TB Genome Annotation Portal

Rv2142c (parE2)

Amino Acid Sequence

MTRRLRVHNGVEDDLFEAFSYYADAAPDQIDRLYNLFVDAVTKRIPQAPNAFAPLFKHYRHIYLRPFRYYVAYRTTDEAIDILAVRHGMENPNAVEAEIS
GRTFE
(Nucleotide sequence available on KEGG)

Additional Information




Analysis of Positive Selection in Clinical Isolates *new*

Moldova (2,057)global set (5,195)
under significant positive selection?NONO
omega peak height (95%CI lower bound)1.25 (0.18)0.83 (0.32)
codons under selection
omega plots
genetic variants*linklink
statistics at each codonlinklink
* example format for variants: "D27 (GAC): D27H (CAC,11)" means "Asp27 (native codon GAC) mutated to His (codon CAC) in 11 isolates"


ESSENTIALITY

MtbTnDB - interactive tool for exploring a database of published TnSeq datasets for Mtb

TnSeqCorr - genes with correlated TnSeq profiles across ~100 conditions

Rv2142c/parE2, gene len: 317 bp, num TA sites: 13
conditiondatasetcallmediummethodnotes
in-vitroDeJesus 2017 mBiogrowth advantage7H9HMMfully saturated, 14 TnSeq libraries combined
in-vitroSassetti 2003 Mol Micronon-essential 7H9TRASHessential if hybridization ratio<0.2
in-vivo (mice)Sassetti 2003 PNASnon-essential BL6 miceTRASHessential if hybridization ratio<0.4, min over 4 timepoints (1-8 weeks)
in-vitro (glycerol)Griffin 2011 PPathnon-essentialM9 minimal+glycerolGumbel2 replicates; Padj<0.05
in-vitro (cholesterol)Griffin 2011 PPathnon-essentialM9 minimal+cholesterolGumbel3 replicates; Padj<0.05
differentially essential in cholesterol Griffin 2011 PPathNO (LFC=0.58)cholesterol vs glycerolresampling-SRYES if Padj<0.05, else not significant; LFC<0 means less insertions/more essential in cholesterol
in-vitroSmith 2022 eLifegrowth advantage7H9HMM6 replicates (raw data in Subramaniam 2017, PMID 31752678)
in-vivo (mice)Smith 2022 eLifegrowth advantageBL6 miceHMM6 replicates (raw data in Subramaniam 2017, PMID 31752678)
differentially essential in miceSmith 2022 eLifeNO (LFC=0.443)in-vivo vs in-vitroZINBYES if Padj<0.05, else not significant; LFC<0 means less insertions/more essential in mice
in-vitro (minimal)Minato 2019 mSysnon-essentialminimal mediumHMM
in-vitro (YM rich medium)Minato 2019 mSysnon-essentialYM rich mediumHMM7H9 supplemented with ~20 metabolites (amino acids, cofactors)
differentially essential in YM rich mediumMinato 2019 mSysNO (LFC=0.19)YM rich vs minimal mediumresampling

TnSeq Data No data currently available.
  • No TnSeq data currently available for this Target.
RNASeq Data No data currently available.
  • No RNA-Seq data currently available for this Target.
Metabolomic Profiles No data currently available.
  • No Metabolomic data currently available for this Target.
Proteomic Data No data currently available.
  • No Proteomic data currently available for this Target.

Regulatory Relationships from Systems Biology
  • BioCyc

    Gene interactions based on ChIPSeq and Transcription Factor Over-Expression (TFOE) (Systems Biology)

    NOTE: Green edges represent the connected genes being classified as differentially essential as a result of the middle gene being knocked out. These interactions are inferred based on RNASeq.

    Interactions based on ChIPSeq data

  • Interactions based on ChIPSeq data (Minch et al. 2014)

    • Binds To:

      • No bindings to other targets were found.
    • Bound By:

      • No bindings to other targets were found.

    Interactions based on TFOE data (Rustad et al. 2014)



    TBCAP

    Tubculosis Community Annotation Project (
    Slayden et al., 2013)

    Rv2142c (parE2)

    PropertyValueCreatorEvidencePMIDComment
    InteractionInhibits Rv1960charsharohiratruefriendISAoperon(Functional linkage)
    authors,K. Simola,RK. Selander,A. de la Chapelle,G. Corneo,E. Ginelli Molecular basis of chromosome banding. I. The effect of mouse DNA fractions on two fluorescent dyes in vitro. Chromosoma 1975
    CitationA conserved mode of protein recognition and binding in a ParD-ParE toxin-antitoxin complex. authors,KM. Dalton,S. Crosson Biochemistry 2010harsharohiratruefriendISA20143871operon(Functional linkage)
    InteractionInhibits Rv1960charsharohiratruefriendISAoperon(Functional linkage)
    authors,KM. Dalton,S. Crosson A conserved mode of protein recognition and binding in a ParD-ParE toxin-antitoxin complex. Biochemistry 2010
    CitationNew connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system. authors,V. Anantharaman,L. Aravind Genome Biol. 2003harsharohiratruefriendISA14659018operon(Functional linkage)
    InteractionInhibits Rv1960charsharohiratruefriendISAoperon(Functional linkage)
    authors,V. Anantharaman,L. Aravind New connections in the prokaryotic toxin-antitoxin network: relationship with the eukaryotic nonsense-mediated RNA decay system. Genome Biol. 2003
    CitationProkaryotic toxin-antitoxin stress response loci. authors,K. Gerdes,SK. Christensen,A. Lbner-Olesen Nat. Rev. Microbiol. 2005harsharohiratruefriendISA15864262operon(Functional linkage)
    InteractionInhibits Rv1960charsharohiratruefriendISAoperon(Functional linkage)
    authors,K. Gerdes,SK. Christensen,A. Lbner-Olesen Prokaryotic toxin-antitoxin stress response loci. Nat. Rev. Microbiol. 2005
    CitationMolecular basis of chromosome banding. I. The effect of mouse DNA fractions on two fluorescent dyes in vitro. authors,K. Simola,RK. Selander,A. de la Chapelle,G. Corneo,E. Ginelli Chromosoma 1975harsharohiratruefriendISA50167operon(Functional linkage)
    SymbolParE2jlewToxic to Ecoli growth. We report the heterologous toxicity of these TA loci in Escherichia coli and show that only a few of the M. tuberculosis-encoded toxins can inhibit E. coli growth and have a killing effect. This killing effect can be suppressed by coexpression of the cognate antitoxin.
    authors,A. Gupta Killing activity and rescue function of genome-wide toxin-antitoxin loci of Mycobacterium tuberculosis. FEMS Microbiol. Lett. 2009
    CitationKilling activity and rescue function of genome-wide toxin-antitoxin loci of Mycobacterium tuberculosis. authors,A. Gupta FEMS Microbiol. Lett. 2009jlew19016878Toxic to Ecoli growth. We report the heterologous toxicity of these TA loci in Escherichia coli and show that only a few of the M. tuberculosis-encoded toxins can inhibit E. coli growth and have a killing effect. This killing effect can be suppressed by coexpression of the cognate antitoxin.
    Otherstart:2402193rslaydenHypothetical unknown protein
    Otherstop:2402510rslaydenHypothetical unknown protein
    Otherstrand:+rslaydenHypothetical unknown protein

    Comments