
Iterative Improvement
CSCE 420 – Fall 2024

read: Sec. 4.1

7/27/2024 1

Iterative Improvement Search

• also known as Local Search

• maximize the “quality” of states, q(s) or value(s)
• note: this is different than path cost

• example: 8-queens
• can you place 8 queens on chess board such that none can

attack each other?

• initial state: place all 8 queens randomly, one in each column

• q(s) = -(number of pairs of queens that can attach each other)
• use negative so higher is better; or modify algorithm to find state with

minimum score (gradient descent)

7/27/2024 2q(s)=-17

q(s)=0

Hill Climbing

• maintain only a single current state

• generate successors using operator, and pick best

• operator for 8-queens: move any queen to another row in the same
column

7/27/2024 3

7/27/2024 44

.

.

.

. . . Q

Q . . . Q . . .

. Q . . . Q . Q

. . Q . . . Q .

.

.

.

. Q

. . . Q

Q . . . Q . . .

. Q . Q

. . Q . . . Q .

.

q=17 q=17-5+0=12

. . . . Q . . .

.

. Q

. . . Q

Q

. Q . Q

. . Q . . . Q .

.

q=12-5+1=8 q=8-4+0=4

. . . . Q . . .

. Q .

. Q

. . . Q

Q

. Q . Q

. . Q

.

q=4-2+1=3

. . . . Q . . .

. Q .

. Q

. . . Q

Q

. Q

. . Q

. Q . .

A sequence of iterations,
where the best queen is moved
to a new position in her column
that most reduces the number
of overall conflicts.

No further improvements
can be made.

Problems with Hill-Climbing

1. local maxima

2. plateau effect – when all neighbors have same score and you “lose
the gradient”, even if not at top of hill

3. ridge effect – all neighbors have same or lower score, even then
there might be other close states that are better
• suppose only choices are to go N, S, E, or W, but ridge goes up NE; hence all

steps go down sides of the ridge

• often related to limitations of the successor function; consider expanding it to
generate more successors in neighborhood (e.g. combinations of 2 steps)

7/27/2024 5

direction of
increasing quality

top-down projection

Possible Solutions

• random restart HC

• stochastic HC – choose any successor that is better than current state, not
always the best
• you can’t just choose any random successor; must still bias the search upward
• can this strategy really reduce risk of local minima?
• this idea leads to Simulated Annealing...

• provide memory of previous states
• HC only maintains 1 state: the current state
• perhaps we could remember previously expanded-but-not-explored nodes to allow

some “back-tracking” if we get stuck at a local maximum
• this idea leads to Beam Search...

• allow multiple steps – also consider successors of successors; create new
operators (macro operators) from combinations of 2 or 3 actions, expanding
the number of successors; similar to look-ahead, or “gradient sampling”7/27/2024 6

Beam Search

• adding “memory” to Hill-Climbing
• comparison to Greedy Search: we used a frontier to keep track of all previously

expanded-but-not-yet-explored states

• (another difference: Greedy sorts PQ by h(n), and HC chooses successors by q(n))

• however, this potentially has high space-complexity (exponential frontier size)

• is there a compromise?

• yes – keep track of the K best previous nodes (based on state quality q(n))

• this fixed-size array allows some back-tracking, even if not complete enough to
explore the whole space (typically, beam size=10-100 nodes)

• thus, Beam Search could possibly back-track off of one hill and get onto another
with a higher local maximum, even though it might fail to find the global max.

7/27/2024 7

BeamSearch(init,k)

beamarray[k]

beam.insert(init)

while True // or until beam empty, or reach max iterations...

// pop best node in beam (highest score at front)

currbeam[0]

for each child coperator(curr):

beam.insert(c)

beam.insert(node n)

do insertion sort

since beam is always presorted, scan the list to find where n

fits, and shift the rest of the nodes down (the last one falls out

of the beam)

note: something falls off end of beam (with lowest score) - it could be the kth

item in beam, or the new node if it is worse than everything currently in
beam (e.g. score<21)

89 72 56 55 51 48 36 30 22 21

new node=50

89 72 56 55 51 48 36 30 22 21

89 72 56 55 51 48 36 30 22 21

new node=50

89 72 56 55 51 50 48 36 30 22

89 72 56 55 51 48 36 30 22 21

... new node=50

Quality q(n) of top K
nodes:

7/27/2024 10

phase 1

• because this is a simple 1D space, all states have two neighbors
• usually, one of the neighbors has been recently visited, so we discard it
• phase 1: start at ‘s’; climb to local max at ‘p’ (hill 2)
• phase 2: when reach top of hill, the beam remembers these 2 nodes: [o,t]; start descending left slope of hill 2
• phase 3: there is a point where beam has both ‘l’ and ‘t’ in it [l,t]; start ascending hill 3 since ‘t’ is better
• phase 4: eventually, when reach ‘y’, resume search at ‘l’ and climb hill 1

i

phase 2

phase 3

j

hills: 1 2 3

phase 4

a

b

c d

e

f

g

h

k l
m

n

o
p

q

r
s

t

u
v w

x

y z

beam(size=2):
s
r, t
q, t
p, t
o, t
n, t
m, t
t, l
u, l
v, l
w, l
x, l
l, y
k, y
j, y
...

phase 1

phase 2

phase 3

Simulated Annealing

• stochastic search

• choose next child randomly, but “bias it upward”

• always accept better states, and accept worse states probabilistically,
proportional to how much lower the quality is

7/27/2024 12

AIMA, 4th ed.
(Fig 4.5)

AIMA, 3rd ed.
(correct)

(the exponent should be negative,
but –DE/T>0 since DE<0)

(want to accept if next is higher than curr)

The algorithm in the 4th ed. of the textbook has 2 errors...

T=0.5

T=1

T=2

Simulated Annealing

• accept with prob = e-DE/T where DE=value(curr)-value(child)
• if child is only a little worse, DE is small, so accept with high prob

• if child is much worse, DE is large, and acceptance is less likely

• T (“temperature” controls) how loose or stringent we are
• in the limit T→∞: all backward steps are allowed

• in the limit T=0: no backward steps are allowed
this is analogous to “cooling” in
materials like metal;
malleable at high
temperatures, but gets locked
into a lattice structure at low
temperatures

Temperature schedules

• a critical part of SA is to start with a high temperature and gradually
lower it

• this allows the search to sample many local maxima initially, but over
time, it becomes more selective and climbs up the best hill it it can
find

• linear, geometric (e.g. halving every 1000 iterations), exponential...

iterations

T

iterations

T

iterations

T

linear geometric exponential

Simulated Annealing

• application of SA to “solving” the Traveling
Salesman Problem (TSP)
• actually, we can only hope to find approximately

optimal solutions, because TSP is NP-hard

• tour with minimum total length

• (Hamiltonian cycle: visit every node exactly once)

• example: Texas cities (pairwise connectable “as
the crow flies”)

random tour, length=16,697 miles

greedy strategy A: 4,319 miles
join closest pair (Big Sky & Big Springs)
connect next closest city
repeat till all connected

greedy strategy B: 4,032 miles
join closest pair (Big Sky & Big Springs)
connect next closest pair of cities

(except cities already connected to 2 others)
repeat till all connected

Simulated Annealing

• representation for TSP (for complete graphs): a list of the nodes in
any order (permutation)

• operators for TSP (for complete graphs)
• how to generate “variants” of any given tour (successor states)?

• there are many ways to do this

• choose a random subsequence and move it to another position

• choose a random subsequence and reverse it

A B C

D E

F G H

[A G E H D C F B]

A B C

D E

F G H

[A G C F E H D B]

A B C

D E

F G H

[A G D H E C F B]

state = list of cities (complete tour) (state space size = ?)
operators:

A) pick 2 cities and swap them
B) pick a subsequence and reverse it
C) pick a subsequence and move to a new position in list

Simulated Annealing: 3,679 miles

Genetic Algorithms

• also known as Evolutionary Programming

• the unique aspects of GA Search are:
• maintain a population of multiple candidate states (parallel search, not just curr)

• mix-and-match states by recombination

• use fitness to select winners each round, akin to ‘natural selection’

• fitness(state) is a synonym for value(s) or quality(s)

• some GAs use ‘chromosomes’, which represent state as a bit string
• example: state of 8-queens is given by a list of 8 integers (0-7), which can be

converted to a 24-bit string: 5,1,7,2,3,6,4,0 → 101001111010011110100000

• but chromosomes are not necessary, as long as states can be recombined

7/27/2024 22

Recombination or ‘cross-over’

• instead of an ‘operator’ to generate successors from states, use ‘recombination’
to combine parts of existing members of population

• for chromosomes, splice their strings at a random locations

• for other data types and states representation, use must define ‘cross-over’

• by selecting parents at random and recombining them, you sometimes get the
best of both and produce and improved state

• food for thought: How would you perform recombination between 2 tours for the
TSP to generate a child state?

7/27/2024 23

7/27/2024 24

based on fitness

Genetic Algorithms

• there are many variations on GAs

• some include mutation
• make random changes to state (like operator) at low frequency

• Lamarckian evolution – improvements/adaptation acquired during
lifetime of individual can be passed on to offspring

• ‘loss of diversity’ is a problem for GAs, where population becomes
homogeneous (everybody on the same hill)

7/27/2024 27

Genetic Algorithms

• many applications of GAs to search problems,
• from airfoil design (airplane wings)

• to automatic program synthesis (random computation trees)

• optimization:
• the power comes not from mutation, but from competition

• survival of the fittest drives the population as a whole to gradually improve

• weaker/less fit individuals do not get selected to reproduce and are
effectively dropped from the population

7/27/2024 28

Automatic Program Synthesis

• given a set of example inputs and outputs, generate a function that does the same
• objective function: number of "errors" on outputs (or mean-squared error for numerics)

• represent "functions" or "programs" as abstract syntax trees
• algebraic functions for mathematical expressions

• pseudocode for programs

• cross-over operator generates an offspring from 2 parents by swapping subtrees

• for numeric problems, GA search is an alternative to non-linear regression or
neural networks

7/27/2024 29

parent 1:
cos(2x+7)

cos

+

* 7

x 7

parent 2:
X2/sin(2-x)

/

sqr sin

x -

2 x

offspring:
cos(2-x)

cos

-

2 x

Programs can be synthesized by GA search too...

7/27/2024 30

f(list L):

a=0; b=0

for (i=0 ; i<len(L) ; i++) {

if L[i]>a: a = L[i]

else if L[i]>b: b = L[i] }

return b

stmt_list

= stmt_list

a 0 = stmt_list

b 0 for

(i=0 ; i<len(L) ; i++) stmt_list

if else if

> = stmt_list

L[i] a a L[i] ...

• Search the space of functions (as syntax trees) to find one
that reproduce outputs from example inputs.

• For example, what function finds the 2nd highest value in a
list?

• In a population of "random" functions, many will be bad. But
can we build better functions incrementally by swapping
blocks of statements?

Summary of Iterative Improvement Algorithms

• Uninformed (Weak) Search
• Breadth-first (BFS)
• Depth-first (DFS)
• Iterative Deepening (ID)
• Uniform-cost (UC) – optimal (finds a goal with minimum path cost)

• Informed Search – uses a heuristic h(n)
• Greedy (Best-first) search
• A* - optimal (provided heuristic is admissible)

• Iterative Improvement
• Hill-Climbing
• Beam search
• Simulated Annealing – stochastic search
• Genetic Algorithms – parallel search (with a population of candidate solutions)

7/27/2024 31

