TB Genome Annotation Portal

Rv1956 (higA)

Amino Acid Sequence

MSIDFPLGDDLAGYIAEAIAADPSFKGTLEDAEEARRLVDALIALRKHCQLSQVEVAKRMGVRQPTVSGFEKEPSDPKLSTLQRYARALDARLRLVLEVP
TLREVPTWHRLSSYRGSARDHQVRVGADKEILMQTNWARHISVRQVEVA
(Nucleotide sequence available on KEGG)

Additional Information



ESSENTIALITY

MtbTnDB - interactive tool for exploring a database of published TnSeq datasets for Mtb

TnSeqCorr - genes with correlated TnSeq profiles across >100 conditions *new*

Classification Condition Strain Method Reference Notes
Non-Essential Sodium Oleate H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 0.000000;
2 non-insertions in a row out of 8 sites
Non-Essential Lignoceric Acid H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 0.000000;
2 non-insertions in a row out of 8 sites
Non-Essential Phosphatidylcholine H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 0.000000;
2 non-insertions in a row out of 8 sites
Non-Essential minimal media + 0.1% glycerol H37RvMA Gumbel Griffin et al. (2011) Probability of Essentiality: 0.000000;
2 non-insertions in a row out of 8 sites
Non-Essential minimal media + 0.01% cholesterol H37RvMA Gumbel Griffin et al. (2011) Probability of Essentiality: 0.000000;
2 non-insertions in a row out of 8 sites
Non-Essential 7H10-glycerol H37RvMA TraSH Sassetti et al. (2003a)
Non-Essential C57BL/6J mice (8 weeks) H37RvMA TraSH Sassetti et al. (2003b) Hybridization Ratio: 0.77
Growth-Advantage 7H09/7H10 + rich media H37RvMA MotifHMM DeJesus et al. (2017) Fully saturated (14 reps).

TnSeq Data No data currently available.
  • No TnSeq data currently available for this Target.
RNASeq Data No data currently available.
  • No RNA-Seq data currently available for this Target.
Metabolomic Profiles No data currently available.
  • No Metabolomic data currently available for this Target.
Proteomic Data No data currently available.
  • No Proteomic data currently available for this Target.

Regulatory Relationships from Systems Biology
  • BioCyc

    Gene interactions based on ChIPSeq and Transcription Factor Over-Expression (TFOE) (Systems Biology)

    NOTE: Green edges represent the connected genes being classified as differentially essential as a result of the middle gene being knocked out. These interactions are inferred based on RNASeq.

    Interactions based on ChIPSeq data

  • Interactions based on ChIPSeq data (Minch et al. 2014)

    Interactions based on TFOE data (Rustad et al. 2014)



    TBCAP

    Tubculosis Community Annotation Project (
    Slayden et al., 2013)

    Rv1956 (higA)

    PropertyValueCreatorEvidencePMIDComment
    InteractionInhibits Rv1955akankshajain.21IDASpectrophotometric analysis
    authors,A. Gupta Killing activity and rescue function of genome-wide toxin-antitoxin loci of Mycobacterium tuberculosis. FEMS Microbiol. Lett. 2009
    InteractionInhibits Rv1955prabhakarsmailIDASpectrophotometric analysis
    authors,A. Gupta Killing activity and rescue function of genome-wide toxin-antitoxin loci of Mycobacterium tuberculosis. FEMS Microbiol. Lett. 2009
    CitationKilling activity and rescue function of genome-wide toxin-antitoxin loci of Mycobacterium tuberculosis. authors,A. Gupta FEMS Microbiol. Lett. 2009akankshajain.21IDA19016878Spectrophotometric analysis
    InteractionInhibits Rv1955akankshajain.21IDASpectrophotometric analysis
    authors,A. Gupta Killing activity and rescue function of genome-wide toxin-antitoxin loci of Mycobacterium tuberculosis. FEMS Microbiol. Lett. 2009
    CitationKilling activity and rescue function of genome-wide toxin-antitoxin loci of Mycobacterium tuberculosis. authors,A. Gupta FEMS Microbiol. Lett. 2009prabhakarsmailIDA19016878Spectrophotometric analysis
    InteractionInhibits Rv1955prabhakarsmailIDASpectrophotometric analysis
    authors,A. Gupta Killing activity and rescue function of genome-wide toxin-antitoxin loci of Mycobacterium tuberculosis. FEMS Microbiol. Lett. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3545cyamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3550yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3551yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3552yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3537yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3538yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3543cyamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3544cyamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3249cyamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3250cyamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3251cyamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3252cyamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv2937yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv2938yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv2939yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv3197Ayamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv2933yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv2934yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv2935yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv2936yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv2930yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv2931yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationDissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. M. Guo, H. Feng et al. Genome Res. 2009yamir.morenoIDA19228590One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    InteractionRegulates Rv2932yamir.morenoIDAOne hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. .
    M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009
    CitationThe temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. G. Balzsi, AP. Heath et al. Mol. Syst. Biol. 2008yamir.morenoISO18985025E.coli orthology based inference. Orthologous pair regulator-target found in E.coli.
    InteractionRegulates Rv1956yamir.morenoISOE.coli orthology based inference. Orthologous pair regulator-target found in E.coli.
    G. Balzsi, AP. Heath et al. The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol. Syst. Biol. 2008
    InteractionRegulatedBy Rv1956yamir.morenoISOE.coli orthology based inference. Orthologous pair regulator-target found in E.coli.
    G. Balzsi, AP. Heath et al. The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol. Syst. Biol. 2008
    CitationEvolutionary dynamics of prokaryotic transcriptional regulatory networks. authors,M. Madan Babu,SA. Teichmann,L. Aravind J. Mol. Biol. 2006yamir.morenoISO16530225E.coli orthology based inference. Orthologous pair regulator-target found in E.coli.
    InteractionRegulates Rv1956yamir.morenoISOE.coli orthology based inference. Orthologous pair regulator-target found in E.coli.
    authors,M. Madan Babu,SA. Teichmann,L. Aravind Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J. Mol. Biol. 2006
    InteractionRegulatedBy Rv1956yamir.morenoISOE.coli orthology based inference. Orthologous pair regulator-target found in E.coli.
    authors,M. Madan Babu,SA. Teichmann,L. Aravind Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J. Mol. Biol. 2006
    SymbolhigAjlewPulldown shows interaction between Rv1957 and HigA.
    authors,P. Bordes,AM. Cirinesi,R. Ummels,A. Sala,S. Sakr,W. Bitter,P. Genevaux SecB-like chaperone controls a toxin-antitoxin stress-responsive system in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U.S.A. 2011
    CitationSecB-like chaperone controls a toxin-antitoxin stress-responsive system in Mycobacterium tuberculosis. authors,P. Bordes,AM. Cirinesi,R. Ummels,A. Sala,S. Sakr,W. Bitter,P. Genevaux Proc. Natl. Acad. Sci. U.S.A. 2011jlew21536872Pulldown shows interaction between Rv1957 and HigA.
    SymbolhigAjlewbinds to promoter upstream of Rv1954A
    authors,AS. Fivian-Hughes,EO. Davis Analyzing the regulatory role of the HigA antitoxin within Mycobacterium tuberculosis. J. Bacteriol. 2010
    CitationAnalyzing the regulatory role of the HigA antitoxin within Mycobacterium tuberculosis. authors,AS. Fivian-Hughes,EO. Davis J. Bacteriol. 2010jlew20585061binds to promoter upstream of Rv1954A
    SymbolHigB1jlewToxic to Ecoli growth. We report the heterologous toxicity of these TA loci in Escherichia coli and show that only a few of the M. tuberculosis-encoded toxins can inhibit E. coli growth and have a killing effect. This killing effect can be suppressed by coexpression of the cognate antitoxin.
    authors,A. Gupta Killing activity and rescue function of genome-wide toxin-antitoxin loci of Mycobacterium tuberculosis. FEMS Microbiol. Lett. 2009
    CitationKilling activity and rescue function of genome-wide toxin-antitoxin loci of Mycobacterium tuberculosis. authors,A. Gupta FEMS Microbiol. Lett. 2009jlew19016878Toxic to Ecoli growth. We report the heterologous toxicity of these TA loci in Escherichia coli and show that only a few of the M. tuberculosis-encoded toxins can inhibit E. coli growth and have a killing effect. This killing effect can be suppressed by coexpression of the cognate antitoxin.
    SymbolHig BA-1rslaydenPossible transcriptional regulatory protein, contains probable helix-turn-helix motif at aa 52-73 (+4.78 SD).
    Otherstart:2202138rslaydenPossible transcriptional regulatory protein, contains probable helix-turn-helix motif at aa 52-73 (+4.78 SD).
    Otherstop:2202587rslaydenPossible transcriptional regulatory protein, contains probable helix-turn-helix motif at aa 52-73 (+4.78 SD).
    Otherstrand:+rslaydenPossible transcriptional regulatory protein, contains probable helix-turn-helix motif at aa 52-73 (+4.78 SD).

    Comments