TB Genome Annotation Portal

Rv3541c (-)

Amino Acid Sequence

MTVVGAVLPELKLYGDPTFIVSTALATRDFQDVHHDRDKAVAQGSKDIFVNILTDTGLVQRYVTDWAGPSALIKSIGLRLGVPWYAYDTVTFSGEVTAVN
DGLITVKVVGRNTLGDHVTATVELSMRDS
(Nucleotide sequence available on KEGG)

Additional Information




Analysis of Positive Selection in Clinical Isolates *new*

Moldova (2,057)global set (5,195)
under significant positive selection?NONO
omega peak height (95%CI lower bound)1.4 (0.09)1.18 (0.32)
codons under selection
omega plots
genetic variants*linklink
statistics at each codonlinklink
* example format for variants: "D27 (GAC): D27H (CAC,11)" means "Asp27 (native codon GAC) mutated to His (codon CAC) in 11 isolates"


ESSENTIALITY

MtbTnDB - interactive tool for exploring a database of published TnSeq datasets for Mtb

TnSeqCorr - genes with correlated TnSeq profiles across ~100 conditions

Rv3541c/-, gene len: 389 bp, num TA sites: 8
conditiondatasetcallmediummethodnotes
in-vitroDeJesus 2017 mBionon-essential7H9HMMfully saturated, 14 TnSeq libraries combined
in-vitroSassetti 2003 Mol Microno data 7H9TRASHessential if hybridization ratio<0.2
in-vivo (mice)Sassetti 2003 PNASessentialBL6 miceTRASHessential if hybridization ratio<0.4, min over 4 timepoints (1-8 weeks)
in-vitro (glycerol)Griffin 2011 PPathnon-essentialM9 minimal+glycerolGumbel2 replicates; Padj<0.05
in-vitro (cholesterol)Griffin 2011 PPathessentialM9 minimal+cholesterolGumbel3 replicates; Padj<0.05
differentially essential in cholesterol Griffin 2011 PPathNO (LFC=-4.12)cholesterol vs glycerolresampling-SRYES if Padj<0.05, else not significant; LFC<0 means less insertions/more essential in cholesterol
in-vitroSmith 2022 eLifegrowth defect7H9HMM6 replicates (raw data in Subramaniam 2017, PMID 31752678)
in-vivo (mice)Smith 2022 eLifegrowth defectBL6 miceHMM6 replicates (raw data in Subramaniam 2017, PMID 31752678)
differentially essential in miceSmith 2022 eLifeYES (LFC=-2.13)in-vivo vs in-vitroZINBYES if Padj<0.05, else not significant; LFC<0 means less insertions/more essential in mice
in-vitro (minimal)Minato 2019 mSysnon-essentialminimal mediumHMM
in-vitro (YM rich medium)Minato 2019 mSysnon-essentialYM rich mediumHMM7H9 supplemented with ~20 metabolites (amino acids, vitamins)
differentially essential in YM rich mediumMinato 2019 mSysNO (LFC=-0.88)YM rich vs minimal mediumresampling

TnSeq Data No data currently available.
  • No TnSeq data currently available for this Target.
RNASeq Data No data currently available.
  • No RNA-Seq data currently available for this Target.
Metabolomic Profiles No data currently available.
  • No Metabolomic data currently available for this Target.
Proteomic Data No data currently available.
  • No Proteomic data currently available for this Target.

Regulatory Relationships from Systems Biology
  • BioCyc

    Gene interactions based on ChIPSeq and Transcription Factor Over-Expression (TFOE) (Systems Biology)

    NOTE: Green edges represent the connected genes being classified as differentially essential as a result of the middle gene being knocked out. These interactions are inferred based on RNASeq.

    Interactions based on ChIPSeq data

  • Interactions based on ChIPSeq data (Minch et al. 2014)

    Interactions based on TFOE data (Rustad et al. 2014)

    • Upregulates:

      • Does not upregulate other genes.
    • Upregulated by:

      • Not upregulated by other genes.
    • Downregulates:

      • Does not downregulate other genes.
    • Downregulated by:



    TBCAP

    Tubculosis Community Annotation Project (
    Slayden et al., 2013)

    Rv3541c (-)

    PropertyValueCreatorEvidencePMIDComment
    InteractionRegulatory Rv3574priyadarshinipriyanka2001IEPCo-expression (Functional linkage)
    SL. Kendall,P. Burgess,R. Balhana,M. Withers,A. Ten Bokum,JS. Lott,C. Gao,I. Uhia Castro,NG. Stoker Cholesterol utilisation in mycobacteria is controlled by two TetR-type transcriptional regulators; kstR and kstR2. Microbiology (Reading, England) 2010
    InteractionRegulatory Rv3574priyadarshinipriyanka2001IEPCo-expression (Functional linkage)
    SL. Kendall, M. Withers et al. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol. Microbiol. 2007
    Citationigr Genes and Mycobacterium tuberculosis cholesterol metabolism. JC. Chang,MD. Miner,AK. Pandey,WP. Gill,NS. Harik,CM. Sassetti,DR. Sherman J. Bacteriol. 2009ahal4789IEP19542286Co-expression (Functional linkage)
    InteractionRegulatory Rv3574ahal4789IEPCo-expression (Functional linkage)
    JC. Chang,MD. Miner,AK. Pandey,WP. Gill,NS. Harik,CM. Sassetti,DR. Sherman igr Genes and Mycobacterium tuberculosis cholesterol metabolism. J. Bacteriol. 2009
    CitationA highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. SL. Kendall, M. Withers et al. Mol. Microbiol. 2007ahal4789IEP17635188Co-expression (Functional linkage)
    InteractionRegulatory Rv3574ahal4789IEPCo-expression (Functional linkage)
    SL. Kendall, M. Withers et al. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol. Microbiol. 2007
    CitationCholesterol utilisation in mycobacteria is controlled by two TetR-type transcriptional regulators; kstR and kstR2. SL. Kendall,P. Burgess,R. Balhana,M. Withers,A. Ten Bokum,JS. Lott,C. Gao,I. Uhia Castro,NG. Stoker Microbiology (Reading, England) 2010ahal4789IEP20167624Co-expression (Functional linkage)
    InteractionRegulatory Rv3574ahal4789IEPCo-expression (Functional linkage)
    SL. Kendall,P. Burgess,R. Balhana,M. Withers,A. Ten Bokum,JS. Lott,C. Gao,I. Uhia Castro,NG. Stoker Cholesterol utilisation in mycobacteria is controlled by two TetR-type transcriptional regulators; kstR and kstR2. Microbiology (Reading, England) 2010
    Citationigr Genes and Mycobacterium tuberculosis cholesterol metabolism. JC. Chang,MD. Miner,AK. Pandey,WP. Gill,NS. Harik,CM. Sassetti,DR. Sherman J. Bacteriol. 2009ahal4789IEP19542286Co-expression (Functional linkage)
    InteractionRegulatory Rv3574ahal4789IEPCo-expression (Functional linkage)
    JC. Chang,MD. Miner,AK. Pandey,WP. Gill,NS. Harik,CM. Sassetti,DR. Sherman igr Genes and Mycobacterium tuberculosis cholesterol metabolism. J. Bacteriol. 2009
    Citationigr Genes and Mycobacterium tuberculosis cholesterol metabolism. JC. Chang,MD. Miner,AK. Pandey,WP. Gill,NS. Harik,CM. Sassetti,DR. Sherman J. Bacteriol. 2009sourish10IEP19542286Co-expression (Functional linkage)
    InteractionRegulatory Rv3574sourish10IEPCo-expression (Functional linkage)
    JC. Chang,MD. Miner,AK. Pandey,WP. Gill,NS. Harik,CM. Sassetti,DR. Sherman igr Genes and Mycobacterium tuberculosis cholesterol metabolism. J. Bacteriol. 2009
    CitationA highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. SL. Kendall, M. Withers et al. Mol. Microbiol. 2007sourish10IEP17635188Co-expression (Functional linkage)
    InteractionRegulatory Rv3574sourish10IEPCo-expression (Functional linkage)
    SL. Kendall, M. Withers et al. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol. Microbiol. 2007
    CitationCholesterol utilisation in mycobacteria is controlled by two TetR-type transcriptional regulators; kstR and kstR2. SL. Kendall,P. Burgess,R. Balhana,M. Withers,A. Ten Bokum,JS. Lott,C. Gao,I. Uhia Castro,NG. Stoker Microbiology (Reading, England) 2010sourish10IEP20167624Co-expression (Functional linkage)
    InteractionRegulatory Rv3574sourish10IEPCo-expression (Functional linkage)
    SL. Kendall,P. Burgess,R. Balhana,M. Withers,A. Ten Bokum,JS. Lott,C. Gao,I. Uhia Castro,NG. Stoker Cholesterol utilisation in mycobacteria is controlled by two TetR-type transcriptional regulators; kstR and kstR2. Microbiology (Reading, England) 2010
    Citationigr Genes and Mycobacterium tuberculosis cholesterol metabolism. JC. Chang,MD. Miner,AK. Pandey,WP. Gill,NS. Harik,CM. Sassetti,DR. Sherman J. Bacteriol. 2009sourish10IEP19542286Co-expression (Functional linkage)
    InteractionRegulatory Rv3574sourish10IEPCo-expression (Functional linkage)
    JC. Chang,MD. Miner,AK. Pandey,WP. Gill,NS. Harik,CM. Sassetti,DR. Sherman igr Genes and Mycobacterium tuberculosis cholesterol metabolism. J. Bacteriol. 2009
    InteractionRegulatedBy Rv3574yamir.morenoISOM.smegmatis orthology based inference. Orthologous pair regulator-target found in M.smegmatis.
    SL. Kendall, M. Withers et al. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol. Microbiol. 2007
    InteractionRegulatedBy Rv3574yamir.morenoTASLiterature previously reported link (from Balazsi et al. 2008). Traceable author statement to experimental support.
    G. Balzsi, AP. Heath et al. The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol. Syst. Biol. 2008
    CitationPathway profiling in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism. authors,ST. Thomas,BC. VanderVen,DR. Sherman,DG. Russell,NS. Sampson J. Biol. Chem. 2011nsampson22045806Assay of protein purified to homogeneity from a heterlogous host
    TermEC:4.2.1.- Lyases. Carbon-oxygen lyases. Hydro-lyases. - NRnsampsonNRAssay of protein purified to homogeneity from a heterlogous host
    authors,ST. Thomas,BC. VanderVen,DR. Sherman,DG. Russell,NS. Sampson Pathway profiling in Mycobacterium tuberculosis: elucidation of cholesterol-derived catabolite and enzymes that catalyze its metabolism. J. Biol. Chem. 2011
    TermEC:4.2.1.- Lyases. Carbon-oxygen lyases. Hydro-lyases. - NRrslaydenNRin preparation Thomas, Sampson
    Otherproduct:3rslaydenin preparation Thomas, Sampson

    Comments