TB Genome Annotation Portal

Rv1185c (fadD21)

Amino Acid Sequence

MSDSSVLSLLRERAGLQPDDAAFTYIDYEQDWAGITETLTWSEVFRRTRIVAHEVRRHCTTGDRAVILAPQGLAYIAAFLGSMQAGAIAVPLSVPQIGSH
DERVSAVLADASPSVILTTSAVAEAVAEHIHRPNTNNVGPIIEIDSLDLTGNSPSFRVKDLPSAAYLQYTSGSTRAPAGVMISHRNLQANFQQLMSNYFG
DRNGVAPPDTTIVSWLPFYHDMGLVLGIIAPILGGYRSELTSPLAFLQRPARWLHSLANGSPSWSAAPNFAFELAVRKTTDADIEGLDLGNVLGITSGAE
RVHPNTLSRFCNRFAPYNFREDMIRPSYGLAEATLYVASRNSGDKPEVVYFEPDKLSTGSANRCEPKTGTPLLSYGMPTSPTVRIVDPDTCIECPAGTIG
EIWVKGDNVAEGYWNKPDETRHTFGAMLVHPSAGTPDGSWLRTGDLGFLSEDEMFIVGRMKDMLIVYGRNHYPEDIESTVQEITGGRVAAISVPVDHTEK
LVTVIELKLLGDSAGEAMDELDVIKNNVTAAISRSHGLNVADLVLVPPGSIPTTTSGKIRRAACVEQYRLQQFTRLDG
(Nucleotide sequence available on KEGG)

Additional Information




Analysis of Positive Selection in Clinical Isolates *new*

Moldova (2,057)global set (5,195)
under significant positive selection?NONO
omega peak height (95%CI lower bound)2.24 (0.47)1.24 (0.48)
codons under selection
omega plots
genetic variants*linklink
statistics at each codonlinklink
* example format for variants: "D27 (GAC): D27H (CAC,11)" means "Asp27 (native codon GAC) mutated to His (codon CAC) in 11 isolates"


ESSENTIALITY

MtbTnDB - interactive tool for exploring a database of published TnSeq datasets for Mtb

TnSeqCorr - genes with correlated TnSeq profiles across ~100 conditions

Rv1185c/fadD21, gene len: 1736 bp, num TA sites: 32
conditiondatasetcallmediummethodnotes
in-vitroDeJesus 2017 mBionon-essential7H9HMMfully saturated, 14 TnSeq libraries combined
in-vitroSassetti 2003 Mol Micronon-essential 7H9TRASHessential if hybridization ratio<0.2
in-vivo (mice)Sassetti 2003 PNASessentialBL6 miceTRASHessential if hybridization ratio<0.4, min over 4 timepoints (1-8 weeks)
in-vitro (glycerol)Griffin 2011 PPathnon-essentialM9 minimal+glycerolGumbel2 replicates; Padj<0.05
in-vitro (cholesterol)Griffin 2011 PPathnon-essentialM9 minimal+cholesterolGumbel3 replicates; Padj<0.05
differentially essential in cholesterol Griffin 2011 PPathYES (LFC=0.53)cholesterol vs glycerolresampling-SRYES if Padj<0.05, else not significant; LFC<0 means less insertions/more essential in cholesterol
in-vitroSmith 2022 eLifenon-essential7H9HMM6 replicates (raw data in Subramaniam 2017, PMID 31752678)
in-vivo (mice)Smith 2022 eLifenon-essentialBL6 miceHMM6 replicates (raw data in Subramaniam 2017, PMID 31752678)
differentially essential in miceSmith 2022 eLifeNO (LFC=0.442)in-vivo vs in-vitroZINBYES if Padj<0.05, else not significant; LFC<0 means less insertions/more essential in mice
in-vitro (minimal)Minato 2019 mSysnon-essentialminimal mediumHMM
in-vitro (YM rich medium)Minato 2019 mSysnon-essentialYM rich mediumHMM7H9 supplemented with ~20 metabolites (amino acids, vitamins)
differentially essential in YM rich mediumMinato 2019 mSysNO (LFC=0.7)YM rich vs minimal mediumresampling

TnSeq Data No data currently available.
  • No TnSeq data currently available for this Target.
RNASeq Data No data currently available.
  • No RNA-Seq data currently available for this Target.
Metabolomic Profiles No data currently available.
  • No Metabolomic data currently available for this Target.
Proteomic Data No data currently available.
  • No Proteomic data currently available for this Target.

Regulatory Relationships from Systems Biology
  • BioCyc

    Gene interactions based on ChIPSeq and Transcription Factor Over-Expression (TFOE) (Systems Biology)

    NOTE: Green edges represent the connected genes being classified as differentially essential as a result of the middle gene being knocked out. These interactions are inferred based on RNASeq.

    Interactions based on ChIPSeq data

    RNA processing and modification
    Energy production and conversion
    Chromatin structure and dynamics
    Amino acid transport and metabolism
    Cell cycle control, cell division, chromosome partitioning
    Carbohydrate transport and metabolism
    Nucleotide transport and metabolism
    Lipid transport and metabolism
    Coenzyme transport and metabolism
    Transcription
    Translation, ribosomal structure and biogenesis
    Cell wall/membrane/envelope biogenesis
    Replication, recombination and repair
    Posttranslational modification, protein turnover, chaperones
    Cell motility
    Secondary metabolites biosynthesis, transport and catabolism
    Inorganic ion transport and metabolism
    Function unknown
    General function prediction only
    Intracellular trafficking, secretion, and vesicular transport
    Signal transduction mechanisms
    Extracellular structures
    Defense mechanisms
    Nuclear structure
    Cytoskeleton
  • BioCyc Co-regulated genes based on gene expression profiling (Systems Biology, Inferelator Network)
  • Differentially expressed as result of RNASeq in glycerol environment (Only top 20 genes shown sorted by log fold change with p_adj 0.05).
    Conditionally essential as result of TNSeq (Only top 20 genes shown sorted by log fold change with p_adj 0.05).
  • BioCyc Transcription factor binding based on ChIP-Seq (Systems Biology)
  • Interactions based on ChIPSeq data (Minch et al. 2014)

    Interactions based on TFOE data (Rustad et al. 2014)



    TBCAP

    Tubculosis Community Annotation Project (
    Slayden et al., 2013)

    Rv1185c (fadD21)

    PropertyValueCreatorEvidencePMIDComment
    InteractionRegulatory Rv0757singhpankaj2116IEPCo-expression (Functional linkage)
    ML. Chesne-Seck, N. Barilone et al. A point mutation in the two-component regulator PhoP-PhoR accounts for the absence of polyketide-derived acyltrehaloses but not that of phthiocerol dimycocerosates in Mycobacterium tuberculosis H37Ra. J. Bacteriol. 2008
    InteractionRegulatory Rv0757singhpankaj2116IEPCo-expression (Functional linkage)
    authors,A. Sola-Landa,RS. Moura,JF. Martn The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc. Natl. Acad. Sci. U.S.A. 2003
    InteractionRegulatory Rv0757singhpankaj2116IEPCo-expression (Functional linkage)
    J. Gonzalo Asensio, C. Maia et al. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J. Biol. Chem. 2006
    InteractionRegulatory Rv0757singhpankaj2116IEPCo-expression (Functional linkage)
    J. Gonzalo-Asensio, CY. Soto et al. The Mycobacterium tuberculosis phoPR operon is positively autoregulated in the virulent strain H37Rv. J. Bacteriol. 2008
    InteractionRegulatory Rv0757singhpankaj2116IEPCo-expression (Functional linkage)
    A. Sinha, S. Gupta et al. PhoP-PhoP interaction at adjacent PhoP binding sites is influenced by protein phosphorylation. J. Bacteriol. 2008
    InteractionRegulatory Rv0757singhpankaj2116IEPCo-expression (Functional linkage)
    J. Gonzalo Asensio, C. Maia et al. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J. Biol. Chem. 2006
    InteractionRegulatory Rv0757singhpankaj2116IEPCo-expression (Functional linkage)
    M. Ryndak, S. Wang et al. PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol. 2008
    InteractionRegulatory Rv0757singhpankaj2116IEPCo-expression (Functional linkage)
    JA. Asensio, A. Arbus et al. Live tuberculosis vaccines based on phoP mutants: a step towards clinical trials. Expert opinion on biological therapy 2008
    InteractionRegulatory Rv0757singhpankaj2116IEPCo-expression (Functional linkage)
    SB. Walters, E. Dubnau et al. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol. Microbiol. 2006
    InteractionRegulatory Rv0757singhpankaj2116IEPCo-expression (Functional linkage)
    J. Gonzalo-Asensio, S. Mostowy et al. PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS ONE 2008
    InteractionRegulatedBy Rv0348yamir.morenoIEPMicroarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments..
    B. Abomoelak, EA. Hoye et al. mosR, a novel transcriptional regulator of hypoxia and virulence in Mycobacterium tuberculosis. J. Bacteriol. 2009
    InteractionRegulatedBy Rv0757yamir.morenoIEPMicroarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments..
    J. Gonzalo Asensio, C. Maia et al. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J. Biol. Chem. 2006
    InteractionRegulatedBy Rv0757yamir.morenoIEPMicroarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments.. qRT-PCR. mRNA expression levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using qRT-PCR technique.
    SB. Walters, E. Dubnau et al. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol. Microbiol. 2006
    InteractionRegulatedBy Rv0757yamir.morenoIEPMicroarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments.. qRT-PCR. mRNA expression levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using qRT-PCR technique.
    SB. Walters, E. Dubnau et al. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol. Microbiol. 2006
    InteractionRegulatedBy Rv3676yamir.morenoTASLiterature previously reported link (from Balazsi et al. 2008). Traceable author statement to experimental support.
    G. Balzsi, AP. Heath et al. The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol. Syst. Biol. 2008
    InteractionRegulatedBy Rv3286cyamir.morenoIEPMicroarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments..
    EP. Williams, JH. Lee et al. Mycobacterium tuberculosis SigF regulates genes encoding cell wall-associated proteins and directly regulates the transcriptional regulatory gene phoY1. J. Bacteriol. 2007

    Comments