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Game Search
• games are useful to study for AI because they represent adversarial 

environments
• the world state is not controlled solely by the agent
• the world state can change because of actions by other agents (players)
• different agents might have different objectives
• this can lead to competitive behavior, or cooperative behavior

• there are many different kinds of games
• simultaneous vs. sequential vs. iterated
• single-player, two-player, multi-player
• stochastic games with an element of chance
• complete vs. incomplete information (partially observable)
• also applies to economics: pricing of goods, auctions, contract negotiations...

• Of course, DeepBlue and AlphaGo are widely-recognized successes in AI, 
representing achievement of intelligent behaviour
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Sequential Games

• multiple steps – players take turns

• each player has a utility function

• ui(s) (where i is the player, and s is a game state)

• +1 for win; -1 for lose; 0 for draw (tic-tac-toe); 0 for non-terminal states

• money (poker)

• rewards for achieving goals - cost of actions or resources used

• simplest form: 2-player, 0-sum games
• Σi ui(s) = 0    or    u1(s) = -u2(s) 

• examples: tic-tac-toe, checkers, chess...
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Minimax Search

• in a 2-player, 0-sum game like tic-tac-toe, how can we decide what 
move to make?

• method 1: write a bunch of rules that encode a strategy

• method 2: use systematic search
• use look-ahead for each possible action to imagine what opponent response 

might be
• key idea: we can anticipate what move the opponent will make, because their 

utility is assumed to be the opposite of ours
• thus the opponent will change the game in the way that is best for them, 

which is worst for us
• recursion: of course, to simulate the opponent’s reasoning, they will have to 

consider our response to their response, and so on...
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Minimax Search

• recall that ui(s)=0 for non-terminal states

• label alternating levels in search tree as max nodes and min nodes

• define minimax value for each state s as follows:
ui(s) if s is a terminal state

minimax(s) = max { minimax(s’) for s’∈ succ(s) } if s is a max node 

min { minimax(s’) for s’∈ succ(s) } if s is a min node 

• decision at root node: argmax { minimax(s’) for s’∈ succ(s) } 
• i.e. choose the action that leads to the successor with highest score, which has the 

highest expected payoff
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Minimax Search
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double-recursion:
each function calls
the other
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representing player 1, 
who wants to maximize u1(s)

representing player 2, 
who wants to
maximize u2(s),
which is the same as
minimizing u1(s)



Minimax Search

• note: this only determines next move (by player 1)

• then player 2 chooses an action

• then we have to recompute the game tree from that state to decide 
the next move

• minimax does not determine the entire sequence of play; you cannot 
force the choices of the other player

• we assume the opponent will make optimal choices (for them)

• what happens if they make a sub-optimal move (e.g. a mistake)?
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Complexity of Game Search

• the problem with applying Minimax to most games is that the search 
space is too large
• estimates for chess: avg game=70 moves, avg branching factor=35, state 

space = ~3570 = ~10108

• so we can’t search all the way to leaves (end-games) where utility is defined 
to propagate the minimax values back up

• solution 1: use intelligent pruning to reduce the search space
• sometimes we can infer parts of the space that do not need to be searched
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α/β-pruning

• at each node, keep track of 2 additional values α, β (along with 
minimax value)
• α is the best possible value for any max node above so far (initially −∞)
• β is the best possible value for any min node above so far (initially +∞)

• as we process children, update these params
• at max nodes, update α: α=max{α, minimax(s’)} for each s’∈children(s)}

• at min nodes, update β: β=min{β,minimax(s’)} for each s’∈children(s)}

• pruning condition:
• at min nodes: when v<α (i.e. best choice of parent max node)

• at max nodes: when v>β (i.e. best choice of parent min node)

• equivalently: when interval of v at node no longer overlaps interval of parent
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(this example is for
a simplified version
of the alpha-beta pruning
algorithm where we
initialize minimax value v 
to the range [-∞,∞]
at every node (instead of
passing α and β in as 
parameters), and the 
pruning condition is
evaluated by checking
the overlap between the
range of each node and
it’s parent)
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max nodes update α prune if score becomes greater than upper-bound 
of parent’s interval, since parent would never 
choose this branch

min nodes update β
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Complexity of Game Search

• solution 2: use a depth-limit while searching a game tree
• need a board-evaluation function to assign scores to internal nodes 

(or non-terminal states, or non-end-games)
• the value estimates the probability of winning or expected payoff 

from each state (heuristically)
• the computer can then perform Minimax (possibly with α/β-

pruning) down to a fixed level, apply the board evaluation function, 
and propagate values upward

• choose depth limit based on time available (and CPU speed) 
• expressed as number of “ply” (moves, or levels)
• 2-6 ply (a few sec): rudimentary chess performance (amateur skill level)
• 6-10 ply (a few min): much better moves due to deeper search/look-ahead
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Board Evaluation Functions

• a board evaluation function must guess the value (probable outcome) 
of each state

• they are typically based on features

• examples from chess:
• piece differential (#PlayerPieces - #OpponentPieces)

• material value (pawn=1, knight/bishop=3, rook=5, queen=9)

• center control

• # of pieces threatened or constrained

• patterns or special arrangements of pieces
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Eval(s) = w1f1(s) + w2f2(s) + ... + wnfn(s)



In-class Exercise

• How would you design a 
board evaluation 
function for tic-tac-toe?

• Suppose that you were 
limited to a look-ahead 
of only 2 levels while 
doing minimax.
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Board Evaluation Functions

• problems with using board evaluation functions
• non-quiescence

• board evaluation function should only be applied to quiescent states, where the value 
has stopped changing (i.e. “converged”)

• if there have been large changes in value, extend the search to allow it to quiesce

• rather than enforcing a strict depth limit, can be non-uniform

• use a dynamic IS-CUTOFF(s) test

• horizon effect
• sometimes, enough dodging moves can be made to forestall a bad outcome so it occurs 

just beyond the depth limit (like moving a bishop back and forth to delay capture, or 
repeatedly checking the opponent’s king)

• delaying the inevitable – it might change our decision if we knew this

• hard to detect and mitigate
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DeepBlue

• developed by IBM

• achieved grandmaster rating in 1990’s

• defeated Gary Kasparov in 1997

• a supercomputer with custom ASICs for very fast α/β-Minimax search 
• 30-node IBM RS/6000 SP computer; 120 MHz and 1GB per proc.
• 16 “chess chips” on each node, for generating moves and computing a board 

evaluation function
• explored ~100 million moves/s, down to 10-12 ply (though non-uniform)

• included an end-game database (for example, once there are only 5 
pieces left, lookup optimal moves in a pre-computed table)

• What did we learn about Intelligence?
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(images from Wikipedia)







Connect4
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image obtained from 
https://en.wikipedia.org/wiki/Connect_Four

• pieces are dropped in vertical columns; 4-in-a-row wins the game
• here is an online app you can play around with: 

https://www.cbc.ca/kids/games/all/connect-4

• Challenge: Can you come up with a board evaluation function for playing 
Connect4?
• it would not be hard to implement this on the command line (similar to tic-tac-toe)
• the State Space is much larger, so you would have to use a depth cutoff in the 

Minimax search and apply a board evaluation function to incomplete states
• (try pausing the animation above and estimating the value of the state)
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Expectiminimax

• stochastic games – games with an element of 
chance (e.g. dice, cards...)
• examples: backgammon, yahtze...

• can we apply minimax search?
• yes, if we interleave min and max nodes with a 

level of chance nodes

• at chance nodes, the score is the weighted sum 
over the children, weighted by probability, i.e. 
“expected outcome”
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Expectiminimax(s) =
u1(s) if is a terminal node
max{Expectiminimax(s’)|s’∈succ(s)} if max node
min{Expectiminimax(s’)|s’∈succ(s)} if min node
Σs’∈succ(s) P(s’)⋅ Expectiminimax(s’) if chance node

a famous backgammon program called TDgammon 
(by Gary Tesauro) used Reinforcement Learning



Monte Carlo Tree Search (MCTS)

• instead of exhaustively exploring search tree, sample random paths (“rollouts”) all 
the way to terminal states (end-games with defined utility)

• the value of a state is taken as the statistical average outcome of trajectories passing 
through it (“back-propagate” outcomes)

• also keep track of n (# trial trajectories passing through each node) and variance (σ2) 
at each state to assess certainty
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(Sec 5.4)



Monte Carlo Tree Search (MCTS)

• think of MCTS as an alternative to manually creating a board evaluation 
function

• estimate quality of each state (prob of winning) by simulating random 
game trajectories (playouts)

• at each node, keep track of how many times it led to a win; more 
trajectories provide higher confidence

• can use these values to select children in minimax search

• select a node (game state) whose value is uncertain

• run simulation: play game to see outcome from that state

• back-propagation: update nodes along path with outcome
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Monte Carlo Tree Search (MCTS)
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• selection policy – which states could use more sampling?
• expansion vs. exploration

• is it better to refine value estimate at good nodes, or increase 
certainty of bad nodes?

• allow occasional sub-optimal choices for the sake of seeing how 
they turn out

• playout policy
• there are many choices about how to make moves during simulation

• just making subsequent random moves is not realistic

• it helps to define an initial strategy to play against, even if weak



Monte Carlo Tree Search (MCTS)

• using MCTS to learn strategy for Blackjack
• simulate >10,000 random games to learn policy
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H=hit
ST=stand
D=double-down

dealer’s card showing

total of
cards in
hand

expected prob.
of winning
for Hit, based
on mean of
rollouts

dealer’s card 
showing

total of
cards in
hand



AlphaGO

• GO is played with b/w stones on a 19x19 board
• search space much larger than chess (bran. fact. starts at 361)

• from Google DeepMind, 2017

• after decades of attempts by other AI programs, AlphaGO 
finally beat the human GO world champion

• learns from self-play (bootstrapping), >100,000 games

• trains a deep neural network (14 conv. layers) to 
represent a value function (reinforcement learning, 
MCTS)

• reached grandmaster rating after 21 days (176 GPUs)
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image from 
https://en.wikipedia.org/wiki/Go_(game)
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