Property | Value | Creator | Evidence | PMID | Comment |
Interaction | Degradation Rv2224c | priti.priety | IPI | | Affinity purification (Physical interaction) J. Rengarajan, E. Murphy et al. Mycobacterium tuberculosis Rv2224c modulates innate immune responses. Proc. Natl. Acad. Sci. U.S.A. 2008 |
Interaction | Degradation Rv2224c | priti.priety | IPI | | Affinity purification (Physical interaction) AR. Flores, LM. Parsons et al. Characterization of novel Mycobacterium tuberculosis and Mycobacterium smegmatis mutants hypersusceptible to beta-lactam antibiotics. J. Bacteriol. 2005 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Spectrophotometric J. Gonzalo-Asensio, S. Mostowy et al. PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS ONE 2008 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Structural Analysis J. Gonzalo-Asensio, S. Mostowy et al. PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS ONE 2008 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) ML. Chesne-Seck, N. Barilone et al. A point mutation in the two-component regulator PhoP-PhoR accounts for the absence of polyketide-derived acyltrehaloses but not that of phthiocerol dimycocerosates in Mycobacterium tuberculosis H37Ra. J. Bacteriol. 2008 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) authors,A. Sola-Landa,RS. Moura,JF. Martn The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc. Natl. Acad. Sci. U.S.A. 2003 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) J. Gonzalo Asensio, C. Maia et al. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J. Biol. Chem. 2006 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) J. Gonzalo-Asensio, CY. Soto et al. The Mycobacterium tuberculosis phoPR operon is positively autoregulated in the virulent strain H37Rv. J. Bacteriol. 2008 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) A. Sinha, S. Gupta et al. PhoP-PhoP interaction at adjacent PhoP binding sites is influenced by protein phosphorylation. J. Bacteriol. 2008 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) J. Gonzalo Asensio, C. Maia et al. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J. Biol. Chem. 2006 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) M. Ryndak, S. Wang et al. PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol. 2008 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) JA. Asensio, A. Arbus et al. Live tuberculosis vaccines based on phoP mutants: a step towards clinical trials. Expert opinion on biological therapy 2008 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) SB. Walters, E. Dubnau et al. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol. Microbiol. 2006 |
Interaction | Regulatory Rv0757 | singhpankaj2116 | IEP | | Co-expression (Functional linkage) J. Gonzalo-Asensio, S. Mostowy et al. PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. PLoS ONE 2008 |
Citation | Proteome analysis of the plasma membrane of Mycobacterium tuberculosis. authors,S. Sinha,S. Arora,K. Kosalai,A. Namane,AS. Pym,ST. Cole Comp. Funct. Genomics 2002 | priti.priety | IDA | 18629250 | Structural Analysis |
Interaction | PhysicalInteraction Rv3418c | priti.priety | IDA | | Structural Analysis authors,S. Sinha,S. Arora,K. Kosalai,A. Namane,AS. Pym,ST. Cole Proteome analysis of the plasma membrane of Mycobacterium tuberculosis. Comp. Funct. Genomics 2002 |
Citation | Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. authors,R. Qamra,SC. Mande J. Bacteriol. 2004 | priti.priety | IDA | 15547284 | Structural Analysis |
Interaction | PhysicalInteraction Rv3418c | priti.priety | IDA | | Structural Analysis authors,R. Qamra,SC. Mande Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. J. Bacteriol. 2004 |
Citation | Proteome analysis of the plasma membrane of Mycobacterium tuberculosis. authors,S. Sinha,S. Arora,K. Kosalai,A. Namane,AS. Pym,ST. Cole Comp. Funct. Genomics 2002 | priti.priety | IDA | 18629250 | Spectrophotometric |
Interaction | PhysicalInteraction Rv3418c | priti.priety | IDA | | Spectrophotometric authors,S. Sinha,S. Arora,K. Kosalai,A. Namane,AS. Pym,ST. Cole Proteome analysis of the plasma membrane of Mycobacterium tuberculosis. Comp. Funct. Genomics 2002 |
Citation | Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. authors,R. Qamra,SC. Mande J. Bacteriol. 2004 | priti.priety | IDA | 15547284 | Spectrophotometric |
Interaction | PhysicalInteraction Rv3418c | priti.priety | IDA | | Spectrophotometric authors,R. Qamra,SC. Mande Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. J. Bacteriol. 2004 |
Interaction | RegulatedBy Rv2710 | yamir.moreno | IEP | | Microarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments.. JH. Lee, PC. Karakousis et al. Roles of SigB and SigF in the Mycobacterium tuberculosis sigma factor network. J. Bacteriol. 2008 |
Interaction | RegulatedBy Rv2034 | yamir.moreno | IDA | | One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. . M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009 |
Interaction | RegulatedBy Rv2021c | yamir.moreno | IDA | | One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. . M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009 |
Interaction | RegulatedBy Rv1990c | yamir.moreno | IDA | | One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. . M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009 |
Interaction | RegulatedBy Rv0445c | yamir.moreno | IDA | | One hybrid reporter system. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. . M. Guo, H. Feng et al. Dissecting transcription regulatory pathways through a new bacterial one-hybrid reporter system. Genome Res. 2009 |
Interaction | RegulatedBy Rv1675c | yamir.moreno | IDA | | Microarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments.. qRT-PCR. mRNA expression levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using qRT-PCR technique. Proteomic studies. Regulated gene product concentrations measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) using proteomics techniques. Electrophoretic mobility shift assays EMSA. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. . MA. Gazdik, G. Bai et al. Rv1675c (cmr) regulates intramacrophage and cAMP-induced gene expression in Mycobacterium tuberculosis-complex mycobacteria. Mol. Microbiol. 2008 |
Interaction | RegulatedBy Rv1675c | yamir.moreno | IEP | | Microarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments.. qRT-PCR. mRNA expression levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using qRT-PCR technique. Proteomic studies. Regulated gene product concentrations measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) using proteomics techniques. Electrophoretic mobility shift assays EMSA. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. . MA. Gazdik, G. Bai et al. Rv1675c (cmr) regulates intramacrophage and cAMP-induced gene expression in Mycobacterium tuberculosis-complex mycobacteria. Mol. Microbiol. 2008 |
Interaction | RegulatedBy Rv1675c | yamir.moreno | IEP | | Microarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments.. qRT-PCR. mRNA expression levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using qRT-PCR technique. Proteomic studies. Regulated gene product concentrations measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) using proteomics techniques. Electrophoretic mobility shift assays EMSA. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. . MA. Gazdik, G. Bai et al. Rv1675c (cmr) regulates intramacrophage and cAMP-induced gene expression in Mycobacterium tuberculosis-complex mycobacteria. Mol. Microbiol. 2008 |
Interaction | RegulatedBy Rv1675c | yamir.moreno | IEP | | Microarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments.. qRT-PCR. mRNA expression levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using qRT-PCR technique. Proteomic studies. Regulated gene product concentrations measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) using proteomics techniques. Electrophoretic mobility shift assays EMSA. Physical binding of the regulator to the regulated promoter proved by using electrophoretic mobility shift assay. . MA. Gazdik, G. Bai et al. Rv1675c (cmr) regulates intramacrophage and cAMP-induced gene expression in Mycobacterium tuberculosis-complex mycobacteria. Mol. Microbiol. 2008 |
Interaction | RegulatedBy Rv0757 | yamir.moreno | IEP | | Microarrays. mRNA levels of regulated element measured and compared between wild-type and trans-element mutation (knockout, over expression etc.) performed by using microarray (or macroarray) experiments.. J. Gonzalo Asensio, C. Maia et al. The virulence-associated two-component PhoP-PhoR system controls the biosynthesis of polyketide-derived lipids in Mycobacterium tuberculosis. J. Biol. Chem. 2006 |
Interaction | RegulatedBy Rv2374c | yamir.moreno | TAS | | Literature previously reported link (from Balazsi et al. 2008). Traceable author statement to experimental support. G. Balzsi, AP. Heath et al. The temporal response of the Mycobacterium tuberculosis gene regulatory network during growth arrest. Mol. Syst. Biol. 2008 |