
Iterative Improvement
CSCE 420 – Fall 2024

read: Sec. 4.1
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Iterative Improvement Search

• also known as Local Search

• maximize the “quality” of states, q(s) or value(s)
• note: this is different than path cost

• example: 8-queens
• can you place 8 queens on chess board such that none can 

attack each other?

• initial state: place all 8 queens randomly, one in each column

• q(s) = -(number of pairs of queens that can attach each other)
• use negative so higher is better; or modify algorithm to find state with 

minimum score (gradient descent)
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q(s)=0



Hill Climbing

• maintain only a single current state

• generate successors using operator, and pick best

• operator for 8-queens: move any queen to another row in the same 
column
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A sequence of iterations,
where the best queen is moved 
to a new position in her column 
that most reduces the number 
of overall conflicts.

No further improvements 
can be made.



Problems with Hill-Climbing

1. local maxima

2. plateau effect – when all neighbors have same score and you “lose 
the gradient”, even if not at top of hill 

3. ridge effect – all neighbors have same or lower score, even then 
there might be other close states that are better
• suppose only choices are to go N, S, E, or W, but ridge goes up NE; hence all 

steps go down sides of the ridge

• often related to limitations of the successor function; consider expanding it to 
generate more successors in neighborhood (e.g. combinations of 2 steps)
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direction of
increasing quality

top-down projection



Possible Solutions

• random restart HC

• stochastic HC – choose any successor that is better than current state, not 
always the best 
• you can’t just choose any random successor; must still bias the search upward 
• can this strategy really reduce risk of local minima?
• this idea leads to Simulated Annealing...

• provide memory of previous states
• HC only maintains 1 state: the current state
• perhaps we could remember previously expanded-but-not-explored nodes to allow 

some “back-tracking” if we get stuck at a local maximum
• this idea leads to Beam Search...

• allow multiple steps – also consider successors of successors; create new 
operators (macro operators) from combinations of 2 or 3 actions, expanding 
the number of successors; similar to look-ahead, or “gradient sampling”7/27/2024 6



Beam Search

• adding “memory” to Hill-Climbing
• comparison to Greedy Search: we used a frontier to keep track of all previously 

expanded-but-not-yet-explored states

• (another difference: Greedy sorts PQ by h(n), and HC chooses successors by q(n))

• however, this potentially has high space-complexity (exponential frontier size)

• is there a compromise?

• yes – keep track of the K best previous nodes (based on state quality q(n))

• this fixed-size array allows some back-tracking, even if not complete enough to 
explore the whole space (typically, beam size=10-100 nodes)

• thus, Beam Search could possibly back-track off of one hill and get onto another 
with a higher local maximum, even though it might fail to find the global max.
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BeamSearch(init,k)

beamarray[k]

beam.insert(init)

while True // or until beam empty, or reach max iterations...

// pop best node in beam (highest score at front)

currbeam[0]

for each child coperator(curr):

beam.insert(c)

beam.insert(node n)

do insertion sort

since beam is always presorted, scan the list to find where n 

fits, and shift the rest of the nodes down (the last one falls out 

of the beam)



note: something falls off end of beam (with lowest score) - it could be the kth

item in beam, or the new node if it is worse than everything currently in 
beam (e.g. score<21)

89  72  56  55  51  48  36  30  22  21 

new node=50

89  72  56  55  51  48  36  30  22  21 

89  72  56  55  51  48  36  30  22  21 

new node=50

89  72  56  55  51  50 48  36  30  22

89  72  56  55  51  48  36  30  22  21 

... new node=50

Quality q(n) of top K 
nodes:



7/27/2024 10

phase 1

• because this is a simple 1D space, all states have two neighbors
• usually, one of the neighbors has been recently visited, so we discard it
• phase 1: start at ‘s’; climb to local max at ‘p’ (hill 2)
• phase 2: when reach top of hill, the beam remembers these 2 nodes: [o,t]; start descending left slope of hill 2
• phase 3: there is a point where beam has both ‘l’ and ‘t’ in it [l,t]; start ascending hill 3 since ‘t’ is better
• phase 4: eventually, when reach ‘y’, resume search at ‘l’ and climb hill 1

i
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Simulated Annealing

• stochastic search

• choose next child randomly, but “bias it upward”

• always accept better states, and accept worse states probabilistically, 
proportional to how much lower the quality is
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AIMA, 4th ed.
(Fig 4.5)

AIMA, 3rd ed.
(correct)

(the exponent should be negative, 
but –DE/T>0 since DE<0)

(want to accept if next is higher than curr)

The algorithm in the 4th ed. of the textbook has 2 errors...



T=0.5

T=1

T=2

Simulated Annealing

• accept with prob = e-DE/T where DE=value(curr)-value(child)
• if child is only a little worse, DE is small, so accept with high prob

• if child is much worse, DE is large, and acceptance is less likely

• T (“temperature” controls) how loose or stringent we are
• in the limit T→∞: all backward steps are allowed

• in the limit T=0: no backward steps are allowed
this is analogous to “cooling” in 
materials like metal;
malleable at high 
temperatures, but gets locked 
into a lattice structure at low 
temperatures



Temperature schedules

• a critical part of SA is to start with a high temperature and gradually  
lower it

• this allows the search to sample many local maxima initially, but over 
time, it becomes more selective and climbs up the best hill it it can 
find

• linear, geometric (e.g. halving every 1000 iterations), exponential...

iterations

T

iterations

T

iterations

T

linear geometric exponential



Simulated Annealing

• application of SA to “solving” the Traveling 
Salesman Problem (TSP)
• actually, we can only hope to find approximately 

optimal solutions, because TSP is NP-hard

• tour with minimum total length 

• (Hamiltonian cycle: visit every node exactly once)

• example: Texas cities (pairwise connectable “as 
the crow flies”)



random tour, length=16,697 miles



greedy strategy A: 4,319 miles
join closest pair (Big Sky & Big Springs)
connect next closest city
repeat till all connected



greedy strategy B: 4,032 miles
join closest pair (Big Sky & Big Springs)
connect next closest pair of cities

(except cities already connected to 2 others)
repeat till all connected



Simulated Annealing

• representation for TSP (for complete graphs): a list of the nodes in 
any order (permutation)

• operators for TSP (for complete graphs)
• how to generate “variants” of any given tour (successor states)?

• there are many ways to do this

• choose a random subsequence and move it to another position

• choose a random subsequence and reverse it

A B C

D E

F G H

[A G E H D C F B]

A B C

D E

F G H

[A G C F E H D B]

A B C

D E

F G H

[A G D H E C F B]



state = list of cities (complete tour) (state space size = ?)
operators: 

A) pick 2 cities and swap them
B) pick a subsequence and reverse it
C) pick a subsequence and move to a new position in list



Simulated Annealing: 3,679 miles



Genetic Algorithms

• also known as Evolutionary Programming

• the unique aspects of GA Search are:
• maintain a population of multiple candidate states (parallel search, not just curr)

• mix-and-match states by recombination

• use fitness to select winners each round, akin to ‘natural selection’

• fitness(state) is a synonym for value(s) or quality(s)

• some GAs use ‘chromosomes’, which represent state as a bit string
• example: state of 8-queens is given by a list of 8 integers (0-7), which can be 

converted to a 24-bit string: 5,1,7,2,3,6,4,0 → 101001111010011110100000

• but chromosomes are not necessary, as long as states can be recombined
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Recombination or ‘cross-over’

• instead of an ‘operator’ to generate successors from states, use ‘recombination’ 
to combine parts of existing members of population

• for chromosomes, splice their strings at a random locations

• for other data types and states representation, use must define ‘cross-over’

• by selecting parents at random and recombining them, you sometimes get the 
best of both and produce and improved state

• food for thought: How would you perform recombination between 2 tours for the 
TSP to generate a child state?
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based on fitness



Genetic Algorithms

• there are many variations on GAs

• some include mutation
• make random changes to state (like operator) at low frequency

• Lamarckian evolution – improvements/adaptation acquired during 
lifetime of individual can be passed on to offspring

• ‘loss of diversity’ is a problem for GAs, where population becomes 
homogeneous (everybody on the same hill)
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Genetic Algorithms

• many applications of GAs to search problems, 
• from airfoil design (airplane wings) 

• to automatic program synthesis (random computation trees)

• optimization: 
• the power comes not from mutation, but from competition

• survival of the fittest drives the population as a whole to gradually improve

• weaker/less fit individuals do not get selected to reproduce and are 
effectively dropped from the population
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Automatic Program Synthesis

• given a set of example inputs and outputs, generate a function that does the same
• objective function: number of "errors" on outputs (or mean-squared error for numerics)

• represent "functions" or "programs" as abstract syntax trees
• algebraic functions for mathematical expressions

• pseudocode for programs

• cross-over operator generates an offspring from 2 parents by swapping subtrees

• for numeric problems, GA search is an alternative to non-linear regression or 
neural networks
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parent 1:
cos(2x+7)

cos

+

* 7

x   7

parent 2:
X2/sin(2-x)

/

sqr sin

x             -

2    x

offspring:
cos(2-x)

cos

-

2       x



Programs can be synthesized by GA search too...
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f(list L):

a=0; b=0

for (i=0 ; i<len(L) ; i++) {

if L[i]>a: a = L[i]

else if L[i]>b: b = L[i] }

return b

stmt_list

=      stmt_list

a   0      =       stmt_list

b  0               for

(i=0 ; i<len(L) ; i++)   stmt_list

if        else if

>             =          stmt_list

L[i]     a     a L[i]          ...

• Search the space of functions (as syntax trees) to find one 
that reproduce outputs from example inputs.

• For example, what function finds the 2nd highest value in a 
list?

• In a population of "random" functions, many will be bad.  But 
can we build better functions incrementally by swapping 
blocks of statements?



Summary of Iterative Improvement Algorithms

• Uninformed (Weak) Search
• Breadth-first (BFS)
• Depth-first (DFS)
• Iterative Deepening (ID)
• Uniform-cost (UC) – optimal (finds a goal with minimum path cost)

• Informed Search – uses a heuristic h(n)
• Greedy (Best-first) search
• A* - optimal (provided heuristic is admissible)

• Iterative Improvement
• Hill-Climbing
• Beam search
• Simulated Annealing – stochastic search
• Genetic Algorithms – parallel search (with a population of candidate solutions)

7/27/2024 31


