[terative Improvement

CSCE 420 —Fall 2024
read: Sec. 4.1



qa(s)=0

'terative Improvement Search

e also known as Local Search

* maximize the “quality” of states, q(s) or value(s)
* note: this is different than path cost

e example: 8-queens
e can you place 8 queens on chess board such that none can

18 14 13 14
attack each other? 12 — 12 -
. . 16 15 14 16

* initial state: place all 8 queens randomly, one in each column
14 (12|18 15 |12 14

* q(s) = -(number of pairs of queens that can attach each other)

* use negative so higher is better; or modify algorithm to find state with W TG
minimum score (gradient descent)

18

IE
Bl IE

7/27/2024 q(s)=-17 14 17 . 14




Hill Climbing

* maintain only a single current state
e generate successors using operator, and pick best

function HILL-CLIMBING( problem) returns a state that is a local maximum
current <— problem.INITIAL
while true do
neighbor < a highest-valued successor state of current
if VALUE(neighbor) < VALUE(current) then return current
current <— neighbor

e operator for 8-queens: move any queen to another row in the same
column

7/27/2024



q=12-5+1=8

7/27/2024

L0 I
Q . . 0 .
. . Q . Q
Q Q
q=17-5+0=12
Q

A sequence of iterations,

where the best queen is moved
to a new position in her column
that most reduces the number

of overall conflicts.
Q\. S
. . . . . 0
. .0 N
0% . .
q=4-2+1=3

No further improvements
can be made.

18

14

16




objective function

Problems with Hill-Climbing

1. local maxima

[

1

shoulder

N\

__— global maximum

e

__local maximum

"'_F'_H_F-Fd-—— ~ . -
“flat” local maximum

&= stafe space
nt

plateau effect — when all neighbors have same score and-you “lose

the gradient”, even if not at top of hill

ridge effect — all neighbors have same or lower score, even then

there might be other close states that are better
e suppose only choicesaretogo N, S, E, or W, but ridge goes up NE; hence all

steps go down sides of the ridge

» often related to limitations of the successor function; consider expanding it to
generate more successors in nelghborhood (e.g. combinations of 2 steps)

direction of
bncreasmg quality

top-down projection



objective function
1

___— global maximum

shoulder

__ local maximum
-/’(’

Possible Solutions

“flat” local maximum

state space
current

e random restart HC

 stochastic HC — choose any successor that is better than current state, not
always the best
e you can’t just choose any random successor; must still bias the search upward
* can this strategy really reduce risk of local minima?
* this idea leads to Simulated Annealing...

e provide memory of previous states
* HC only maintains 1 state: the current state

* perhaps we could remember previously expanded-but-not-explored nodes to allow
some “back-tracking” if we get stuck at a local maximum

* this idea leads to Beam Search...

 allow multiple steps — also consider successors of successors; create new
operators (macro operators) from combinations of 2 or 3 actions, expanding
the number of successors; similar to look-ahead, or “gradient sampling”



Beam Search

* adding “memory” to Hill-Climbing

comparison to Greedy Search: we used a frontier to keep track of all previously
expanded-but-not-yet-explored states

(another difference: Greedy sorts PQ by h(n), and HC chooses successors by g(n))
however, this potentially has high space-complexity (exponential frontier size)

is there a compromise?

yes — keep track of the K best previous nodes (based on state quality q(n))

this fixed-size array allows some back-tracking, even if not complete enough to
explore the whole space (typically, beam size=10-100 nodes)

thus, Beam Search could possibly back-track off of one hill and get onto another
with a higher local maximum, even though it might fail to find the global max.



BeamSearch (init, k)

beam<-array[k]

beam.insert (init)

while True // or until beam empty, or reach max iterations...

// pop best node in beam (highest score at front)
curr<beam[0]
for each child ceoperator (curr) :
beam.insert (c)

beam.insert (node n)
do insertion sort

since beam is always presorted, scan the list to find where n
fits, and shift the rest of the nodes down (the last one falls out
of the beam)



Quality g(n) of top K
nodes:

new node=50

new node=50

|

new node=50

[

VR |

I

note: something falls off end of beam (with lowest score) - it could be the kt"
item in beam, or the new node if it is worse than everything currently in
beam (e.g. score<21)



7/27/2024

beam(size=2):

S BN
r, t

phase 4 g, t
ot |

local maximum o, t
“flat” local maximum n,t phase 2
m, t

t,l —

u, |

| — v, | — phase3

----------------------------------- z w, |
‘ ! e <lfate cnace X |

hills: 1 2 3 I

'y

k, y

because this is a simple 1D space, all states have two neighbors 1y

usually, one of the neighbors has been recently visited, so we discard it

phase 1: start at ‘s’; climb to local max at ‘p’ (hill 2)

phase 2: when reach top of hill, the beam remembers these 2 nodes: [o,t]; start descending left slope of hill 2
phase 3: there is a point where beam has both ‘I’ and ‘t” in it [,t]; start ascending hill 3 since ‘t’ is better
phase 4: eventually, when reach ‘y’, resume search at ‘I’ and climb hill 1

— phase 1
shoulder

N

10



Simulated Annealing

e stochastic search
e choose next child randomly, but “bias it upward”

 always accept better states, and accept worse states probabilistically,
proportional to how much lower the quality is

function SIMULATED-ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

current < MAKE-NODE(problem INITIAL-STATE)
for t =1 to oo do

T — schedule(t)

if 7' = 0 then return current

next < a randomly selected successor of current

AFE < next. VALUE — current VALUE

if AL > 0 then current < next

else current < next only with probability e

AE/T



The algorithm in the 4t ed. of the textbook has 2 errors...

function SIMULATED-ANNEALING( problem, schedule) returns a solution state
current +— problem.INITIAL
for t =1 to oo do

AIMA. 4th ed T + schedule(t)
o ' if T'= 0 then return current
(Flg 4'5) nert «+— a randomly selected successor of current

AF + VALUE(current) — VA[_LIE{?;:{;_ (Want to accept I:fneXt is —q—hl her than CUI’T)
if AE = 0then current + next

else current +— next only with probability| e =25/ (the exponent should be negative,
but —AE/T>0 since AE<O0)

function SIMULATED-ANNEALING( problem, schedule) returns a solution state
inputs: problem, a problem
schedule, a mapping from time to “temperature”

current «— MAKE-NODE(problem . INITIAL-STATE)

AIMA, 3™ ed. for t =1 to oc do
T — schedule(t)
(COFI’ECt) if 7' = 0 then return current

next — a randomly selected successor of current
AFE «— next VALUE — current VALUE

it Ar >0 then current «— next

else current < next only with probability

CAE/T

7/27/2024 12



Simulated Annealing

* accept with prob = e 28T where AE=value(curr)-value(child)
* if child is only a little worse, AE is small, so accept with high prob
* if child is much worse, AE is large, and acceptance is less likely

* T (“temperature” controls) how loose or stringent we are

* in the limit T->o<: all backward steps are allowed
* in the limit T=0: no backward steps are allowed

x = delta E = value(curr)-value(next)

8

= 1 ,

g 09 | X2) ———
g 087 o S — :
& 06 =7 exp (-x/0.5)

5 8

£ 8

= 2t

18] 0.1 =

g 1 T=0.5 | |

o 0 2 4 6 8

10

this is analogous to “cooling” in
materials like metal;

malleable at high
temperatures, but gets locked
into a lattice structure at low
temperatures



Temperature schedules

e a critical part of SA is to start with a high temperature and gradually

lower it

* this allows the search to sample many local maxima initially, but over
time, it becomes more selective and climbs up the best hill it it can

find

* linear, geometric (e.g. halving every 1000 iterations), exponential...

T T

linear

iterations

geometric

I

iterations

T

\M

iterations




Simulated Annealing

 application of SA to “solving” the Traveling
Salesman Problem (TSP)

* actually, we can only hope to find approximately
optimal solutions, because TSP is NP-hard B e

* tour with minimum total length T

* (Hamiltonian cycle: visit every node exactly once) | 2 ™ s e

* example: Texas cities (pairwise connectable .
the crow flies”) g

ot cprng et



random tour, length=16,697 miles



greedy strategy A: 4,319 miles
join closest pair (Big Sky & Big Springs)
connect next closest city

repeat till all connected



greedy strategy B: 4,032 miles
join closest pair (Big Sky & Big Springs)
connect next closest pair of cities

(except cities already connected to 2 others)
repeat till all connected



Simulated Annealing

 representation for TSP (for complete graphs): a list of the nodes in
any order (permutation)

e operators for TSP (for complete graphs)
* how to generate “variants” of any given tour (successor states)?

* there are many ways to do this
* choose a random subsequence and move it to another position

* choose a random subsequence and reverse it

[AGEHDCFB] [AGCFEHDB] [AGDHECFB]
A B C A B C A B C

D E D E D E

F G H F G H F H



W
T 12000
£
= 10000
i
C
<
— 8000
=
Bu00
4000
2|:||:||:| 1 1 1 1
0 20000 40000 60000 80000

iteration

state = list of cities (complete tour) (state space size = ?)
operators:

A) pick 2 cities and swap them

B) pick a subsequence and reverse it

C) pick a subsequence and move to a new position in list

100000



Simulated Annealing: 3,679 miles



Genetic Algorithms

* also known as Evolutionary Programming

* the unique aspects of GA Search are:
* maintain a population of multiple candidate states (parallel search, not just curr)
* mix-and-match states by recombination
* use fitness to select winners each round, akin to ‘natural selection’

* fitness(state) is a synonym for value(s) or quality(s)

* some GAs use ‘chromosomes’, which represent state as a bit string

* example: state of 8-queens is given by a list of 8 integers (0-7), which can be
converted to a 24-bit string: 5,1,7,2,3,6,4,0 - 101001111010011110100000

* but chromosomes are not necessary, as long as states can be recombined



Recombination or ‘cross-over’

* instead of an ‘operator’ to generate successors from states, use ‘recombination’
to combine parts of existing members of population

32752411

24748552

327521411

>~
p

24415124

* for chromosomes, splice their strings at a random locations

32748552

24752411

32752124

24415411

IE
IE

IE

IE

IE

IE
IE

IE

* for other data types and states representation, use must define ‘cross-over’
parents at random and recombining them, you sometimes get the

* by selectin
best of bot%

and produce and improved state

* food for thought: How would you perform recombination between 2 tours for the
TSP to generate a child state?

7/27/2024

23




7/27/2024

function GENETIC-ALGORITHM( population, fitness) returns an individual
repeat
weights < WEIGHTED-BY(population, fitness)
population?2 <— empty list
for + = 1 to S1IZE( population) do
parentl, parent?2 <— WEIGHTED-RANDOM-CHOICES(population, weights,?2)
child <~ REPRODUCE(parentl, parent2)
if (small random probability) then child <— MUTATE( child)
add child to population?
population < population?
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to fitness

function REPRODUCE(parentl, parent2) returns an individual
n <— LENGTH(parentl)
¢ <—random number from 1 to n
return APPEND(SUBSTRING(parentl, 1, c), SUBSTRING(parent2,c + 1,n))

based on fitness

24



Genetic Algorithms

* there are many variations on GAs

* some include mutation
* make random changes to state (like operator) at low frequency

» Lamarckian evolution — improvements/adaptation acquired during
lifetime of individual can be passed on to offspring

* ‘loss of diversity’ is a problem for GAs, where population becomes
homogeneous (everybody on the same hill)



Genetic Algorithms

* many applications of GAs to search problems,

» from airfoil design (airplane wings)

* to automatic program synthesis (random computation trees)
* optimization:

* the power comes not from mutation, but from competition

* survival of the fittest drives the population as a whole to gradually improve

» weaker/less fit individuals do not get selected to reproduce and are
effectively dropped from the population




Automatic Program Synthesis

* given a set of example inputs and outputs, generate a function that does the same
* objective function: number of "errors" on outputs (or mean-squared error for numerics)

* represent "functions" or "programs" as abstract syntax trees
 algebraic functions for mathematical expressions
e pseudocode for programs

e cross-over operator generates an offspring from 2 parents by swapping subtrees

* for numeric problems, GA search is an alternative to non-linear regression or
neural networks

parent 1: parent 2: offspring:
R cos(2x+7) X2/sin(2-x) cos(2-x)
COS /\ cos
+ sqr  sin g

A o A
/\ 7 /N\




Programs can be synthesized by GA search too...

* Search the space of functions (as syntax trees) to find one

: tmt_list
that reproduce outputs from example inputs. SHS
=" stmt_list
* For example, what function finds the 2nd highest value in a /\ /\
list? a 0 = stmt list
AN
_ . _ b0 for
* In a population of "random" functions, many will be bad. But
can we build better functions incrementally by swapping (i=0; i<len(L) ;' i++) stmt_list
blocks of statements? _ /N _
if else if
£(list L) : /N \ ,
a=0: b=0 > stmt_list

for (i=0 ; i<len(L) ; i++) { /. /N
if L[i]>a: a = L[i] Li] a a L[
else if L[i]>b: b = L[i] }

return b




Summary of Iterative Improvement Algorithms

* Uninformed (Weak) Search
e Breadth-first (BFS)
e Depth-first (DFS)
* |terative Deepening (ID)
e Uniform-cost (UC) — optimal (finds a goal with minimum path cost)

* Informed Search — uses a heuristic h(n)

* Greedy (Best-first) search
* A* - optimal (provided heuristic is admissible)

* Iterative Improvement
* Hill-Climbing
* Beam search
e Simulated Annealing — stochastic search
* Genetic Algorithms — parallel search (with a population of candidate solutions)



