TB Genome Annotation Portal

Rv1028c (kdpD)

Amino Acid Sequence

VTLLFADLCAIFTPYRWMIEHVTTKRGQLRIYLGAAPGVGKTYAMLGEAHRRLERGTDVVAAVVETHGRNKTAKLLEGIEMIPPRYVEYRGARFPELDVE
AVLRRHPQVVLVDELAHTNTPGSKNPKRWQDVQEILDAGITVISTVNIQHLEGLNDVVEQITGIEQKEKIPDEIVRAADQVELVDITPEALRRRLAHGNV
YAAERVDAALSNYFRTGNLTALREIALLWLADQVDAALEKYRADKKITATWEARERVVVAVTGGPESETLVRRASRIASKSSAELMVVHVIRGDGLAGVS
APQLGRVRELATSLGATMHTVVGDDVPTALLDFAREMNATQLVVGTSRRSRWARLFDEGIGARTVQEPGGIDVHMVTHPAASRASGWSRVSPRERHIASW
LAALVVPSVICAITVAWLDRFMGIGGESALFFIGVLIVALLGGVAPAALSALLSGMLLNYFLTEPRYTWTIAEPDAAVTEFVLLAMAVAVAVLVDGAASR
TREARRASQEAELLALFAGSVLRGADLATLLQRVRETYSQRAVTMLRVRQGASTGETVACVGTNPCRDVDSADTAIEVGDDEFWMLMAGRKLAARDRRVL
TAVATQAAGLVKQRELAEEAGQAEAIARADELRRSLLSAVSHDLRTPLAAAKVAVSSLRTEDVAFSPEDTAELLATIEESIDQLTALVANLLDSSRLAAG
VIRPQLRRAYLEEAVQRALVSIGKGATGFYRSGIDRVKVDVGDAVAMADAGLLERVLANLIDNALRYAPDCVVRVNAGRVRERVLINVIDEGPGVPRGTE
EQLFAPFQRPGDHDNTTGVGLGMSVARGFVEAMGGTISATDTPGGGLTVVIDLAAPEDRP
(Nucleotide sequence available on KEGG)

Additional Information




Analysis of Positive Selection in Clinical Isolates *new*

Moldova (2,057)global set (5,195)
under significant positive selection?NONO
omega peak height (95%CI lower bound)2.27 (0.66)1.88 (0.98)
codons under selection
omega plots
genetic variants*linklink
statistics at each codonlinklink
* example format for variants: "D27 (GAC): D27H (CAC,11)" means "Asp27 (native codon GAC) mutated to His (codon CAC) in 11 isolates"


ESSENTIALITY

MtbTnDB - interactive tool for exploring a database of published TnSeq datasets for Mtb

TnSeqCorr - genes with correlated TnSeq profiles across ~100 conditions

Rv1028c/kdpD, gene len: 2582 bp, num TA sites: 28
conditiondatasetcallmediummethodnotes
in-vitroDeJesus 2017 mBionon-essential7H9HMMfully saturated, 14 TnSeq libraries combined
in-vitroSassetti 2003 Mol Micronon-essential 7H9TRASHessential if hybridization ratio<0.2
in-vivo (mice)Sassetti 2003 PNASessentialBL6 miceTRASHessential if hybridization ratio<0.4, min over 4 timepoints (1-8 weeks)
in-vitro (glycerol)Griffin 2011 PPathnon-essentialM9 minimal+glycerolGumbel2 replicates; Padj<0.05
in-vitro (cholesterol)Griffin 2011 PPathnon-essentialM9 minimal+cholesterolGumbel3 replicates; Padj<0.05
differentially essential in cholesterol Griffin 2011 PPathNO (LFC=-0.08)cholesterol vs glycerolresampling-SRYES if Padj<0.05, else not significant; LFC<0 means less insertions/more essential in cholesterol
in-vitroSmith 2022 eLifenon-essential7H9HMM6 replicates (raw data in Subramaniam 2017, PMID 31752678)
in-vivo (mice)Smith 2022 eLifenon-essentialBL6 miceHMM6 replicates (raw data in Subramaniam 2017, PMID 31752678)
differentially essential in miceSmith 2022 eLifeNO (LFC=-0.153)in-vivo vs in-vitroZINBYES if Padj<0.05, else not significant; LFC<0 means less insertions/more essential in mice
in-vitro (minimal)Minato 2019 mSysnon-essentialminimal mediumHMM
in-vitro (YM rich medium)Minato 2019 mSysnon-essentialYM rich mediumHMM7H9 supplemented with ~20 metabolites (amino acids, vitamins)
differentially essential in YM rich mediumMinato 2019 mSysNO (LFC=-1.4)YM rich vs minimal mediumresampling

TnSeq Data No data currently available.
  • No TnSeq data currently available for this Target.
RNASeq Data No data currently available.
  • No RNA-Seq data currently available for this Target.
Metabolomic Profiles No data currently available.
  • No Metabolomic data currently available for this Target.
Proteomic Data No data currently available.
  • No Proteomic data currently available for this Target.

Regulatory Relationships from Systems Biology
  • BioCyc

    Gene interactions based on ChIPSeq and Transcription Factor Over-Expression (TFOE) (Systems Biology)

    NOTE: Green edges represent the connected genes being classified as differentially essential as a result of the middle gene being knocked out. These interactions are inferred based on RNASeq.

    Interactions based on ChIPSeq data

    RNA processing and modification
    Energy production and conversion
    Chromatin structure and dynamics
    Amino acid transport and metabolism
    Cell cycle control, cell division, chromosome partitioning
    Carbohydrate transport and metabolism
    Nucleotide transport and metabolism
    Lipid transport and metabolism
    Coenzyme transport and metabolism
    Transcription
    Translation, ribosomal structure and biogenesis
    Cell wall/membrane/envelope biogenesis
    Replication, recombination and repair
    Posttranslational modification, protein turnover, chaperones
    Cell motility
    Secondary metabolites biosynthesis, transport and catabolism
    Inorganic ion transport and metabolism
    Function unknown
    General function prediction only
    Intracellular trafficking, secretion, and vesicular transport
    Signal transduction mechanisms
    Extracellular structures
    Defense mechanisms
    Nuclear structure
    Cytoskeleton
  • BioCyc Co-regulated genes based on gene expression profiling (Systems Biology, Inferelator Network)
  • Differentially expressed as result of RNASeq in glycerol environment (Only top 20 genes shown sorted by log fold change with p_adj 0.05).
    Conditionally essential as result of TNSeq (Only top 20 genes shown sorted by log fold change with p_adj 0.05).
  • BioCyc Transcription factor binding based on ChIP-Seq (Systems Biology)
  • Interactions based on ChIPSeq data (Minch et al. 2014)

    Interactions based on TFOE data (Rustad et al. 2014)



    TBCAP

    Tubculosis Community Annotation Project (
    Slayden et al., 2013)

    Rv1028c (kdpD)

    PropertyValueCreatorEvidencePMIDComment
    InteractionRegulatory Rv1368swetha.rIPIYeast three-hybrid (Physical interaction)
    AJ. Steyn, J. Joseph et al. Interaction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr family. Mol. Microbiol. 2003
    InteractionRegulatory Rv1368swetha.rIPIYeast two-hybrid (Physical interaction)
    AJ. Steyn, J. Joseph et al. Interaction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr family. Mol. Microbiol. 2003
    CitationDeletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. T. Parish, DA. Smith et al. Infect. Immun. 2003darhnguIPI12595424Yeast Two- Three Hybrid(Physical Interaction)
    InteractionSignaling Rv1368darhnguIPIYeast Two- Three Hybrid(Physical Interaction)
    T. Parish, DA. Smith et al. Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infect. Immun. 2003
    InteractionSignaling Rv1690darhnguIPIYeast Two- Three Hybrid(Physical Interaction)
    T. Parish, DA. Smith et al. Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infect. Immun. 2003
    CitationDissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. A. Singh, D. Mai et al. Proc. Natl. Acad. Sci. U.S.A. 2006darhnguIPI16844784Yeast Two- Three Hybrid(Physical Interaction)
    InteractionSignaling Rv1368darhnguIPIYeast Two- Three Hybrid(Physical Interaction)
    A. Singh, D. Mai et al. Dissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. Proc. Natl. Acad. Sci. U.S.A. 2006
    InteractionSignaling Rv1690darhnguIPIYeast Two- Three Hybrid(Physical Interaction)
    A. Singh, D. Mai et al. Dissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. Proc. Natl. Acad. Sci. U.S.A. 2006
    CitationDeletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. T. Parish, DA. Smith et al. Infect. Immun. 2003akankshajain.21IPI12595424Protein fragment complementation
    InteractionRegulatory Rv1027cakankshajain.21IPIProtein fragment complementation
    T. Parish, DA. Smith et al. Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infect. Immun. 2003
    CitationDissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. A. Singh, D. Mai et al. Proc. Natl. Acad. Sci. U.S.A. 2006akankshajain.21IPI16844784Protein fragment complementation
    InteractionRegulatory Rv1027cakankshajain.21IPIProtein fragment complementation
    A. Singh, D. Mai et al. Dissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. Proc. Natl. Acad. Sci. U.S.A. 2006
    CitationInteraction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr family. AJ. Steyn, J. Joseph et al. Mol. Microbiol. 2003darhnguIPI12581360Yeast Two- Three Hybrid(Physical Interaction)
    InteractionSignaling Rv1368darhnguIPIYeast Two- Three Hybrid(Physical Interaction)
    AJ. Steyn, J. Joseph et al. Interaction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr family. Mol. Microbiol. 2003
    InteractionSignaling Rv1690darhnguIPIYeast Two- Three Hybrid(Physical Interaction)
    AJ. Steyn, J. Joseph et al. Interaction of the sensor module of Mycobacterium tuberculosis H37Rv KdpD with members of the Lpr family. Mol. Microbiol. 2003
    InteractionRegulatory Rv1027cdarhnguIPIProtein fragment complementation
    T. Parish, DA. Smith et al. Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infect. Immun. 2003
    InteractionRegulatory Rv1027cdarhnguIPIProtein fragment complementation
    A. Singh, D. Mai et al. Dissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. Proc. Natl. Acad. Sci. U.S.A. 2006

    Comments