B are independent)

* Bayes' Rule: convert between causal and diagnostic

P[E | H} . P[H} H = hypothesis (cause, disease)

P{H | E} — P[E} E = evidence (effect, symptoms)

* joint probabilities: P(E,H), priors: P(H)

* conditional probabilities play role of "rules”
* people with a toothache are likely to have a cavity
* p(cavity|toothache) =0.6



Causal vs. diaghostic knowledge

* causal: P(x has a toothache|x has a cavity)=0.9
* diagnostic: P(x has a cavity|x has a toothache)=0.6

* typically it is easier to articulate knowledge in the
causal direction, but we often want to use itin a
diagnostic way to make inferences from
observations



e Joint probability table (JPT)
* you can calculate answer to any question from JPT

* the problem is there are exponential # of entries (2",
where N is the number of binary random variables)

toothache -1 toothache

catch | 0 carchl carch | 1 carch

cavire | 108 | .012 072 | .008
- cavire | 016 | .084 44 | 576

P(—cavity | toothache) = ?
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e Joint probability table (JPT)

* you can calculate answer to any question from JPT

 the problem is there are exponential # of entries (2N,
where N is the number of binary random variables)

toothache -1 toothache

catch | 0 carchl carch | 1 carch

cavire | 108 | .012 072 | .008
- cavire | 016 | .084 44 | 576

P(—cavity | toothache) = P(—cavity A toothache) / P(toothache)
= 0.016+0.064
(0.108 + 0.012 + 0.016 + 0.064)
=0.4
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e Joint probability table (JPT)

* you can calculate answer to any question from JPT

 the problem is there are exponential # of entries (2N,
where N is the number of binary random variables)

toothache - toothache

catch | 1 carchlcarch | — carch

caviry | 108 | .012 072 .008
- caviry | 016 | .064 JA44 | 576

P(—cavity | toothache) = P(—cavity A toothache) / P(toothache)
= 0.016+0.064
(0.108 + 0.012 + 0.016 + 0.064)
=0.4
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* marginalization - summing out unknown variables

P(cavity) = P(cavity,toothache,catch)+P(cavity,toothache,-catch)
+P(cavity,-toothache,catch)+P(cavity,-toothache,-catch)

P(caviry) =0.108 +0.012+0.072 +0.008 = 0.2

toothache

- toothache

catch | 1 catch) catch | - carch
cavirv | .108| .012 072 .00 1} =0.2
S caviry | 016 | .064 44 | 576

11/11/2024



* normalization

suppose we want to compute a conditional prob, like P(X|Y,Z)
using the product rule, we could calculate it using joint probs:
* P(X]Y,2) = P(X,Y,2)/P(Y,2)
would have to marginalize over X to compute the denominator
* P(Y,2) = P(X,Y,Z)+P(-X)Y,Z)
a simpler way to calculate the conditional prob is to compute 2
joint probabilities, P(X,Y,Z) and P(-X,Y,Z), and normalize them so
they sumup to 1 (X hasto be T or F in context of Y and Z)
this represents the evidence "for" and "against" X, given Y and Z
* P(X]Y,2) = aP(X\Y,Z) ; a=1/(P(X,Y,Z)+P(-X,Y,Z))
since we have to compute probs both for and against, it is
conventional to represent them as a vector:
e <P(X)Y,2),P(-X)Y,2)>
technically, they don't add up to 1, but we can make them sum
to one by dividing by the sum to normalize them
* a<P(X,Y,2),P(-XY,Z)> ; a=1/(P(X,Y,Z)+P(-X,Y,Z))
* P(X]Y,2) = P(XY,2)/(P(X)Y,2)+P(-X)Y,Z))



Conditional Independence

Applying Bayes' Rule in larger domains has a scalability problem
* the size of the JPT grows exponentially with the number of

variables (2" for n variables)

e Solution to reduce complexity:
 employ the Independence Assumption

* Most variables are not strictly independent; most variables are at

least partially correlated (but which is cause and which is effect?).
* However, many variables are conditionally independent.

A and B are conditionally independent given C if:
P(A,B|C) = P(A|C)P(B|C), or equivalently
P(A[B,C) = P(A[C)



Conditional Independence

If | have a cavity, the probability that the probe catches in it doesn't depend
on whether | have a toothache:
(1) P(catch|toothache, cavity) = P(catch|cavity)

The same independence holds if | haven't got a cavity:
(2) P(catch|toothache, —cavity) = P(catch|—cavity)

C'atch is conditionally independent of T'oothache given Cavity:
P(Catch|Toothache, Cavity) = P(Catch|Cavity)
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e conditional independence gives us an efficient way to

combine evidence

* consider P(Cav|toothache,catch)

e using Bayes' Rule:
* P(Cav|toothache,catch) oc P(toothache”catch|Cav)*P(Cav)
* this requires a mini JPT for all combinations of evidence

e assuming toothache is conditionally independent of catch

given Cavity:

* P(toothache”catch|Cav) = P(toothache|Cav)*P(catch|Cav)

* therefore...
P(Cav|toothache,catch) oc P(toothache|Cav)*P(catch|Cav)*P(Cav)



Naive Bayes algorithm

e suppose you have a phenomenon that causes several
different effects that could be observed

* Cause — Effect,, Effect,,..., Effect,

* each effect is probabilistic, but assume they are all
conditionally independent of each other

* Then an efficient method for detecting or classifying probable

causes is:
P(Cause,Effect,.,... ,Effect,) = P(Cause) I—l P(Effect;| Cause)
;

* if you have some unobserved vars (y), could marginalize them
out, but it leads to same Eqn above

P(Cause |e) = o Z P(Cause.e.y)
¥

* Example: classifying documents as Bag-of-Words

* P(doctype=sports|words) = P(sports)*(has "score" |sports)*(has "referee" |sports)*...



Bayesian Networks (sec. 13.1 and
the first page of Sec 13.2)

* graphical models where edges represent conditional probabilities

 efficient representation because missing edges are assumed to be
conditionally independent given the nodes in between

e popular for modern Al systems (expert systems)
e important for handling uncertainty

all vars are correlated, O(n?) edges, Naive Bayes: compute probability of 1

requires full JPT with 2" rows

var depending on all the others (n-1)

Bayesian Network: selected edges
represent conditional dependence

burglary @

QomeAlaris

burglary

Cohncalls> - (WaryCalls>

burglary

requires independence assumption

more natural: links follow causality




Bayesian Networks (Sec. 13.1-2)

prob of each node depends on parents; specify with a mini-JPT

full JPT has 2°=32 entries - can answer any query from JPT

. lik .
joint prob of full state <j,m,a-b-e> is product of prob over all nodes

prob of each node is conditioned on parents
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e Efficient algorithms for computing inferences or
outcomes conditioned on observations/evidence

* Variable elimination: factor computations into a tree of
products and sums (algebraic calculation from formula)

* rearrange to minimize number of adds and mults...

P(Burglary | JohnCalls = true. MarvCalls =true)
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» Belief propagation: graph algorithm that updates probs
of neighboring nodes when belief of any node changes
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Figure 13.9 A Bayesian network for evaluating car insurance applications,
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Initial evidence: car won't start
Testable variables (green), “broken, so fix it" variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters
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* Many modern knowledge-based systems are based on
probabilistic inference

 including Bayesian networks, Hidden Markov Models, (HMMs),
Markov Decision Problems (MDPs)

* example: Bayesian networks are used for inferring user goals or
help needs from actions like mouse clicks in an automated software
help system (think 'Clippy')

* Decision Theory combines utilities with probabilities of outcomes to
decide actions to take

* the challenge is capturing all the numbers needed for the M
prior and conditional probabilities

* objectivists (frequentists) - probabilities represent outcomes of
trials/experiments

» subjectivists - probabilities are degrees of belief

 probability and statistics is at the core of many Machine
Learning algorithms
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