TB Genome Annotation Portal

Rv0483 (lprQ)

Amino Acid Sequence

VVIRVLFRPVSLIPVNNSSTPQSQGPISRRLALTALGFGVLAPNVLVACAGKVTKLAEKRPPPAPRLTFRPADSAADVVPIAPISVEVGDGWFQRVALTN
SAGKVVAGAYSRDRTIYTITEPLGYDTTYTWSGSAVGHDGKAVPVAGKFTTVAPVKTINAGFQLADGQTVGIAAPVIIQFDSPISDKAAVERALTVTTDP
PVEGGWAWLPDEAQGARVHWRPREYYPAGTTVDVDAKLYGLPFGDGAYGAQDMSLHFQIGRRQVVKAEVSSHRIQVVTDAGVIMDFPCSYGEADLARNVT
RNGIHVVTEKYSDFYMSNPAAGYSHIHERWAVRISNNGEFIHANPMSAGAQGNSNVTNGCINLSTENAEQYYRSAVYGDPVEVTGSSIQLSYADGDIWDW
AVDWDTWVSMSALPPPAAKPAATQIPVTAPVTPSDAPTPSGTPTTTNGPGG
(Nucleotide sequence available on KEGG)

Additional Information

LdtC, L,D-transpeptidase, peptidoglycan synthesis

ESSENTIALITY

MtbTnDB - interactive tool for exploring a database of published TnSeq datasets for Mtb

TnSeqCorr - genes with correlated TnSeq profiles across >100 conditions *new*

Classification Condition Strain Method Reference Notes
Non-Essential Sodium Oleate H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 0.000000;
2 non-insertions in a row out of 29 sites
Non-Essential Lignoceric Acid H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 0.000000;
1 non-insertions in a row out of 29 sites
Non-Essential Phosphatidylcholine H37RvMA Gumbel Subhalaxmi Nambi Probability of Essentiality: 0.000000;
1 non-insertions in a row out of 29 sites
Non-Essential minimal media + 0.1% glycerol H37RvMA Gumbel Griffin et al. (2011) Probability of Essentiality: 0.000000;
1 non-insertions in a row out of 30 sites
Non-Essential minimal media + 0.01% cholesterol H37RvMA Gumbel Griffin et al. (2011) Probability of Essentiality: 0.000000;
2 non-insertions in a row out of 30 sites
Non-Essential 7H10-glycerol H37RvMA TraSH Sassetti et al. (2003a)
Non-Essential C57BL/6J mice (8 weeks) H37RvMA TraSH Sassetti et al. (2003b) Hybridization Ratio: 3.89
Growth-Advantage 7H09/7H10 + rich media H37RvMA MotifHMM DeJesus et al. (2017) Fully saturated (14 reps).

TnSeq Data No data currently available.
  • No TnSeq data currently available for this Target.
RNASeq Data No data currently available.
  • No RNA-Seq data currently available for this Target.
Metabolomic Profiles No data currently available.
  • No Metabolomic data currently available for this Target.
Proteomic Data No data currently available.
  • No Proteomic data currently available for this Target.

Regulatory Relationships from Systems Biology
  • BioCyc

    Gene interactions based on ChIPSeq and Transcription Factor Over-Expression (TFOE) (Systems Biology)

    NOTE: Green edges represent the connected genes being classified as differentially essential as a result of the middle gene being knocked out. These interactions are inferred based on RNASeq.

    Interactions based on ChIPSeq data

    RNA processing and modification
    Energy production and conversion
    Chromatin structure and dynamics
    Amino acid transport and metabolism
    Cell cycle control, cell division, chromosome partitioning
    Carbohydrate transport and metabolism
    Nucleotide transport and metabolism
    Lipid transport and metabolism
    Coenzyme transport and metabolism
    Transcription
    Translation, ribosomal structure and biogenesis
    Cell wall/membrane/envelope biogenesis
    Replication, recombination and repair
    Posttranslational modification, protein turnover, chaperones
    Cell motility
    Secondary metabolites biosynthesis, transport and catabolism
    Inorganic ion transport and metabolism
    Function unknown
    General function prediction only
    Intracellular trafficking, secretion, and vesicular transport
    Signal transduction mechanisms
    Extracellular structures
    Defense mechanisms
    Nuclear structure
    Cytoskeleton
  • BioCyc Co-regulated genes based on gene expression profiling (Systems Biology, Inferelator Network)
  • Differentially expressed as result of RNASeq in glycerol environment (Only top 20 genes shown sorted by log fold change with p_adj 0.05).
    Conditionally essential as result of TNSeq (Only top 20 genes shown sorted by log fold change with p_adj 0.05).
  • BioCyc Transcription factor binding based on ChIP-Seq (Systems Biology)
  • Interactions based on ChIPSeq data (Minch et al. 2014)

    Interactions based on TFOE data (Rustad et al. 2014)



    TBCAP

    Tubculosis Community Annotation Project (
    Slayden et al., 2013)

    Rv0483 (lprQ)

    PropertyValueCreatorEvidencePMIDComment
    InteractionTranscription Rv3676priya29sepIMPChIP (Physical interaction)
    authors,IC. Sutcliffe,DJ. Harrington Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. FEMS Microbiol. Rev. 2004
    CitationA member of the cAMP receptor protein family of transcription regulators in Mycobacterium tuberculosis is required for virulence in mice and controls transcription of the rpfA gene coding for a resuscitation promoting factor. L. Rickman, C. Scott et al. Mol. Microbiol. 2005priya29sepIMP15882420ChIP (Physical interaction)
    InteractionTranscription Rv3676priya29sepIMPChIP (Physical interaction)
    L. Rickman, C. Scott et al. A member of the cAMP receptor protein family of transcription regulators in Mycobacterium tuberculosis is required for virulence in mice and controls transcription of the rpfA gene coding for a resuscitation promoting factor. Mol. Microbiol. 2005
    CitationLipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components. authors,IC. Sutcliffe,DJ. Harrington FEMS Microbiol. Rev. 2004priya29sepIMP15539077ChIP (Physical interaction)
    InteractionRegulatedBy Rv0981yamir.morenoIEPMicroarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments..
    H. He, R. Hovey et al. MprAB is a stress-responsive two-component system that directly regulates expression of sigma factors SigB and SigE in Mycobacterium tuberculosis. J. Bacteriol. 2006
    InteractionRegulatedBy Rv3676yamir.morenoTASLiterature previously reported link (from Balazsi et al. 2008). Traceable author statement to experimental support.
    G. Balzsi, AP. Heath et al. The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol. Syst. Biol. 2008
    SymbolldtCmjacksonISSPeptidoglycan assembly/maturation
    NameHomologous to L,D-transpeptidasemjacksonISSPeptidoglycan assembly/maturation
    SymbolLprQjlewContains a functional tat sequence. Test for functional tat sequences using a BlaC reporter. 13 identified.
    JA. McDonough, JR. McCann et al. Identification of functional Tat signal sequences in Mycobacterium tuberculosis proteins. J. Bacteriol. 2008
    CitationIdentification of functional Tat signal sequences in Mycobacterium tuberculosis proteins. JA. McDonough, JR. McCann et al. J. Bacteriol. 2008jlew18658266Contains a functional tat sequence. Test for functional tat sequences using a BlaC reporter. 13 identified.

    Comments