
• The problem(s) with FOL involve expressing:

• default rules & exceptions

• degrees of truth

• strength of rules

Limitations of First-Order Logic
• FOL is very expressive, but...consider how to translate 

these:
• "most students graduate in 4 years"

• x student(x) → duration(undergrad(x))years(4)  (all???)

• "only a few students switch majors"
• s,m1,m2,t1,t2 student(s)^major(s,m1,t1)major(s,m2,t2) 

m1m2  t1t2   (exists???)

• "all birds can fly, except penguins, stuffed birds, plastic birds, 
birds with broken wings..."
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Add rule strengths or priorities 

• label each rule with a number indicating its 
"strength" or "degree of belief"

• stronger rules override conclusions from weaker 
rules

penguin(x) →0.9 flies(x)

bird(x) →0.5 flies(x)

• an old ad-hoc approach (with unclear semantics)

• common approach in early Expert Systems

• "salience" attribute of rules in CLIPS
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Probability (Ch. 12)

• an alternative route to encoding default rules like "most 
birds fly" is to quantify it using probability, p(fly|bird)=0.95

• probabilistic reasoning has had a major impact on AI over 
the years
• conferences and journals on UAI (Uncertainty in AI)

• probabilistic models has led to major algorithms like:
• Hidden Markov Models (applications to speech, genomics...)

• SLAM (simultaneous localization and mapping) for robotics

• Bayesian networks/graphical models  (as knowledge bases)

• Kalman filters, ICA, POMPDs, ...

• Reinforcement Learning
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Axioms of Probability

• for event e: 0P(e)1

• for mutually exclusive events e1..en : i P(ei) = 1

• negation: P(¬e) = 1-P(e)

• Kolmogorov axiom for non-exclusive events: 
P(ab)=P(a)+P(b)-P(a,b)
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Prior and Conditional Probabilities
• encode knowledge in the form of prior probabilities 

and conditional probabilities
• P(x speaks portugese)=0.012
• P(x is from Brazil)=0.007
• P(x speaks portugese|x is from Brazil)=0.9
• P(x flies|x is a bird)=0.9 (?)

• inference is done by calculating posterior 
probabilities given evidence (using Bayes' Rule)
• compute P(cavity | toothache, flossing, dental history, 

recent consumption of candy...)
• compute P(fed will raise interest rate | 

unemployment=5%, inflation=0.5%, GDP=2%, recent 
geopolitical events...)

prior probs

conditional probs
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Bayes' Rule

• product rule : joint prob P(A,B) = P(A|B)*P(B) 
• P(A|B) is read as "probability of A given B"
• in general, P(A,B)P(A)*P(B) (unless A and B are independent)

• Bayes' Rule: convert between causal and diagnostic

• joint probabilities: P(E,H), priors: P(H)

• conditional probabilities play role of "rules"
• people with a toothache are likely to have a cavity
• p(cavity|toothache) = 0.6

H = hypothesis (cause, disease)
E = evidence (effect, symptoms)

11/11/2024 25



Causal vs. diagnostic knowledge

• causal: P(x has a toothache|x has a cavity)=0.9

• diagnostic: P(x has a cavity|x has a toothache)=0.6

• typically it is easier to articulate knowledge in the 
causal direction, but we often want to use it in a 
diagnostic way to make inferences from 
observations
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• Joint probability table (JPT)
• you can calculate answer to any question from JPT

• the problem is there are exponential # of entries (2N, 
where N is the number of binary random variables)

P(cavity | toothache) = ? 
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• Joint probability table (JPT)
• you can calculate answer to any question from JPT
• the problem is there are exponential # of entries (2N, 

where N is the number of binary random variables)

P(cavity | toothache) = P(cavity  toothache) / P(toothache)

     =                0.016+0.064 

        (0.108 + 0.012 + 0.016 + 0.064)

     = 0.4
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• marginalization - summing out unknown variables
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P(cavity) = P(cavity,toothache,catch)+P(cavity,toothache,¬catch)
                  +P(cavity,¬toothache,catch)+P(cavity,¬toothache,¬catch)



• normalization 
• suppose we want to compute a conditional prob, like P(X|Y,Z)

• using the product rule, we could calculate it using joint probs:
• P(X|Y,Z) = P(X,Y,Z)/P(Y,Z)

• would have to marginalize over X to compute the denominator
• P(Y,Z) = P(X,Y,Z)+P(¬X,Y,Z)

• a simpler way to calculate the conditional prob is to compute 2 
joint probabilities, P(X,Y,Z) and P(¬X,Y,Z), and normalize them so 
they sum up to 1 (X has to be T or F in context of Y and Z)

• this represents the evidence "for" and "against" X, given Y and Z

• P(X|Y,Z) = P(X,Y,Z) ; =1/(P(X,Y,Z)+P(¬X,Y,Z))

• since we have to compute probs both for and against, it is 
conventional to represent them as a vector: 
• <P(X,Y,Z),P(¬X,Y,Z)>

• technically, they don't add up to 1, but we can make them sum 
to one by dividing by the sum to normalize them 

• <P(X,Y,Z),P(¬X,Y,Z)> ; =(P(X,Y,Z)+P(¬X,Y,Z))

• P(X|Y,Z) = P(X,Y,Z)(P(X,Y,Z)+P(¬X,Y,Z))
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A and B are conditionally independent given C if:
  P(A,B|C) = P(A|C)P(B|C), or equivalently
  P(A|B,C) = P(A|C)

• Applying Bayes' Rule in larger domains has a scalability problem
• the size of the JPT grows exponentially with the number of 

variables (2n for n variables)
• Solution to reduce complexity: 

• employ the Independence Assumption
• Most variables are not strictly independent; most variables are at 

least partially correlated (but which is cause and which is effect?).  
• However, many variables are conditionally independent.

Conditional Independence
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Conditional Independence
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• conditional independence gives us an efficient way to 
combine evidence
• consider P(Cav|toothache,catch)

• using Bayes' Rule:
• P(Cav|toothache,catch)   P(toothache^catch|Cav)*P(Cav)

• this requires a mini JPT for all combinations of evidence

• assuming toothache is conditionally independent of catch 
given Cavity:
• P(toothache^catch|Cav) = P(toothache|Cav)*P(catch|Cav)

• therefore...

P(Cav|toothache,catch)  P(toothache|Cav)*P(catch|Cav)*P(Cav)
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Naive Bayes algorithm

• suppose you have a phenomenon that causes several 
different effects that could be observed

• Cause → Effect1, Effect2,..., Effectn

• each effect is probabilistic, but assume they are all 
conditionally independent of each other

• Then an efficient method for detecting or classifying probable 
causes is:

• if you have some unobserved vars (y), could marginalize them 
out, but it leads to same Eqn above

• Example: classifying documents as Bag-of-Words
• P(doctype=sports|words) = P(sports)*(has "score"|sports)*(has "referee"|sports)*...
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Bayesian Networks (Sec. 13.1 and
the first page of Sec 13.2)

• graphical models where edges represent conditional probabilities
• efficient representation because missing edges are assumed to be 

conditionally independent given the nodes in between

• popular for modern AI systems (expert systems)
• important for handling uncertainty

burglary earthquake

homeAlarm

JohnCalls MaryCalls

burglary earthquake

homeAlarm

JohnCalls MaryCalls

burglary earthquake

homeAlarm

JohnCalls MaryCalls

all vars are correlated, O(n2) edges,
requires full JPT with 2n rows

Naive Bayes: compute probability of 1 
var depending on all the others (n-1)

Bayesian Network: selected edges 
represent conditional dependence

requires independence assumption more natural: links follow causality



Bayesian Networks (Sec. 13.1-2)

• prob of each node depends on parents; specify with a mini-JPT

• full JPT has 25=32 entries - can answer any query from JPT

• joint prob of full state <j,m,a,¬b,¬e> is product of prob over all nodes

• prob of each node is conditioned on parents
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• Efficient algorithms for computing inferences or 
outcomes conditioned on observations/evidence
• Variable elimination: factor computations into a tree of 

products and sums (algebraic calculation from formula)

• rearrange to minimize number of adds and mults...

• Belief propagation: graph algorithm that updates probs 
of neighboring nodes when belief of any node changes
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• Many modern knowledge-based systems are based on 
probabilistic inference
• including Bayesian networks, Hidden Markov Models, (HMMs), 

Markov Decision Problems (MDPs)
• example: Bayesian networks are used for inferring user goals or 

help needs from actions like mouse clicks in an automated software 
help system (think 'Clippy')

• Decision Theory combines utilities with probabilities of outcomes to 
decide actions to take

• the challenge is capturing all the numbers needed for the 
prior and conditional probabilities
• objectivists (frequentists) - probabilities represent outcomes of 

trials/experiments
• subjectivists - probabilities are degrees of belief

• probability and statistics is at the core of many Machine 
Learning algorithms
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