TB Genome Annotation Portal

Rv0732 (secY)

Amino Acid Sequence

VLSAFISSLRTVDLRRKILFTLGIVILYRVGAALPSPGVNFPNVQQCIKEASAGEAGQIYSLINLFSGGALLKLTVFAVGVMPYITASIIVQLLTVVIPR
FEELRKEGQAGQSKMTQYTRYLAIALAILQATSIVALAANGGLLQGCSLDIIADQSIFTLVVIVLVMTGGAALVMWMGELITERGIGNGMSLLIFVGIAA
RIPAEGQSILESRGGVVFTAVCAAALIIIVGVVFVEQGQRRIPVQYAKRMVGRRMYGGTSTYLPLKVNQAGVIPVIFASSLIYIPHLITQLIRSGSGVVG
NSWWDKFVGTYLSDPSNLVYIGIYFGLIIFFTYFYVSITFNPDERADEMKKFGGFIPGIRPGRPTADYLRYVLSRITLPGSIYLGVIAVLPNLFLQIGAG
GTVQNLPFGGTAVLIMIGVGLDTVKQIESQLMQRNYEGFLK
(Nucleotide sequence available on KEGG)

Additional Information



ESSENTIALITY

MtbTnDB - interactive tool for exploring a database of published TnSeq datasets for Mtb

TnSeqCorr - genes with correlated TnSeq profiles across >100 conditions *new*

Classification Condition Strain Method Reference Notes
Essential Sodium Oleate H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 1.000000;
22 non-insertions in a row out of 28 sites
Essential Lignoceric Acid H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 1.000000;
27 non-insertions in a row out of 28 sites
Essential Phosphatidylcholine H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 1.000000;
27 non-insertions in a row out of 28 sites
Essential minimal media + 0.1% glycerol H37RvMA Gumbel Griffin et al. (2011) Probability of Essentiality: 1.000000;
27 non-insertions in a row out of 28 sites
Essential minimal media + 0.01% cholesterol H37RvMA Gumbel Griffin et al. (2011) Probability of Essentiality: 1.000000;
27 non-insertions in a row out of 28 sites
Essential 7H10-glycerol H37RvMA TraSH Sassetti et al. (2003a)
Essential C57BL/6J mice (8 weeks) H37RvMA TraSH Sassetti et al. (2003b) Hybridization Ratio: 0.02
Essential 7H09/7H10 + rich media H37RvMA MotifHMM DeJesus et al. (2017) Fully saturated (14 reps).

TnSeq Data No data currently available.
  • No TnSeq data currently available for this Target.
RNASeq Data No data currently available.
  • No RNA-Seq data currently available for this Target.
Metabolomic Profiles No data currently available.
  • No Metabolomic data currently available for this Target.
Proteomic Data No data currently available.
  • No Proteomic data currently available for this Target.

Regulatory Relationships from Systems Biology
  • BioCyc

    Gene interactions based on ChIPSeq and Transcription Factor Over-Expression (TFOE) (Systems Biology)

    NOTE: Green edges represent the connected genes being classified as differentially essential as a result of the middle gene being knocked out. These interactions are inferred based on RNASeq.

    Interactions based on ChIPSeq data

    RNA processing and modification
    Energy production and conversion
    Chromatin structure and dynamics
    Amino acid transport and metabolism
    Cell cycle control, cell division, chromosome partitioning
    Carbohydrate transport and metabolism
    Nucleotide transport and metabolism
    Lipid transport and metabolism
    Coenzyme transport and metabolism
    Transcription
    Translation, ribosomal structure and biogenesis
    Cell wall/membrane/envelope biogenesis
    Replication, recombination and repair
    Posttranslational modification, protein turnover, chaperones
    Cell motility
    Secondary metabolites biosynthesis, transport and catabolism
    Inorganic ion transport and metabolism
    Function unknown
    General function prediction only
    Intracellular trafficking, secretion, and vesicular transport
    Signal transduction mechanisms
    Extracellular structures
    Defense mechanisms
    Nuclear structure
    Cytoskeleton
  • BioCyc Co-regulated genes based on gene expression profiling (Systems Biology, Inferelator Network)
  • Differentially expressed as result of RNASeq in glycerol environment (Only top 20 genes shown sorted by log fold change with p_adj 0.05).
    Conditionally essential as result of TNSeq (Only top 20 genes shown sorted by log fold change with p_adj 0.05).
  • BioCyc Transcription factor binding based on ChIP-Seq (Systems Biology)
  • Interactions based on ChIPSeq data (Minch et al. 2014)

    Interactions based on TFOE data (Rustad et al. 2014)



    TBCAP

    Tubculosis Community Annotation Project (
    Slayden et al., 2013)

    Rv0732 (secY)

    PropertyValueCreatorEvidencePMIDComment
    InteractionTranslation Rv3610cshahanup86IDAAffinity purification (Physical interaction)
    authors,R. Srinivasan,H. Rajeswari,P. Ajitkumar Analysis of degradation of bacterial cell division protein FtsZ by the ATP-dependent zinc-metalloprotease FtsH in vitro. Microbiol. Res. 2008
    InteractionTranslation Rv3610cshahanup86IDAAffinity purification (Physical interaction)
    authors,G. Anilkumar,R. Srinivasan,SP. Anand,P. Ajitkumar Bacterial cell division protein FtsZ is a specific substrate for the AAA family protease FtsH. Microbiology (Reading, Engl.) 2001
    InteractionTranslation Rv3610cshahanup86IDAAffinity purification (Physical interaction)
    G. Anilkumar, R. Srinivasan et al. Genomic organization and in vivo characterization of proteolytic activity of FtsH of Mycobacterium smegmatis SN2. Microbiology (Reading, Engl.) 2004
    InteractionTranslation Rv3610cshahanup86IDAAffinity purification (Physical interaction)
    authors,H. Zheng,L. Lu,B. Wang,S. Pu,X. Zhang,G. Zhu,W. Shi,L. Zhang,H. Wang,S. Wang,G. Zhao,Y. Zhang Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE 2008
    InteractionTranslation Rv3610cshahanup86IDAAffinity purification (Physical interaction)
    authors,C. Herman,D. Thvenet,R. D'Ari,P. Bouloc Degradation of sigma 32, the heat shock regulator in Escherichia coli, is governed by HflB. Proc. Natl. Acad. Sci. U.S.A. 1995
    InteractionTranslation Rv3610cshahanup86IDAAffinity purification (Physical interaction)
    G. Anilkumar, MM. Chauhan et al. Cloning and expression of the gene coding for FtsH protease from Mycobacterium tuberculosis H37Rv. Gene 1998
    InteractionTranslation Rv3610cshahanup86IDAAffinity purification (Physical interaction)
    R. Srinivasan, G. Anilkumar et al. Functional characterization of AAA family FtsH protease of Mycobacterium tuberculosis. FEMS Microbiol. Lett. 2006
    InteractionPhysicalInteraction Rv1440shahanup86TAS
    authors,F. Duong Binding, activation and dissociation of the dimeric SecA ATPase at the dimeric SecYEG translocase. EMBO J. 2003
    CitationThe bacterial protein-translocation complex: SecYEG dimers associate with one or two SecA molecules. authors,C. Tziatzios,D. Schubert,M. Lotz,D. Gundogan,H. Betz,H. Schgger,W. Haase,F. Duong,I. Collinson J. Mol. Biol. 2004anshula.arora1990IDA15210351Structural analysis
    InteractionPhysicalInteraction Rv3240canshula.arora1990IDAStructural analysis
    authors,C. Tziatzios,D. Schubert,M. Lotz,D. Gundogan,H. Betz,H. Schgger,W. Haase,F. Duong,I. Collinson The bacterial protein-translocation complex: SecYEG dimers associate with one or two SecA molecules. J. Mol. Biol. 2004
    InteractionPhysicalInteraction Rv1821anshula.arora1990IDAStructural analysis
    authors,C. Tziatzios,D. Schubert,M. Lotz,D. Gundogan,H. Betz,H. Schgger,W. Haase,F. Duong,I. Collinson The bacterial protein-translocation complex: SecYEG dimers associate with one or two SecA molecules. J. Mol. Biol. 2004
    CitationATPase activity of Mycobacterium tuberculosis SecA1 and SecA2 proteins and its importance for SecA2 function in macrophages. JM. Hou, NG. D'Lima et al. J. Bacteriol. 2008anshula.arora1990IDA18487341Structural analysis
    InteractionPhysicalInteraction Rv3240canshula.arora1990IDAStructural analysis
    JM. Hou, NG. D'Lima et al. ATPase activity of Mycobacterium tuberculosis SecA1 and SecA2 proteins and its importance for SecA2 function in macrophages. J. Bacteriol. 2008
    InteractionPhysicalInteraction Rv1821anshula.arora1990IDAStructural analysis
    JM. Hou, NG. D'Lima et al. ATPase activity of Mycobacterium tuberculosis SecA1 and SecA2 proteins and its importance for SecA2 function in macrophages. J. Bacteriol. 2008
    InteractionPhysicalInteraction Rv0638prabhakarsmailISOStructural Analysis
    authors,KL. Bieker,TJ. Silhavy PrlA (SecY) and PrlG (SecE) interact directly and function sequentially during protein translocation in E. coli. Cell 1990
    InteractionPhysicalInteraction Rv0638akankshajain.21ISOStructural Analysis
    authors,EH. Manting,C. van Der Does,H. Remigy,A. Engel,AJ. Driessen SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J. 2000
    InteractionPhysicalInteraction Rv0638akankshajain.21ISOStructural Analysis
    authors,KL. Bieker,TJ. Silhavy PrlA (SecY) and PrlG (SecE) interact directly and function sequentially during protein translocation in E. coli. Cell 1990
    InteractionPhysicalInteraction Rv0638prabhakarsmailISOStructural Analysis
    authors,EH. Manting,C. van Der Does,H. Remigy,A. Engel,AJ. Driessen SecYEG assembles into a tetramer to form the active protein translocation channel. EMBO J. 2000
    InteractionPhysicalInteraction Rv0379manish.srcpISO
    authors,C. Tziatzios,D. Schubert,M. Lotz,D. Gundogan,H. Betz,H. Schgger,W. Haase,F. Duong,I. Collinson The bacterial protein-translocation complex: SecYEG dimers associate with one or two SecA molecules. J. Mol. Biol. 2004
    InteractionRegulatedBy Rv1221yamir.morenoIEPMicroarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments..
    R. Manganelli, MI. Voskuil et al. The Mycobacterium tuberculosis ECF sigma factor sigmaE: role in global gene expression and survival in macrophages. Mol. Microbiol. 2001

    Comments