
First-Order Logic
CSCE 420 – Fall 2024

read: Ch. 8,9

7/27/2024 1

First-Order Logic as Knowledge Repr. for AI

• while Prop Log and Boolean satisfiability has many applications, it has
limited expressiveness
• think of how many rules or clauses were required for the Wumpus world, or tic-tac-

toe, or map-coloring

• First-Order Logic (FOL) is more expressive
• FOL is considered the lingua franca for AI, or the standard concept representation

language for underlying most knowledge bases
• flexible enough to express almost any concept
• many KR systems have been proposed over the years, but the AI community has

found FOL to be the common, most useful, general language

• two influential books/papers (among many) showing the generality of FOL
for KR:
• Patrick Hayes – Naive Physics Manifesto (1978)
• Ernest Davis – Representations of Commonsense Knowledge (1990)

7/27/2024 2

Overview of FOL

• the main extensions to the language are:
• we now have predicates, not just propositions, making it relational

• father(Bart,Homer) instead of FatherOfBartIsHomer

• we now have variables and quantifiers
• c car(c)→hasEngine(c)

7/27/2024 3

Example of FOL Expressiveness

• Map-coloring
• PropLog

• WAR v WAG v WAB, NTR v NTG v NTB...
• WAR→ WAB^WAG, WAG → WAB^ WAR ...
• WAG → NTG, WAG → SAG...
• (about 50 sentences)

• FOL
• neigh(WA,NT),neigh(WA,SA),neigh(NT,SA),neigh(NT,Q)...
• color(R),color(G),color(B)
• state(WA),state(NT)...,state(V),state(T)
• s state(s) →c color(c)^hasColor(s,c) // each state is at least 1 color
• s,c,d state(s)^hasColor(s,c)^hasColor(s,d)→c=d // at most 1 color
• s,t,c state(s)^state(t)^neigh(s,t)^hasColor(s,c) →hasColor(t,c)
• (more concise than Prop Log - only 3 rules!)

7/27/2024 4
food for thought: how would you write a KB in FOL for the wumpus world?
or for choosing optimal moves in tic-tac-toe given a current board state?

Syntax of FOL

• BNF
• <sentence> ::= <atomic> | <complex>
• <atomic> ::= <predicate> | <equality>
• <predicate> ::= <predicatename>(<term>*)

• predicate names are symbols, like propositions
• they represent properties or categories (for unary case, 1 arg), or relationships (for n-ary

case, n≥2)
• examples: cat(garfield), hungry(garfield), owner(garfield,jon),feeds(jon,garfield,lasagna)

• <term> ::= <const> | <var> | <function>
• consts and vars both look like symbols, but the difference is usually clear from context
• some languages mark vars, e.g '?x',

• <function> ::= <functionname>(<arg>*)
• functions look like predicates, but they are always embedded inside predicates as args
• loves(bill,motherOf(bill)), in(keys(carOf(jon)),pocketOf(pantsOf(jon)))

7/27/2024 5

Syntax of FOL

• BNF cont'd
• <complex> ::= (<sent>) | <sent> <binop> <sent> | <sent> |<quantified>

• <binop> ::= ^ | v | → | ↔ |

• <quantified> ::= <quantifier><var><sentence>

• <quantifier> ::= |
• note: all variables in sentence should be quantified (else they are called 'free')

• we can combine several variables for concision: xy P(x,y) x,y P(x,y)

• scoping and order of quantifiers matters!

• x y loves(x,y) // everybody loves somebody

• y x loves(x,y) // there is somebody loved by everybody

7/27/2024 6

Syntax of FOL

• Equality
• <equality> ::= <term>=<term>

• includes <var>=<const>, <var>=<var>, <const>=<const>, <const>=<funct>...
• examples: ?c=red, ?x=?y, alice=motherOf(bill)
• technically, '=' is just a binary predicate! like this: Eq(alice,motherOf(bill))
• can negate these too: s,t,c,d hasColor(s,c)^hasColor(t,d)^neigh(s,t)→c=d (cd)

• Numbers
• constants with conventional meanings, like 0, 1, -2, 4.501, (and p, e,...)
• x biped(x)→numLegs(x)=2 // Eq(numLegs(x),2), note: numLegs() is a function
• or... x biped(x)→y,z leg(y)^leg(z)^partOf(y,x)^partOf(z,x)^yz ^ ...

(w leg(w)^partOf(w,x)→(w=y v w=z))
• actually, although this definition is more verbose, it is preferred because you can do

more reasoning with it, because it identifies specific objects as legs; leg() and
partOf() are useful as general predicates for making other inferences

7/27/2024 7

Guidelines for Translating Knowledge into FOL

• divide the world into:
• objects

• I mean this in the abstract, conceptual way - anything we can 'talk about' or 'refer to'

• garfield, sam's birthday, queen of England, the signing of the magna carte, ...

• types/categories/properties of things
• cats, game pieces, colors, states, people, apples, legs...

• events, situations

• model these with unary predicates, e.g. cat(garfield), F150(truck7), birthday(b152)

• happy(x), salty(x), broken(x), hasPower(x)...

• relations
• prerequisite(csce411,csce420), instructor(csce221,DrWelch), birthdayPerson(b152,sam),

owner(cheers,sam), girlfriend(sam,diane)

8

Using FOL

7/27/2024 9

x person(x)→mammal(x)
x person(x)→y hasMother(x,y)^femalePerson(y)
x femalePerson(x)→person(x)
femalePerson(mary)
malePerson(john)
sisterOf(john,mary)

FlyEvent(Fly17)
agent(Fly17,Shankar)
origin(Fly17,NewYork)
destination(Fly17,NewDelhi)
during(Fly17,yesterday)

this illustrates rules encoding taxonomic info
this illustrates ‘reification’ – treating an abstract
thing such as an event like an ‘object’ which
has properties and relates to other objects

Using FOL
• writing concept definitions as rules

• x batchelor(x) ↔ person(x) ^ adult(x) ^ male(x) ^ ¬married(x)
• x,y grandmother(x,y) ↔ z parent(x,z) ^ parent(z,y) ^ female(x)
• how would you define: hard-drive? chair? ambush? bargain?

• properties are like subsets
• x plant(x)→green(x) // plants are a subset of things that are green

• describing compositions of objects: partOf predicate
• c car(c) → t tire(t) ^ partOf(x,t) // don’t forget to relate the 2 objects
• x biped(x) → y,z leg(y) ^ leg(z) ^ partOf(y,x) ^ partOf(z,x) ^ yz ^ (w leg(w) ^

partOf(w,x) → (w=y v w=z))
• partOf(toe,foot), partOf(foot,leg), partOf(leg,humanBody)

• location and spatial relationships:
• loc(house(joe),BCS) // i.e. geographic location; BCS is a ‘place’
• d,h frontDoor(d,h)↔door(d)^house(h)^in(d,frontSideOf(h)) // note the function
• x,y,z in(x,y)^in(y,z)→in(x,z) // transitivity, e.g. milk in fridge, in kitchen
• a,b,L in(a,L)^partOf(b,a) →in(b,L) // if in(patient59,room1002), so are his toes...

10

Guidelines for Translating Knowledge into FOL

• important: divide long constants and predicate names into simpler concepts (and
define them)
• instead of below30psi(leftFrontTireOfJohnsKia), say:
• t,c tire(t) ^ car(c) ^ partOf(t,c) ^ owner(c,john) ^ make(c,kia) ^ on(t,LeftSide(c))

^ on(t,frontSide(c)) ^ pressure(t)<psi(30)
• this is a common trick - using existentially quantified variables to refer to objects, and then

using lots of basic predicates to describe the properties of and relations among the objects
• remember our example of replacing 'numlegs(x)'...

• usually, implications go with universal quantifiers
• correct: x plant(x)→green(x)
• incorrect: x plant(x)→green(x)

• usually, conjunctions go with existential quantifiers
• (see tire example above)

7/27/2024 11

Axiomatizing Numbers

• Natural numbers (0,1,2...)
• Peano axioms

• natNum(0) // there exists a natural number, denoted by ‘0’
• n natNum(n)→natNum(S(n)) // successor function
• m and n, m = n ↔S(m) = S(n).
• n (S(n) 0) // there is no natural number whose successor is 0.
• n plus(n,0)=n // n+0=n
• n,m plus(n,S(m))=S(plus(n,m)) // n+(m+1)=(n+m)+1
• ...there are a few more

• the point is that natural numbers exist and we can use basic arithmetic
(as functions) in FOL sentences
• x,n,y biped(x) ^ Eq(numLegs(x),n) ^ tripod(y) → Eq(numLegs(y),Plus(x,1)) // “x+1”

• note that functions in the arithmetic sense are represented by functions
in the logical sense

7/27/2024 12

Axiomatizing Numbers

• rational numbers – easy:
• q rational(q)↔a,b natNum(a)^natNum(b)^b0^q=frac(a,b)

• real numbers: Continuum hypothesis
• it’s trickier to axiomatize these, but we can go ahead and assume real

numbers exist! so we can use them is our FOL sentences
• furthermore, we can assume functions, like Plus(a,b), Times(x,y) exist, so we

can say things like:
• c,t,d,m car(c)^trip(t)^

distanceTraveled(t,d)^gasMileage(c,m)→fuelUsed(c,t)=Times(d,m)

• axioms for transcendental numbers; transfinite numbers...(axioms for
the math cognoscenti)

7/27/2024 13

or "=d*m"

Sets

• remember: order of items doesn’t matter (or repeats)

• s set(s)↔s= v [x,a set(x) ^ s=Add(a,x)]

• ¬s,a Add(a,s)=

• s,a Member(a,s) ↔ t Add(a,t)=s // as is shorthand for Member(x,s)

• r,s Subset(r,s)↔[x Member(x,r)→Member(x,s)]

• r,s set(r)^set(s)^r=s↔[Subset(r,s) ^ Subset(s,r)]

• r,s,x Member(x,Union(r,s))↔[Member(x,r) v Member(x,s)] // rs

• r,s,x Member(x,Intersection(r,s))↔[Member(x,r) ^ Member(x,s)]

7/27/2024 14

Quantities

• it is useful to be able to specify quantities, e.g. Bill bought 2 gallons of
gas and 10 quarts of milk. which was more?

• use functions to indicate units of quantities
• g bought(Bill,g)^gas(g)^volume(g)=gallons(2)

• m bought(Bill,m)^milk(m)^volume(m)=quarts(10)

• the functions map numbers to ‘volumes’ as objects on an abstract
scale, where quarts(10) is more than gallons(2)
• we want to be able to infer that volume(m)>volume(g)

• we can connect them and reason about quantities with axioms like
• x,y volume(x)=gallons(y) → volume(x)=quarts(4*y)

7/27/2024 15
scale of liquid volumes

gallons(2) quarts(10)

Semantics of FOL: Model Theory

• in Prop Log, models were truth-assignments over propositions <P=T, Q=F...>

• in FOL, a model consists of 3 things: <U,D,R>
• U is a set of abstract objects in the universe (also called 'domain'); not necessary finite!
• D are denotations, mappings from constants and functions to objects, D: const → U

• for functions, there can be only one denotation for each argument

• example: loves(bill,motherOf(bill)) works because there is only 1

• loves(sue,pet(sue)) would not work, because she could have more than 1 pet
• in 1-to-many situations, use a predicate: x pet(sue,x)→loves(sue,x)

• R is a set of relations (tuples over Un) defining each predicate
• for a unary predicate (n=1), it is just the subset of objects U that satisfies it

• note: we can't just say Rdog={snoopy,marmaduke,...} because these are constant terms

• they need to be the objects in U that are denoted by theose terms, e.g. Rdog={u1,u2...} if d('snoopy')=u1,
d(marmaduke')=u2, for u1,u2U

• for n-ary predicates, it is the set of n-tuplesUxU..xU that satisfies it

• note: the equality binary predicate, =, is always implicitly defined in any model as REq={<o1,o1 >,<o2,o2>...}
for all oiU7/27/2024 16

Semantics of FOL

• note: there are usually many, many models that could represent the
KB

• although this sounds abstract, think of a model as an "envisionment"
of what the KB describes (also known as an "interpretation")

7/27/2024 17

Example of a Model

• KB={king(john),evil(john),ruler(john,England, interval(1189,1199)),

• brother(john,Richard),kick(john,leftLegOf(Richard), person(john),person(richard),

• x,y brother(x,y)→brother(y,x),

• x king(x)→y crown(y)^onHead(x,y) }

7/27/2024 18

• model=<U,D,R>

• U=<a,b,c,d,e,f,t1,t2,i,> anonymous object ids

• D: denotations={
• constants:

{'john'→c,'richard'→a,'England'→f,1189→t1,
1199→t2}

• functions:
• leftLegOf(.): {a→d, c→ e; b,d,e,f,t1,t2,i→}
• interval(.,.): {<t1,t2>→i; all others <u,v>→}

• R: relations for each predicate:
• Rbrother={<a,c>,<c,a>}
• Revil={<c>} ; Rcrown = {}
• Rruler={<c,f,i>}
• Rperson={<c>,<a>}kick

a

b

ed

c

f

t1 t2 i

'England'
'1189'
'1199'

it is helpful to
have a 'null'
object

Sematics of FOL

• there are other models...
• with more (unmentioned objects)
• where richard also has a crown
• where richard also kicks john
• where the crown has a brother...

• but
• some models are not consistent with the KB
• for example, if john was richard's brother, but richard was not john's brother,

i.e. <a,c>Rbrother but <c,a> Rbrother

• the reflexive axiom for brother constrains which models satisfy the KB
• in fact, models with Rbrother={<a,c><c,a>,<b,e>,<e,b>} are OK too

7/27/2024 19

FOL Truth Conditions

• remember in Prop Log, we used truth tables to evaluate the truth value of
any sentence, given a model (composed ground-up from propositions)

• In FOL, if m=<U,D,R> (and there are no free vars in sub-sentences P and Q)
then:
• sat(m,pred(<t1,...,tn>)) iff <d(t1),...,d(tn)>Rpred

• sat(m,s) iff sat(m,s) is false
• sat(m,P^Q) iff sat(m,P) and sat(m,Q)
• sat(m,PvQ) iff sat(m,P) or sat(m,Q)
• sat(m,P→Q) iff sat(m,P) or sat(m,Q)
• sat(m,x P(x)) iff for every oU, sat(m,P(x/o)) where x is substituted by o
• sat(m,x P(x)) iff for some oU, sat(m,P(x/o)) where x is substituted by o
• for any sentence P(...x...) containing x

7/27/2024 20

Semantics of FOL

• using the truth conditions, you should be able to prove that:
• x P(x) x P(x) (semantically equivalent)

• x P(x) x P(x)

• you have to show this holds for all models

7/27/2024 21

Entailment

• this is the key idea underlying inference
• entailment = “logical consequence” of a KB

• a╞b iff all models of a also satisfy b (same as in Prop Log)

• the problem is that there are many more models in FOL (possibly
infinite, possibly uncountable) (not just 2n)

• (a bit of related theory that you don't need to know...)

• Lowenheim-Skolem Theorem (paraphrased): For any finite, consistent
set of first-order sentences, there always exists models of infinite size

7/27/2024 22

Inference in FOL

• unlike Prop Log, we can’t do model-checking (because the number of
models is not finite)

• thus we NEED to use sound rules of inference to show that a sentence
is entailed purely by syntactic manipulation

• most of the ROI from Prop Log carry over to FOL

• there are some new rules (e.g. related to quantifiers)

• the main new concept is unification, for dealing with variable when
doing pattern matching (e.g. of sub-sentences)

7/27/2024 23

Inference in FOL

7/27/2024 24

ROI from this... derive this...

AndElimination (AE) A^B A

AndIntroduction (AI) A, B A^B

OrIntroduction A, B AvB

Commutativity A^B B^A

Distributivity Av(B^C)
A^(BvC)

(AvB)^(AvC)
(A^B)v(A^C)

DoubleNegationElim (DN) ¬¬A A

DeMorgan’s Laws (DM) ¬(AvB)
¬(A^B)

¬A^¬B
¬Av¬B

ImplicationElimination (IE) A→B ¬AvB

contraposition A→B ¬B→¬A

Modus Ponens (MP) A, A→B B

Modus Tolens A→B, ¬B ¬A

Resolution AvB, ¬AvC BvC

Universal Instantiation x P(x) P(c) for any const c

Existential Instantiation x P(x) P(c) for NEW const c

these work the
same in FOL as
in Prop Log

these need to be
adapted to handle
variables

new rules

Inference in FOL

• 2 new ROI
• these can be used to make ‘ground sentences’, or versions of quantified

sentences with variable replaced by specific constants

• Universal Instantiation (UI)
x P(x) any sentence P containing x

P(c) where variable x is replaced with any constant c

• example:

{x parent(x)→y child(y,x)}

parent(homer) →y child(y,homer)

parent(fido) →y child(y,fido)

parent(ReliantStadium) →y child(y,ReliantStadium) // nonsense, but still true

7/27/2024 25

Inference in FOL

• Existential Instantiation (EI)
x P(x) any sentence P containing x
P(c) where variable x is replaced with any new constant c that does not
appear anywhere else in the KB
• c is called a ‘skolem constant’; it is like introducing an anonymous name for

the object

• example:
• {x car(x)^owns(john,x)} Ⱶ {car(car57)^owns(john,car57)}
• where car57 is a made-up new symbol denoting the thing that exists
• if you use any existing symbol, it doesn’t work: owns(john,the_alamo)
• in LISP, there is a ‘gensym’ function to create new symbols:

owns(john,_X454912)

7/27/2024 26

Unification

• MP and Reso involve pattern matching

• need to extend them to handle variables

• example:
• KB = {x dog(x)→mammal(x), dog(fido) }

• we want to conclude KB╞ mammal(fido) by MP, but technically, ‘dog(fido)’ does
not match the antecedent ‘dog(x)’

• however, they would match if ‘x’ were substituted by ‘fido’

7/27/2024 27

Unification

• a variable-substitution list is a mapping of variables to terms,
Var Ⱶ> Term

• example: u={X/fido}
• vars can map to constants, other vars, or functions
• u={X/fido , Y/snoopy , U/V , Z/sqrt(2) , R/f(P,Q) , M/mother(bill)}

• a unifier of 2 expressions P and Q is a substitution-list that makes P and Q
syntactically identical
• P=dog(X), Q=dog(fido),
• u={X/fido},
• P’=subst(u,P)=dog(fido),
• Q’=subst(u,Q)=dog(fido),
• hence P’=Q’

7/27/2024 28

Unification

• another example:
• P=eats(X,dogfood); Q=eats(fido,Y)

• unify(P,Q)=u where u={X/fido,Y/dogfood}

• subst(u,P)=subst(u,Q)=eats(fido,dogfood)

• another example:
• P = gives(bill,mother(bill),B,T,V) Q = gives(P,Q,present,R,V)

• 3 alternative unifiers:

• u1={P/bill, Q/mother(bill), B/present, T/R} // don’t need to bind V

• u2={P/bill, Q/mother(bill), B/present, T/R,V/3} // also works, but not necessary

• u3={P/bill, Q/mother(bill), B/present, R/S, T/S} // also works, variable renaming

7/27/2024 29

Unification

• negative examples that do not unify:
• no substitution will make these identical; i.e. unify(P,Q)=fail

• P=loves(bill,mother(bill)), Q=loves(X,X)

• P=move(blockA,stack1,X), Q=move(Y,X,stack2)

• P=lessThan(6,7), Q=lessThan(X,succ(X))

• P=match(X,X), Q=match(Y,f(Y))
• after binding X to Y, then X cannot be bound to f(X) which contains it

• most-general unifier (MGU) of P and Q
• the unifier that makes the least commitments (no unnec. variable bindings)

• the MGU always exists and is unique (modulo variable renaming)

7/27/2024 30

Unification Algorithm

• given 2 expressions (FOL predicates or sentences), how to determine
whether they are unifiable, and if so, what is the MGU?

• the gist of the algorithm:
• imagine P and Q as parse trees

• start with an empty substitution list and add variable bindings as you go

• do a left traversal of the parse trees

• whenever you see a variable in one tree

• check to see if it is already bound

• if not bind it to the corresponding subtree in the other expression

7/27/2024 31

Unification Algorithm

7/27/2024 32

• the algorithm treats each
expression as a nested list, like
“[loves fido [owner fido]]”,
which is a list of 3 terms, the
last of which is a list of 2 terms

• (like S-expressions)
• the algorithm is recursive; if it

can match element i in each
list, it proceeds with trying to
match elements i+1

• UnifyVar subroutine tries to
add a binding of var to x in the
current substitution list

• first, it checks of var or x
already have substitutions

• it also checks that var does not
occur inside of x, e.g. can’t
bind Z to f(Z)

Unification Algorithm

• P = on(X,Y,S)^clear(X,do(A,T))

• Q = on(a,b,do(puton(a,b),state1))^clear(Z,S)

• u={X/a , Y/b , Z/a , S/do(puton(a,b),state1) , A/puton(a,b) , T/state1 }

• subst(u,P) = on(a,b,do(puton(a,b),state1))^clear(a,do(puton(a,b),state1))

7/27/2024

^
on clear

X Y S X do

A T

^
on clear

a b do Z S

puton state1

a b

this example describes
block a on block b in situation S,
which is the successor of doing
a puton action in a predecessor state T

in this example, capital letters are variables and lower-case are constants

Unification Algorithm

• P = on(X,Y,S)^clear(X,do(A,T))

• Q = on(a,b,do(puton(a,b),state1))^clear(Z,S)

• u={X/a , Y/b , Z/a , S/do(puton(a,b),state1) , A/puton(a,b) , T/state1 }

• subst(u,P) = on(a,b,do(puton(a,b),state1))^clear(a,do(puton(a,b),state1))

7/27/2024

^
on clear

X Y S X do

A T

^
on clear

a b do Z S

puton state1

a b

u={X/a}
u={X/a, Y/b}
u={X/a, Y/b,

S/do(puton(a,b),state1)}

Unification Algorithm

• P = on(X,Y,S)^clear(X,do(A,T))

• Q = on(a,b,do(puton(a,b),state1))^clear(Z,S)

• u={X/a , Y/b , Z/a , S/do(puton(a,b),state1) , A/puton(a,b) , T/state1 }

• subst(u,P) = on(a,b,do(puton(a,b),state1))^clear(a,do(puton(a,b),state1))

7/27/2024

^
on clear

X Y S X do

A T

^
on clear

a b do Z S

puton state1

a b

u={X/a, Y/b,
S/do(puton(a,b),state1),
Z/X}

“substitute through X to a”
u={X/a, Y/b,

S/do(puton(a,b),state1),
Z/a}

Unification Algorithm

• P = on(X,Y,S)^clear(X,do(A,T))

• Q = on(a,b,do(puton(a,b),state1))^clear(Z,S)

• u={X/a , Y/b , Z/a , S/do(puton(a,b),state1) , A/puton(a,b) , T/state1 }

• subst(u,P) = on(a,b,do(puton(a,b),state1))^clear(a,do(puton(a,b),state1))

7/27/2024

^
on clear

X Y S X do

A T

^
on clear

a b do Z S=do

puton state1 puton state1

a b a b

u={X/a, Y/b,
S/do(puton(a,b),state1),
Z/a, A/puton(a,b),
T/state1}

Generalized Modus Ponens (GMP)

• from {P’, ...P→Q} derive Q’=subst(u,Q) where u=unify(P,P’)

• in other words...
• if P’ unifies with the antecedents of the rule, where u is the unifier, then derive the

consequent, but apply the unifier to it

• example 1:
X,Y cat(X)^mouse(Y)→chase(X,Y)
cat(scratchy)^mouse(itchy)
chase(scratchy,itchy) using u={X/scratchy, Y/itchy}

• example 2:
M loves(M,M)→narcissist(M)
loves(fonzie,fonzie)
narcissist(fonzie) using u={M/fonzie}
note - this does not work for loves(joanie,chachi), does not unify with loves(M,M)

7/27/2024 37

Natural Deduction Proofs in FOL

7/27/2024 38

• It is a crime for an American to sell weapons to a hostile nation.

1. X,Y,Z american(X)weapon(Y)hostile(Z)sells(X,Y,Z)→criminal(X)

• Nono has some missiles.

2. B owns(nono,B)missile(B)

• All of Nono’s missiles were sold to it by Colonel West.

3. C owns(nono,C)missile(C)→sells(west,C,nono)

• Missiles are weapons.

4. D missile(D)→weapon(D)

• An enemy of America counts as “hostile”.

5. E enemy(E,america)→hostile(E)

• The country Nono is an enemy of America.

6. enemy(nono,america)

• Colonel West is an American.

7. american(west)

Natural Deduction proof in FOL (with unifiers)

8. hostile(nono) [MP,5,6] ={E/nono}

9. owns(nono,m1)missile(m1) [ExInst ,2] ={B/m1} skolem constant

10. missile(m1) [AndElim,9]

11. weapon(m1) [MP, 10,4] ={D/m1}

12. sells(west,m1,nono) [MP, 3,9] ={C/m1}

13. american(west) ^ weapon(m1) ^ hostile(nono) ^ sells(west,m1,nono)
[AndIntro, 7,8,11,12]

14. criminal(west) [MP,1,13] ={X/west,Y/m1,Z/nono}

(From previous page…)
1. X,Y,Z american(X)weapon(Y)hostile(Z)sells(X,Y,Z)→criminal(X)

Generalized Resolution

• from {PvQ, ¬P’vR} derive Q’vR’=subst(u,QvR) where u=unify(P,P’)

• in other words...
• if P and P’ are two opposite literals that unify, and unifier is u, then combine

the remaining literals and apply the substitution

• example:
• clause 1: ¬dog(X) v mammal(X)

• clause 2: ¬mammal(Y) v animal(Y)

• resolvent(P,Q): ¬dog(Y) v animal(Y) after applying u={X/Y}

7/27/2024 41

Resolution

• generalized resolution - with unifiers

...in FOL

()

...in FOL

find a pair of clauses that are unifiable
e.g Ci=¬pineTree(P) v plant(P)

Cj=pineTree(christmasTree29)
they unify, provided P=christmasTree29

apply unifier to remaining literals to generate
the “resolvent”:e.g. plant(christmasTree29)

don't forget to
negate the query

termination: we are looking to generate
the empty clause

7/27/2024 46

KB converted to CNF

(negated query)

clauses derived by resolution

{x/West}

{y/M1}

{x/y}

{x/M1,z/Nono}

(empty clause)

other possible resolvents:

weapon(M1)

owns(nono,N1) v sells(west,M1,nono)

missle(M1) v sells(west,M1,Nono)

Resolution Strategies (Search Heuristics)

• Unit preference
• choose pairs of clauses where one of them is a single literal
• why? because will reduce length of other clause

• Set of Support
• initially identify a subset of clauses likely to contain the inconsistency (e.g. the

negated query)
• with each iteration, choose one of the clauses from SOS, and add resolvent to

SOS
• example: in Wumpus World, focus only on clauses involving rooms (x,y)

where x and y are restricted to 1-3
• generates "goal-directed proofs", without deriving a lot of irrelevant

conclusions from a large KB

Resolution Strategies

• Input resolution
• always choose one of the clauses from the Input (KB or facts) - never resolve 2

derived clauses

• restricted space of proof trees with a "spine" (see Col. West example)

• efficient, but not complete (except for Horn clause KBs)

• Linear resolution
• a variant of Input resolution

• allow clauses to be resolved if one of them is in Input, or if one is an ancestor
of the other

• complete

Completeness of Resolution
• Recall that Reso in Prop Logic is complete - because of Ground

Resolution Theorem:
• If a set of Prop clauses S is unsatisfiable, the empty clause is in the

Resolution Closure, so there exists a finite sequence of resolution steps
that will generate the empty clause □

• To prove this for FOL, we need to take unification into account
(for variables)

• Herbrand's Theorem:
• If a set of FOL clauses S is unsatisfiable, then there exists a finite set of

ground instances that is unsatisfiable

• combine this with the Ground Resolution Theorem and the
Lifting Lemma to show that □ can be derive from the original
clauses S (with variables)

for example: think of converting
 x missle(x) and y ¬missile(y) v weapon(y)
to: missile(m1) and ¬missile(m1) v weapon(m1)

Completeness of Resolution

• Herbrand Universe: set of all
constants and functions of
constants

• a,b,c,f(a),f(b),f(f(a))...

• Herbrand base: set of all
ground clauses made by
using objects from Herbrand
Universe as arguments

• dog(a)→mammal(a)
• dog(b)→mammal(b)
• dog(f(a))→mammal(f(a))
• ...

• Lifting Lemma: once you
have the structure of a proof
of □ using ground sentences,
you can put the variables
back in to the same proof
structure

50

Illustration of Herbrand's Theorem
• Consider the FOL theory for Col West:

1. X,Y,Z
american(X)weapon(Y)hostile(Z)sells(X,Y,Z)→criminal(X)

2. B owns(nono,B)missile(B)

3. C owns(nono,C)missile(C)→sells(west,C,nono)

4. D missile(D)→weapon(D)

5. E enemy(E,america)→hostile(E)

6. enemy(nono,america)

7. american(west)

• We want to show KB|=criminal(west) by Resolution. Can we
count on a derivation of by a finite number of steps?

7/27/2024 51

• Herbrand says the FOL KB is equivalent to a collection of ground
sentences where exist. vars are skolemized and univ. vars are
replaced by all possible constants...

4. // D missile(D)→weapon(D)
missle(west)→weapon(west)
missle(nono)→weapon(nono)
missle(america)→weapon(america)
missle(m1)→weapon(m1) *

5. // E enemy(E,america)→hostile(E)
enemy(west,America)→hostile(west)
enemy(nono,America)→hostile(nono) *
enemy(america,America)→hostile(america)
enemy(m1,America)→hostile(m1)

1.// we would have all combinations of X,Y,Z...
american(m1)weapon(m1)hostile(m1)sells(m1,m1,m1)→cri
minal(m1)
...
american(west)weapon(m1)hostile(nono)sells(west,m1,non
o)→criminal(west) *
...

• Most of these are irrelevant and silly, but they exist in principle.
• Our proof only relies on only selected ground instances (marked

by asterisks)

Illustration of Herbrand's Theorem

7/27/2024 52

• select just the right ground sentences
(and add negated query):

american(west)weapon(m1)hostile
(nono)sells(west,m1,nono)
→criminal(west)

owns(nono,m1)missile(m1)

owns(nono,m1)missile(m1)
→sells(west,m1,nono)

missile(m1)→weapon(m1)

enemy(nono,america)→hostile(nono)

enemy(nono,america)

american(west)

¬criminal(west)

• propositionalize:

american_westweapon_m1hostile
_nonosells_west_m1_nono
→criminal_west

owns_nono_m1missile_m1

owns_nono_m1missile_m1
→sells_west_m1_nono

missile_m1→weapon_m1

enemy_nono_america→hostile_nono

enemy_nono_america

american_west

¬criminal_west

• add negated query and convert to CNF:

¬american_west v ¬weapon_m1 v
¬hostile_nono v
¬sells_west_m1_nono v criminal_west

owns_nono_m1

missile_m1

¬owns_nono_m1 v ¬missile_m1 v
sells_west_m1_nono

¬missile_m1 v weapon_m1

¬enemy_nono_America v
hostile_nono

enemy_nono_america

american_west

¬criminal_west

propositionalization:
change FOL sentences into Propositional Logic.
replace predicates with propositional symbols.

• do resolution proof in propositional logic:
1. ¬american_west v ¬weapon_m1 v ¬hostile_nono v
¬sells_west_m1_nono v criminal_west
2. owns_nono_m1
3. missile_m1
4. ¬owns_nono_m1 v ¬missile_m1 v sells_west_m1_nono
5. ¬missile_m1 v weapon_m1
6. ¬enemy_nono_America v hostile_nono
7. enemy_nono_america
8. american_west
9. ¬criminal_west
10. ¬missile_m1 v sells_west_m1_nono [res, 2&4]
11. sells_west_m1_nono [res, 3&10]
12. hostile_nono [res, 6&7]
13. weapon_m1 [res, 3&5]
14. ¬weapon_m1 v ¬hostile_nono v ¬sells_west_m1_nono v
criminal_west [res, 8&1]
15. ¬hostile_nono v ¬sells_west_m1_nono v criminal_west
[res, 14&13]
16. ¬sells_west_m1_nono v criminal_west [res, 15&12]
17. criminal_west [res, 16&11]
18. [res, 17&9]

Illustration of Herbrand's Theorem

53

• Lifting the same proof structure back to FOL (in CNF) with
unification:

1. ¬american(X) v ¬weapon(Y) v ¬hostile(Z) v ¬sells(X,Y,Z) v
criminal(X)
2 owns(nono,m1)
3. missile(m1)
4. ¬owns(nono,C) v ¬missile(C) v sells(west,C,nono)
5. ¬missile(D) v weapon(D)
6. ¬enemy(E,america) v hostile(E)
7. enemy(nono,america)
8. american(west)
9. ¬criminal(west)
10. ¬missile(m1) v sells(west,m1,nono) [res, 2&4] {C/m1}
11. sells(west,m1,nono) [res, 3&10]
12. hostile(nono) [res, 6&7] {E/nono}
13. weapon(m1) [res, 3&5] {D/m1}
14. ¬weapon(m1) v ¬hostile(Y) v ¬sells(west,Y,Z) v
criminal(west) [res, 8&1] {X/west}
15. ¬hostile(Z) v ¬sells(west,m1,Z) v criminal(west) [res,
14&13] {Y/m1}
16. ¬sells(west,m1,nono) v criminal(west) [res, 15&12],
{Z/nono}
17. criminal_west [res, 16&11]
18. [res, 17&9]

Complexity of Resolution

• Recall that showing entailment by Resolution Refutation proofs in
Propositional Logic is NP-complete

• FOL is only semi-decidable
• if entailed (a╞ b), we could prove it (in theory, Herbrand’s Theorem)

• if b is not entailed, cannot guarantee we can prove it (because of Gödel's
Incompleteness Theorem)

• thus we say that Inference in FOL is "refutation-complete"

• computational complexity could be much worse than NP (depending
on syntactic restictions on variables, functions, operators...)
• e.g. satisfiability of quantified Boolean formulas (QBF) is PSPACE-complete

Forward-Chaining in FOL

• it works like it did in PropLog, but now we have to do unification
when matching antecedents in rules, and keep track of variable
bindings

• implementations
• Rete algorithm: efficient way to store KB as a graph and determine which

rules can fire, activating other nodes...

• JESS – Java-based system in which you can build applications that use FC to
make intelligent decisions

7/27/2024 55

Forward Chaining Systems

• also known as Production Systems or Expert Systems
• e.g. diagnosis systems for medical, financial/corporate, or mechanical

systems

• also used for cognitive models of reasoning (e.g. ACT, SOAR)
• model of long-term and short-term memory, with activation of concepts by

association

• one advantage of ES is that they can generate explanations of their
recommendations (i.e. a proof-tree showing the rules and facts that
were used to support their conclusions)

• restriction: knowledge based must consist of facts and conjunctive
rules (including universal quantifiers but not existential)

Conjunctive Rules in FOL

• many KBs have rules of this form

• x,y [z P(..)^Q(..)^R(..)]→S(..)
• LHS (antecedents) has to be a conjunction of positive literals (no negations)

• Universally quantified variables (appear in both antecedents and consequent)

• LHS can also have extra variables (z), typically existentially quantified

• x [z int(x)^int(z)^factor(z,x)^1<z<x]→compositeNumber(x)

• remember, conjunctive rules are equivalent to Definite Clauses
• convert conjunctive rule to CNF (note the scoping during Impl. Elim.!)

57

x,y [z P(..)^Q(..)^R(..)]→S(..)
x,y ¬[z P(..)^Q(..)^R(..)] v S(..)
x,y [z ¬(P(..)^Q(..)^R(..))] v S(..)
x,y [z ¬(P(..)^Q(..)^R(..))] v S(..)
x,y [z ¬P(..) v ¬Q(..) v ¬R(..)] v S(..)
x,y,z ¬P(..) v ¬Q(..) v ¬R(..) v S(..) - definite clause, 1 pos. lit.

Note: standardize your variable apart between rules.
If you use 'X' as a variable in multiple rules, replace each
instance with a unique version (subscript).
For example:

x dog(x)→mammal(x)
x cat(x)→mammal(x)

becomes
x1 dog(x1)→mammal(x1)
x2 cat(x2)→mammal(x2)

That way, there will be less confusion during unification.

for each rule, like x dog(x)→mammal(x)
replace with unique variable names, to
avoid confusion with use of same variable in
other rules, x101 dog(x101) → mammal(x101) "agenda";

initialize with
known facts;
add new facts
as they are
inferred

Forward Chaining Example IN FOL

1. american(X)weapon(Y)hostile(Z)sells(X,Y,Z)→criminal(X)

2. owns(nono,C)missile(C)→sells(west,C,nono)

3. missile(D)→weapon(D)

4. enemy(E,america)→hostile(E)

5. owns(nono,m1)

6. missile(m1)

7. enemy(nono,america)

8. american(west)

7/27/2024 59

9. weapon(m1) // rule 3 fired, u={D/m1}
10. hostile(nono) // rule 4 fired, u={E/nono}
11. sells(west,m1,nono) // rule 2, u={C/m1}
12. criminal(west) // rule 1 fires

agenda:
initialized
with facts

Because we had to convert KB
to definite clauses,
B owns(nono,B)missile(B)
had to get made into a ground
sentence by skolemization (EI):
owns(nono,m1)^missile(m1)

for a particular missle m1

Example: Kinship KB (Simpsons characters)

7/27/2024 60

female(lisa)
female(marge)
male(bart)
male(homer)
male(tod)
male(rod)
male(flanders)

parent(bart,homer)
parent(bart,marge)
parent(lisa,homer)
parent(lisa,marge)
parent(rod,flanders)
parent(tod,flanders)

food for thought: define rules for 'grandfather', 'cousin', 'aunt', 'related'...

x,y parent(x,y)^male(y)→father(x,y)

x,y parent(x,y)^female(x)→daughter(y,x)

x,y [z parent(x,z)^parent(y,z)→sibling(x,y)

interpret these as "father of x is y" etc.

Example: Kinship KB (Simpsons characters)

7/27/2024 61

female(lisa)
female(marge)
male(bart)
male(homer)
male(tod)
male(rod)
male(flanders)

parent(bart,homer)
parent(bart,marge)
parent(lisa,homer)
parent(lisa,marge)
parent(rod,flanders)
parent(tod,flanders)

x,y parent(x,y)^male(y)→father(x,y)
x,y parent(x,y)^female(x)→daughter(y,x)
x,y [z parent(x,z)^parent(y,z)→sibling(x,y)

What new facts can we generate by Forward Chaining?
• find all combos of facts matching LHS of rules (try all var bindings)
• parent(bart,homer)^male(homer)→father(bart,homer)

father(bart,homer)
father(lisa,homer)
father(rod,flanders)
father(tod,flanders)
daughter(marge,lisa)
daughter(homer,lisa)

parent(bart,homer)^parent(lisa,homer)->sibling(bart,lisa)
sibling(bart,lisa)
sibling(lisa,bart)
sibling(rod,tod)
sibling(tod,rod)

what about sibling(bart,bart)?
to prevent this, add xy to the rule

Forward-Chaining System Architecture

WORKING

MEMORY

RULE

BASE

EXECUTION

ENGINE

INFERENCE

ENGINE

PATTERN

MATCHER

AGENDA

Rete Algorithm
• representation of knowledge as a network, where

nodes represent literals (predicates)

• rules link antecedent nodes to consequents

• start by activating nodes corresponding to initial
facts

• uses efficient indexing of predicates to determine
which rules can fire

• in each iteration, determine which rules can fire

• pick a rule (that can fire) with highest priority and
modify the network

• rules with variables generate new instances of nodes
for consequents with distinct variable bindings

• run until quiescence

• produces all the consequences of the facts
https://en.wikipedia.org/wiki/Rete_algorithm

alpha nodes essentially store lists of facts (tuples)
matching the pattern of an antecedent in a rule

beta nodes perform "joins" of alpha nodes that will
activate a rule, producing specifc new facts (tuples)

Conflict Resolution

• a common issue in Forward Chaining that has to be dealt with

• What happens when two rules can fire that have opposite effects?
• some rules can retract antecedents of other rules

• e.g. one rule says assert(P) and the other says retract(P)

• assign numeric priorities to rules – highest wins

Conflict Resolution

• Subsumption Architecture (Rodney Brooks)
• intelligent behavior in robots can be produced in a decentralized way by a

lot of simple rules interacting

• divide behaviors into lower-level basic survival behaviors that have higher
priority, and higher-level goal-directed behaviors

• hierarchical design: put rules in different layers based on essentiality

• example: 6-legged robot ants learning to walk
• lower-level rules: obstacle avoidance, safety

• medium-level rules: coordination, balance

• higher-level rules: goal-seeking

• i.e., obstacle-avoidance actions can override goal-seeking actions

Ghenis:
https://en.wikipedia.org/wiki/Genghis_(robot)

Conflict Resolution

• Truth Maintenance Systems (TMS, section 10.6.2)
• if system generates conflicting inferences from new observations, must find

minimal set of consistent beliefs
• like do(moveForward) and do(moveForward),

• or status(urgent) and status(urgent)

• or clear(B) and on(A,B)

• conflicts could be caused by:
• ambiguity from sensors

• incomplete information (occlusion, inaccessibility)

• retractions of previous beliefs

• competing goals

• TMSs have algorithms for finding minimal sets of consistent beliefs

7/27/2024 67

CLIPS/JESS - implementation of FC using Rete

• C-Language Integrated Production System
• developed at NASA

• open source: http://clipsrules.net/

• how to download, compile, and run:
• https://people.engr.tamu.edu/ioerger/CLIPS_demo.docx

• can interface reasoning with GUI, sensors, robot controllers, etc.

• JESS - Java Expert System Shell
• Java implementation of Forward-Chaining and Rete algorithm

• developed by Ernest Friedman-Hill at Sandia National Labs

• http://alvarestech.com/temp/fuzzyjess/Jess60/Jess70b7/docs/index.html

• requires license? JESS Lives (2006):
https://www.sandia.gov/labnews/2006/12/08/061208-3/

(defrule library-rule-1

(book (name ?X)

(status late)

(borrower ?Y))

(borrower (name ?Y)

(address ?Z))

=>

(send-late-notice ?X ?Y ?Z))

CLIPS Example

• Wine Expert - https://github.com/smarr/CLIPS/blob/master/examples/wine.clp

• expert system for recommending wine pairings with food

7/27/2024 70

(rule (if has-sauce is yes and sauce is spicy) (then best-body is full))

(rule (if tastiness is delicate) (then best-body is light))

(rule (if has-sauce is yes and sauce is cream)
(then best-body is medium with certainty 40 and best-body is full with certainty 60))

(rule (if main-component is-not fish and has-sauce is yes and sauce is tomato)
(then best-color is red))

Backward-Chaining in FOL

• it works like it did in PropLog, but now we have to do unification
when matching goals on the goal stack, and keep track of variable
bindings

• this is the basis of how Prolog works (BC in FOL)

7/27/2024 71

goal q’ matches
consequent of
rule q, or
goal matches a
fact (where fact
is like a rule with
no antecedents,
i.e. n=0

1. X,Y,Z american(X)weapon(Y)hostile(Z)sells(X,Y,Z)→criminal(X)

2a. owns(nono,m1) // skolemized to make it definite-clause KB

2b. missile(m1)

3. C owns(nono,C)missile(C)→sells(west,C,nono)

4. D missile(D)→weapon(D)

5. E enemy(E,america)→hostile(E)

6. enemy(nono,america)

7. american(west)

goal stack (left is top) unifier annotation

[criminal(west)] ={} initialize with query

[american(west), weapon(Y), sells(west,Y,Z), hostile(Z)] ={X/west} replace criminal with ants of rule 1.

[weapon(Y), sells(west,Y,Z), hostile(Z)] ={X/west} pop american by fact 6

[missile(Y), sells(west,Y,Z), hostile(Z)] ={X/west, D/Y} pop weapon, push missile, rule 4

[sells(west,m1,Z), hostile(Z)] ={X/west, D/Y, Y/m1} pop missile by fact 2b

[owns(nono,m1),missle(m1),hostile(nono)] ={X/west, D/Y, Y/m1, C/m1, Z/nono} match sells to conseq of rule 3

[missle(m1),hostile(nono)] ={X/west, D/Y, Y/m1, C/m1, Z/nono} pop owns by fact 2a

[hostile(nono)] ={X/west, D/Y, Y/m1, C/m1, Z/nono} pop missile by fact 2b

[enemy(nono,America)] ={X/west, D/Y, Y/m1, C/m1, Z/nono, E/nono} match hostile to conseq of 5; replace with enemy

 (empty stack) ={X/west, D/Y, Y/m1, C/m1, Z/nono, E/nono} pop enemy, since matches fact 6, leaving empty stack!

(accumulated var bindings)

and
{C/M1}

Example: Kinship KB (Simpsons characters)

7/27/2024 74

female(lisa)
female(marge)
male(bart)
male(homer)
male(tod)
male(rod)
male(flanders)

parent(bart,homer)
parent(bart,marge)
parent(lisa,homer)
parent(lisa,marge)
parent(rod,flanders)
parent(tod,flanders)

x,y parent(x,y)^male(y)→father(x,y)
x,y parent(x,y)^female(x)→daughter(y,x)
x,y [z parent(x,z)^parent(y,z)→sibling(x,y)

What can we prove by Backward Chaining?
• remember to track variable bindings with unifiers!

query = father(lisa,homer)
goal stack:
[father(lisa,homer)]
// push antecedents
[parent(lisa,homer),male(homer)] u={x/lisa,y/homer}
// pop, since known fact
[male(homer)]
// pop, since known fact
 empty stack

query = sibling(rod,tod)
goal stack:
[sibling(rod,tod)]
// push antecedents
[parent(rod,z),parent(tod,z)] u={x/rod, y/tod}
// pop, since unifies with parent(rod,flanders)
[parent(tod,flanders) u={x/rod, y/tod, z/flanders}
// pop, since known fact
 empty stack

Back-chaining

• Don’t forget that it is possible that a proof could fail
• this happens when goal stack cannot be reduced to empty
• there could be subgoals that are not known to be facts, and cannot be proved by any

rules
• this could happen when the query is NOT entailed

• Don’t forget that, like BC in Propositional Logic, it is possible that
backtracking might occur
• suppose there are 3 rules that can be used to prove a subgoal P (i.e. pop P off stack,

and it matches the RHS of 3 rules)
• this represents a choice-point
• BC-FOL algorithm (see pseudocode) tries first rule first, pushes antecedents onto

stack, makes recursive call to see if rest of goals on stack can be proved
• if recursion returns “fail”, then try pushing antecedents for second rule, and repeat...

7/27/2024 75

PROLOG

• PROLOG is an implementation of back-chaining in FOL.

• you can install PROLOG, and use it (by writing PROLOG programs) to
build Expert Systems for all kinds of applications.

7/27/2024 76

