Chloravonin Targets Acetohydroxyacid Synthase Catalytic Subunit IlvB1 for Synergistic Killing of Mycobacterium tuberculosis

Nidja Rehberg,†‡ Herve Sergi Akone,†§ Thomas R. Ioerger,§ German Erlenkamp,§ Georgios Daletos,§ Holger Gohlke,§ Peter Proksch,§ and Rainer Kalscheuer†§

†Institute of Pharmaceutical Biology and Biotechnology, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
§Faculty of Science, Department of Chemistry, University of Douala, PO Box 24157, 2701 Douala, Cameroon
‡Department of Computer Science, Texas A&M University, 710 Ross St., College Station, Texas 77843, United States

Supporting Information

ABSTRACT: The flavonoid natural compound chloravonin was isolated from the endophytic fungus Mucor irregularis, which was obtained from the Cameroonian medicinal plant Moringa stenopetala. Chloravonin exhibited strong growth inhibitory activity in vitro against Mycobacterium tuberculosis (MIC₉₀ 1.56 μM) while exhibiting no cytotoxicity toward the human cell lines MRC-5 and THP-1 up to concentrations of 100 μM. Mapping of resistance-mediating mutations employing whole-genome sequencing, chemical supplementation assays, and molecular docking studies as well as enzymatic characterization revealed that chloravonin specifically inhibits the acetohydroxyacid synthase catalytic subunit IlvB1, causing combined auxotrophies to branched-chain amino acids and to pantothenic acid. While exhibiting a bacteriostatic effect in monotreatment, chloravonin displayed synergistic effects with the first-line antibiotic isoniazid and particularly with delamanid, leading to a complete sterilization in liquid culture in combination treatment. Using a fluorescent reporter strain, intracellular activity of chloravonin against Mycobacterium tuberculosis inside infected macrophages was demonstrated and was superior to streptomycin treatment.

KEYWORDS: chloravonin, Mycobacterium tuberculosis, acetohydroxyacid synthase, auxothrophy, synergistic killing effect

Despite the availability of chemotherapy, a prophylactic vaccine, and a century of research, tuberculosis (TB), caused by the bacterium Mycobacterium tuberculosis, has resisted eradication and today is still a reason for major concern of health organizations and governments alike. Drug resistance is a major force causing the exacerbation of the TB pandemic, a problem which has steadily worsened during the past 20 years.¹ Multidrug-resistant M. tuberculosis strains (MDR-TB), which are resistant to the first-line antibiotics isoniazid and rifampicin, have developed into extensively drug resistant strain (XDR-TB) strains that are additionally resistant to any fluoroquinolone and one of the three injectable drugs capreomycin, kanamycin, and amikacin.² Some of these strains are resistant to all available antitubercular drugs and are virtually untreatable. The development of new anti-TB chemotherapeutics has been largely neglected by industrialized countries for decades as their development was deemed to be economically untenable. In recent years, however, there has been renewed interest in anti-TB drug development in the academic sector and lately also by the pharmaceutical industry. As a result of these efforts, several new antitubercular drugs are currently being evaluated in different stages of clinical trials.³–⁵ Very recently, with the compounds bedaquiline and delamanid, the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) have approved two new anti-TB drugs, with bedaquiline representing the first clinical anti-TB drug of a novel class in 40 years.⁶–⁸ However, due to potential side effects, these drugs were only approved for treatment of MDR-TB patients so far. Despite this success, it is clear that, with regard to effective control of the MDR- and XDR-TB pandemic in the future, the current efforts are by far not sufficient. Thus, new drugs for selective chemotherapy are still urgently needed for the fight against drug-resistant TB.

Like for the treatment of other bacterial infections, where compounds derived from nature account for ca. 70% of all effective derivatives play crucial roles in modern day treatment of TB. Rifampicin is among the front-line therapeutic regime whereas other drugs derived from nature such as capreomycin, streptomycin, or cycloserine are in the second-line of treatment.⁹ Thus, nature and its multitude of ingeniously...
synthesized natural products are a treasure chest in the quest for new anti-TB drugs. However, the rate of discovery of new antibiotics from traditional terrestrial sources is decreasing. Thus, it is crucial to pursue less investigated organisms from unexplored habitats for bioprospection in the quest for novel anti-infectives. Fungal endophytes that live within the tissues of plants might represent a promising new source of novel anti-TB compounds as they are particularly rich in bioactive molecules as indicated by the steady rise of publications devoted to bioactive compounds from this group of organisms.

With this rationale, we investigated the anti-TB properties of extracts obtained from several endophytic fungi and identified the structurally unusual flavonoid chloravonin in a bioactivity-guided approach from the zygomycete Mucor irregularis, an endophytic fungus isolated from leaves of the Cameroonian medicinal plant Moringa stenopetala.

RESULTS AND DISCUSSION

Isolation and Antitubercular Activity of Chloravonin.

In continuation of our quest to identify novel molecules from nature with chemotherapeutic potential for the treatment of tuberculosis, extracts from several endophytic fungi were tested for antibacterial activity against *M. tuberculosis* strain H37Rv employing the resazurin dye reduction method. The crude ethyl acetate extract AST-53 obtained from the endophytic zygomycetes *Mucor irregularis*, which had been isolated from fresh healthy leaves of the medicinal plant *Moringa stenopetala* collected in Cameroon and cultured on solid rice medium, showed inhibition against *M. tuberculosis* H37Rv with an MIC of $50 \mu g/mL$ (Figure 1A). This extract was taken to dryness and partitioned between *n*-hexane and 90% methanol. The 90% methanol fraction was subjected to vacuum liquid chromatography (VLC) on silica gel employing a step gradient of hexane—ethyl acetate and dichloromethane—methanol yielding 6 fractions (AST-53-A to AST-53-F) of which fraction AST-53-A exhibited the most pronounced enrichment in antitubercular activity with an MIC of 12.5 $\mu g/mL$ (Figure 1B). Chromatography of fraction AST-53-A over Sephadex LH-20 and final purification by semipreparative HPLC yielded three known compounds identified as terphenyllin (1), dechloravonin (2), and chloravonin (3) (Figure 2) by comparison of their NMR and mass spectroscopic data with literature (Table S1 and Figures S1−S6 for 3). When testing these three compounds individually against *M. tuberculosis* cells, only chloravonin possessed antitubercular activity (Figures 1C and S7). A dose-dependent inhibition of growth was observed with an MIC of 1.56 μM. Remarkably, dechloravonin was completely inactive, indicating that the chlorine atom is crucial for the antibacterial property of chloravonin (Figure S7). In order to assess the cytotoxic potential of chloravonin against human cells, *in vitro* cytotoxicity studies were performed. Chloravonin showed virtually no cytotoxic effect against the two human cell lines THP-1 and MRC-5 up to the highest tested concentration of 100 μM, revealing a favorable selectivity index (IC$_{50}$/MIC$_{90}$) of ≥64 (Figure 1C). Additionally, chloravonin also inhibited growth of all four tested *M. tuberculosis* XDR clinical isolates with similar potency as compared to H37Rv (Figure 1D), implying that this compound inhibits targets which are not affected by resistance mechanisms to clinical drugs in XDR strains. In contrast, the growth of the fast growing nosocomial bacteria *Staphylococcus aureus*, *Enterococcus faecium*, and *Acinetobacter baumannii* was not inhibited in complex (Müller-Hinton broth) or minimal medium (M9 medium). Therefore, chloravonin displays a highly specific and selective antitubercular activity.

In Vitro Killing Kinetics. Killing kinetics were performed to reveal whether chloravonin exerts a bacteriostatic or bactericidal effect. Chloravonin showed a bacteriostatic effect that was stable over a period of 3 weeks without triggering the...
outgrowth of spontaneous resistant mutants when using a starting inoculum of 10^6 CFU/mL (Figure 3A). This contrasts with the tested clinical anti-TB drugs isoniazid, rifampicin, ethambutol, bedaquiline, and delamanid, which all exhibited limited killing capacity to various degrees but resulted in outgrowth of cells after 3 to 4 weeks of treatment, which might be due to replication of resistant mutants or due to consumption or degradation of drugs allowing the surviving cells to resume growth (Figure 3B−D). Due to the fact that chemotherapy against TB relies on combined drug regimens, the individual interaction of chlorflavonin with the aforementioned clinical drugs was assessed. Addition of chlorflavonin resulted in what appeared to be additive effects with rifampicin, ethambutol, and bedaquiline in this assay, slightly enhancing the killing capacity to various degrees. However, the bacteriostatic properties in monotherapy and thus appearing less attractive compared to bactericidal drug candidates, these findings suggest that chlorflavonin could be a highly beneficial component of first- and second-line treatment regimens for suppressing resistance development and shortening of treatment durations.

Mode-of-Action and Resistance Mechanism. Chlorflavonin has previously been reported to inhibit growth of selected fungal species. However, the molecular mechanisms underlying this antifungal activity have not been revealed. In order to gain insights into the mode-of-action of chlorflavonin and the molecular target(s) as well as into possible mechanisms of resistance in M. tuberculosis, spontaneous resistant mutants were isolated on solid medium containing 10 μM chlorflavonin, which occurred at a frequency of 10^{-7} and exhibited high-level resistance (>16-fold shift in MIC) (Figure 4A). To identify the resistance-mediating mutations, genomic DNA was isolated from five independent mutants and subjected to whole-genome resequencing. All analyzed mutants harbored single nucleotide polymorphisms, which were all in different loci and thus appear unrelated to resistance (Table 1).

The common mutations in ilvB1 pointed toward a specific role of the encoded protein in chlorflavonin resistance and action. AHAS, composed of the catalytic subunit IlvB1 and the regulatory subunit IlvN, mediates the first step in branched-chain amino acid biosynthesis by catalyzing the condensation of two molecules of pyruvate to acetolactate with release of CO2, giving rise to the amino acids leucine and valine after further metabolism. In addition, AHAS also catalyzes the condensation of pyruvate and α-ketobutyrate to acetohydroxybutyrurate with release of CO2, giving rise to the amino acid isoleucine after further metabolism. Furthermore, an intermediate in the pathway for leucine and valine formation downstream of isoleucine, ilvB1, might block the de novo biosynthesis of leucine, valine, isoleucine, and pantothenic acid, causing combined auxotrophies and growth restriction of $M. tuberculosis$ during cultivation in a defined medium such as Middlebrook 7H9. Indeed, supplementation of the medium with leucine, valine, isoleucine, and pantothenic acid (at concentrations of 50 mg/L each), but not the addition of the single components (isoleucine, leucine + valine, pantothenic acid), completely reversed the inhibitory effect of chlorflavonin on $M. tuberculosis$, while omission of pantothenic acid resulted only in partial reversal of susceptibility (Figure 4C). These findings demonstrate that the antibacterial effect of chlorflavonin is highly likely mediated through inhibiting enzymatic activity of AHAS and that chlorflavonin specifically inhibits AHAS without causing any off-target effects in $M. tuberculosis$ relevant for its antibacterial properties.
On the basis of available crystal structures of AHAS proteins from Arabidopsis thaliana and Saccharomyces cerevisiae (PDB IDs 1YBH and 1T9C), a homology model of M. tuberculosis IlvB1 was generated (sequence identities of 45% and 44%; the template structures are in the bound state). Molecular docking was performed using Glide to unravel how chlorflavonin might interact with IlvB1. The protein and ligand preparation as well as the docking parameters were validated by initially redocking the known inhibitory ligand sulfometuron methyl to the acetohydroxyacid synthase structure of S. cerevisiae (PDB ID 1T9C). The binding mode generated by Glide with the lowest energy deviated from the crystallized binding mode by 0.3 Å, demonstrating a very good docking result (Figure S8A). Applying the same docking parameters, docking of chlorflavonin in IlvB1 yielded three binding modes that differed by 3.7, 6.7, and 8.2 Å (Figure S8B). In order to identify which of these is most likely, we also docked chlorflavonin into IlvB1 using AutoDock3.0/DrugScore as docking engine/objective function combination. This docking identified one binding mode that deviates by only 0.2 Å from one generated by Glide (Figure 5A). Overall, both docking results showed that chlorflavonin can bind into the putative active site of the enzyme, where it forms a hydrogen bond and a salt bridge with lysine 197, a hydrogen bond with the backbone of phenylalanine 147, a π–π interaction between the phenyl moiety and tryptophan 516, and a cation–π interaction between the chromenyl moiety and arginine 318 (Figure 5B). The chlorine atom points into a subpocket lined by leucine 65 (chain A), methionine 512, and valine 513; apparently, the chlorine atom acts as a lipophilic appendage to fill the hydrophobic subpocket, which may lead to a higher binding affinity compared to the dechloro derivative. In addition to lysine 197, other residues observed in resistance mutations, i.e., glycine 62 and alanine 63, are also part of, or in close proximity to, respectively, the putative active site. Overall, these findings suggest that chlorflavonin likely impairs entry of the natural substrates pyruvate and α-ketobutyrate to the putative active site. Mutations of certain amino acids in the active site likely mediate resistance by preventing binding of chlorflavonin without substantially affecting normal enzymatic activity.

Expression, Purification, and in Vitro Activity of IlvB1.

Since the molecular docking studies did not reveal a definitive role of the chlorine atom in interaction of chlorflavonin with IlvB1, this raised the question of why dechlorflavonin does not possess antimycobacterial activity against whole cells. To corroborate direct target engagement and to determine the importance of chlorination for inhibition of enzymatic activity, the catalytic subunit IlvB1 and the mutated variant IlvB1-
K197T from *M. tuberculosis* were recombinantly expressed in *E. coli* as N-terminal hexahistidine-tagged proteins (68.3 kDa), which were partially purified employing Ni-NTA (nitrilotriacetic acid) affinity chromatography and desalted by gel filtration (Figure 6A). The partially purified IlvB1 preparation displayed AHAS activity as demonstrated by red complex formation which developed linearly under the tested assay conditions over at least 1 h. Also, the mutated enzyme carrying an amino acid substitution found in one of the spontaneous resistant mutants, K197T, displayed normal AHAS activity (Figure 6B). AHAS activity was strongly inhibited in the presence of chlorflavonin only in case of the wild-type, but not of the mutated, IlvB1 (Figure 6C), corroborating target engagement and direct interaction of the compound with IlvB1 as suggested by the molecular docking studies. Furthermore, this supports the proposed mode of resistance with certain amino acid substitutions in or near the active site of the enzyme preventing binding of chlorflavonin without impairing regular activity. The inhibitory effect of chlorflavonin against the catalytic subunit of AHAS was even stronger than for the known IlvB1 inhibitor pyrazosulfuron ethyl (PSE)23 (Figure 6C). Interestingly, dechlorflavonin impaired AHAS catalytic activity only slightly at a high dose of 50 μM, demonstrating that chlorination is indeed critical for compound–target interaction and providing an explanation for the differing antibacterial whole-cell effect of chlorflavonin and dechlorflavonin (Figure 6C).

Intracellular Activity in Infected Macrophages. Since *M. tuberculosis* is an intracellular pathogen largely residing within arrested phagolysosomes of infected macrophages, the intracellular activity of antibiotics plays an important role for the treatment of TB. Thus, a human THP-1 macrophage infection model was employed to investigate whether chlorflavonin is able to penetrate into macrophage cells and influence the intracellular growth of phagocytosed bacteria. In this experiment, reporter strains of *M. tuberculosis* H37Rv wild-type and of the chlorflavonin-resistant mutant C4, both expressing the red fluorescent mCherry protein constitutively from an episomal plasmid, were employed for macrophage infection. As indicated by the reduced amount of integrated density of mCherry fluorescence down to 1.4% compared to untreated controls, chlorflavonin at a concentration of 10 μM clearly inhibited intracellular growth of *M. tuberculosis* wild-type cells. Intracellular activity was less pronounced compared to the

Table 1. Mutations in Chlorflavonin-Resistant *M. tuberculosis* H37Rv Mutants Identified by Whole-Genome Sequencing

<table>
<thead>
<tr>
<th>chlorflavonin-resistant mutant</th>
<th>mutation(s) gene: amino acid substitution</th>
<th>nucleotide substitution in ilvB1 gene</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>ilvB1: G62S, mmpL_11: E667A</td>
<td>G184A</td>
</tr>
<tr>
<td>C2</td>
<td>ilvB1: K197T, alkB: M248T</td>
<td>AS90C</td>
</tr>
<tr>
<td>C3</td>
<td>ilvB1: G62S</td>
<td>G184A</td>
</tr>
<tr>
<td>C4</td>
<td>ilvB1: A63V</td>
<td>C188T</td>
</tr>
<tr>
<td>C5</td>
<td>ilvB1: K197R, Rv1990A: E40K</td>
<td>AS90G</td>
</tr>
</tbody>
</table>
Activity in infected macrophages. We could show that chlorflavonin inhibits the biosynthesis of the branched-chain amino acids isoleucine, leucine, and valine as well as of pantethenic acid in M. tuberculosis and causes combined auxootrophies. Leucine and pantethenic acid auxotrophic mutants of M. tuberculosis are highly attenuated in different animal models, indicating that M. tuberculosis cannot acquire these metabolites from the host during infection. Thus, targeting biosynthesis of branched-chain amino acids and pantethenic acid via inhibition of AHAS is a valid approach to restrict growth of M. tuberculosis in vivo, which is further supported by the clear IlvB1-dependent activity of chlorflavonin in human THP-1 macrophages. The specificity of chlorflavonin for the IlvB1 subunit of AHAS explains the lack of cytotoxicity because this protein is absent from mammals, which are unable to synthesize branched-chain amino acids as well as pantethenic acid de novo and rely on uptake of these essential nutrients from their diet. An ilvB1 gene deletion mutant of M. tuberculosis, that is viable in the presence of branched-chain amino acids, was recently reported to be only moderately attenuated in mice and fully virulent in murine bone marrow-derived macrophages, suggesting that specific inhibition of IlvB1 might have limited therapeutic potential. However, three different ilvB1 homologues are encoded in the M. tuberculosis genome (ilvB2, ilvG, and ilvX), which might possess at least partial functional redundancy. While IlvB1 is essential for growth in vitro in absence of branched-chain amino acids, one or more of the three isoforms might be expressed during growth in murine macrophages or mice to compensate for loss of IlvB1. However, since all isoforms are similar and probably share a common catalytic mechanism, it is likely that chlorflavonin can also inhibit the other AHAS isoforms.

In addition to bacteria, AHAS is also found in plants and fungi. In fact, commercially marketed herbicides belonging to the classes of sulfonylurea, imidazolines, pyrimidinyl thiobenzoates, and triazolopyrimidine sulphonamides are known to be potent inhibitors of plant AHAS. There is a growing number of recent studies demonstrating antibacterial activity of members of these herbicide classes against M. tuberculosis. In 1998, it was shown that the commercial AHAS inhibitor sulfometuron methyl inhibited M. tuberculosis growth in a mouse infection model, albeit having just a moderate effect only at a high daily dosage. However, recently, some monosubstituted sulfonylurea derivatives were shown to be more active in mice capable of significantly reducing lung burden after M. tuberculosis infection, including infection with an XDR-TB strain. These examples highlight the great therapeutic potential of AHAS inhibitors and promise that chlorflavonin could exhibit considerable potency in animal models. Chlorflavonin is structurally unrelated to the before mentioned molecules and thus represents a novel class of AHAS inhibitors.

MATERIAL AND METHODS

General Analytical Procedures. 1H, 13C, and 2D NMR spectra were recorded at 25 °C in DMSO-d6 on a Bruker ARX 600 NMR spectrometer. Chemicals shifts were referenced to the solvent residual peaks, δH 2.50 for 1H and δC 39.5 for 13C NMR. Mass spectra (ESI) were recorded with a Finnigan LCQ Deca mass spectrometer, and HRMS (ESI) spectra were obtained with a FTHRMS-Orbitrap (Thermo-Finnigan) mass spectrometer. Solvents were distilled prior to use, and spectral grade solvents were used for spectroscopic measurements.
HPLC analysis was performed with a Dionex UltiMate3400 SD machine with a LPG-3400SD Pump coupled to a photodiode array detector (DAD3000RS); routine detection was set at 235, 254, 280, and 340 nm. The separation column (125 mm × 4 mm) was pre-filled with Eurosphere-10 C18 (Knauer, Germany), and the following gradient was used (MeOH, 0.1% HCOOH in H2O): 0 min (10% MeOH), 5 min (10% MeOH), 35 min (100% MeOH), and 45 min (100% MeOH). Semipreparative HPLC was performed using a Merck Hitachi HPLC System (UV detector L-7400; Pump L-7100; Eurosphere-100 C18, 300 mm × 8 mm, Knauer, Germany). Column chromatography included LH-20 Sephadex and Merck MN Silica gel 60 M (0.04–0.063 mm). TLC plates with silica gel F254 (Merck, Darmstadt, Germany) were used to monitor fractions (CH3Cl/MeOH mixtures as mobile phase); detection was under UV at 254 and 366 nm or by spraying the plates with anisaldehyde reagent.

Fungal Material. *Mucor irregularis* was isolated from fresh healthy leaves of *Moringa stenopetala* (Moringaceae) collected in Koukoue, Littoral region, Cameroon in July 2013. The fungus was isolated under sterile conditions from the inner tissue of the leaf according to the procedure described by Kjer et al.39 The identification was performed following a molecular biological protocol by DNA amplification and sequencing of the ITS region. The sequence data have been submitted to GenBank, accession number KP067786.

Fermentation, Extraction, and Isolation. Fermentation of the fungus was carried out in two flasks (1 L each). The fungus was grown on rice medium (to 100 g of commercially available rice, 110 mL of distilled water was added and kept overnight prior to autoclaving), at room temperature under static conditions for 40 days. After incubation, each fungal culture was extracted with EtOAc (3 × 250 mL). The obtained EtOAc extract (856.0 mg) was partitioned between n-hexane and 90% MeOH. The 90% MeOH fraction labeled AST-53 (598.4 mg) was subjected to vacuum liquid chromatography (VLC) on silica gel employing a step gradient of hexane–EtOAc and dichloromethane–methanol to give six fractions AST-53-A to AST-53-F. Fraction AST-53-A (40% hexane in EtOAc, 58.2 mg) was subjected to column chromatography over Sephadex LH-20 using MeOH as eluent to give three subfractions AST-53-A1 to AST-53-A3. Subfraction AST-53-A2 (27 mg) was further purified by semipreparative HPLC using a gradient of MeOH–H2O (0.1% TFA) to afford compounds 1 (2 mg), 2 (3 mg), and 3 (9 mg).

Bacterial Strains and Growth Conditions. Cells of *M. tuberculosis* H37Rv and of several XDR-TB clinical isolates from South Africa40 were grown aerobically in Middlebrook 7H9 medium supplemented with 10% (v/v) ADS enrichment (5%, w/v, bovine serum albumin fraction V; 2%, w/v, glucose; 0.85%, w/v, sodium chloride), 0.5% (v/v) glycerol, and 0.05% (v/v) tyloxapol at 37 °C. Hygromycin (50 mg/L) was added for selection for reporter strains. XDR-TB clinical strains originating from South Africa were obtained from William. R. Jacobs Jr. (Albert Einstein College of Medicine, Bronx, USA) and included the following resistances: 1 mg/L isoniazid, 1 mg/L rifampicin, 10 mg/L ethambutol, 2 mg/L streptomycin, 100 mg/L pyrazinamide, 5 mg/L ethionamide, 5 mg/L kanamycin, 4 mg/L amikacin, 10 mg/L capreomycin, and 2 mg/L ofloxacin.

Nosocomial bacterial strains were cultivated in Müller Hinton (MH) medium at 37 °C and included *Staphylococcus*
Determination of Minimal Inhibitory Concentration (MIC) against M. tuberculosis via Resazurin Dye Reduction Method. For the determination of MIC against M. tuberculosis, bacteria were precultured until log phase (OD$_{600}$ nm $= 0.5$–1) and then seeded at 1×10^6 cells per well in a total volume of 100 µL in 96-well round-bottom microtiter plates and incubated with 2-fold serially diluted extracts or compounds at a concentration range of 100–0.78 µg/mL or µM, respectively. Microplates were incubated at 37 °C for 5 days. Afterward, 10 µL/well of a 100 µg/mL resazurin solution was added and the plates were incubated at ambient temperature for a further 16 h. Then, cells were fixed for 30 min after formalin addition (5%, v/v, final concentration). For viability determination, fluorescence was quantified using a microplate reader (excitation of 540 nm, emission of 590 nm). Percentage of growth was calculated relative to rifampicin treated (0% growth) and DMSO treated (100% growth) controls.

Determination of MIC against Nosocomial Strains. MIC of chlorflavonin for various typical nosocomial bacterial pathogens (Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Acinetobacter baumannii) was determined by the broth microdilution method according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI).

Figure 7. Intracellular activity of chlorflavonin in a THP-1 macrophage infection model. THP-1 cells were infected with a mCherry expressing reporter strain of either M. tuberculosis H37Rv wild-type (A) or a chlorflavonin-resistant mutant (B) in a 96-well microtiter plate and subjected to different antibiotic treatments as indicated. THP-1 cells were infected for 3 h, washed with PBS to remove unphagocytosed bacteria, and treated with 10 µM chlorflavonin, 20 µM streptomycin (STREP), 3 µM rifampicin (RIF), 5 µM isoniazid (INH), or 5 µM isoniazid and 10 µM chlorflavonin (INH + chlorflavonin) as indicated. After 5 days postinfection, wells were imaged using a fluorescence microscope with extinction wavelength of 560 nm, 200× magnification, and 1.5 s exposure time; scale bars: 50 µm. (C) Integrated density of red fluorescence as percent of untreated control of M. tuberculosis H37Rv WT and chlorflavonin resistant mutant, respectively, calculated with ImageJ.
resistant): 0.25%; Enterococcus faecium ATCC 35667: 1%, ATCC 700221 (vancomycin resistant): 0.25%; Acinetobacter baumannii ATCC BAA 1605: 0.06% of casamino acids). The precultures were washed with PBS, resuspended in M9, and tested for susceptibility as described before.

Determination of Cytotoxicity and Therapeutic Index. The cytotoxicity of chloroflavon was determined in vitro using the human monocyte cell line THP-1 (Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH) and the human fetal lung fibroblast cell line MRC-5 (American Type Culture Collection). THP-1 cells were cultured in RPMI 1640 medium containing 10% (v/v) fetal bovine serum (FBS), while MRC-5 cells were incubated in Dulbecco’s Modified Eagles Medium (DMEM) containing 10% (v/v) FBS both at 37 °C in an humidified atmosphere of 5% CO2. Fluorescence was quantified approximately 5 h, 10 fold diluted compound at a maximum final concentration of 10 μM. Cells treated with DMSO in a final concentration of 1% (v/v) served as solvent controls. After an incubation time of 48 h, 10 μL of resazurin solution (100 μg/mL) was added per well and incubated for a further 3 h at 37 °C in a humidified atmosphere of 5% CO2. Fluorescence was quantified using a microplate reader (excitation of 540 nm, emission of 590 nm). Growth was calculated relative to noninoculated (i.e., cell-free) (0% growth) and untreated (100% growth) controls in triplicate experiments, respectively. For determination of the therapeutic index of the substance, the selectivity index (SI) was determined by the quotient of cytotoxic concentration and MIC.

Determination of Time-Kill Curves in Vitro. Bacteria cells were grown aerobically at 37 °C in 10 mL Middlebrook 7H9 liquid media supplemented with 0.5% (v/v) glycerol, 0.05% (v/v) tyloxapol, and 10% (v/v) ADS enrichment as needed. Growth was calculated relative to noninoculated (i.e., cell-free) (0% growth) and untreated (100% growth) controls in triplicate experiments, respectively. For determination of the therapeutic index of the substance, the selectivity index (SI) was determined by the quotient of cytotoxic concentration and MIC. For determination of the therapeutic index, the selectivity index (SI) was determined by the quotient of cytotoxic concentration and MIC.

Expression and Purification of Catalytic Subunit of AHAS. The catalytic subunit of AHAS from M. tuberculosis H37Rv was amplified by PCR using the primers 5′-TTTTTTCTATATGCACCCATCATCATAATGCAGCCACCCAACAGCAGCACC-3′ and 5′-TTTTTTAGCTTCGAGGCGTGGCCCTCGTGTGATTGC-3′ introducing an N-terminal hexahistidine tag (Iibv1His6) and ligated into a PET30a vector using the restriction sites Ndel and HindIII (underlined). The mutated Iibv1 enzyme with the amino acid substitution K197T was generated by mutagenesis PCR using the primers 5′-GACATCCCCACGGACGTTGCAGG-3′ and 5′-GACACAACCGCGCCGCGG-3′ employing the Q5 site directed mutagenesis kit (NEB).

The plasmids were transformed into E. coli Rosetta (DE3) pLysS. The recombinant cells were cultivated with 40 μg/mL kanamycin and 10 μg/mL chloramphenicol until the culture reached an OD at 600 nm of 0.8. The expression of the recombinant proteins was induced by adding 0.5 mM isopropyl-β-D-thiogalactopronanoside (IPTG) and subsequent incubation overnight at room temperature. Bacteria were pelleted at 4000 rpm for 30 min, and the 1 mg pellet was suspended in 5 mL of buffer A (20 mM sodium phosphate, pH 8.0; 0.5 M NaCl and 20 mM imidazole) containing protease inhibitor cocktail. Afterward, the cells were lysed by bead beating and the extract was centrifuged at 14,000 rpm at 4 °C for 40 min to prepare lysates. The supernatant was loaded onto a Ni-NTA column, which was equilibrated with buffer A. The column was washed with buffer A thoroughly. Subsequently, the bound proteins were eluted with elution buffer (20 mM sodium phosphate, pH 8.0; 0.5 M NaCl and 500 mM imidazole). Size exclusion chromatography for desalting was performed on a PD MidiTrap G-25 (GE Healthcare) equilibrated with 100 mM KPO4 pH 7.5, containing 0.15 M NaCl.

Microplate Assay of Iibv1 Activity. Iibv1 activity was measured according to Choi et al. Briefly, Iibv1 protein (2.5 μg/mL) was incubated in reaction buffer (100 mM KPO4, pH 7.5, 10 mM MgCl2, 1 mM thiamine diphosphate, 50 μM FAD) with 75 mM pyruvate in a total volume of 100 μL for 1 h at 37 °C, leading to acetolactate formation. Afterward, reactions were stopped by addition of 0.5 M H2SO4, and incubation for 15 min at 65 °C with decarboxylate acetolactate to yield acetoin. At last, 100 μL of reaction product was mixed with 90 μL of 0.5% (w/v) creatine and 90 μL of 5% (w/v) α-naphthol solution in 2.5 M NaOH, leading to formation of a red complex together with acetoin which was quantified by absorbance at 492 nm using a microplate reader. Product formation proceeded linearly for at least 1 h under the tested conditions.

Intracellular Activity Assay via Macrophage Infection. Bacterial reporter strains expressing the fluorescent mCherry protein were precultured in hygromycin containing 7H9 Middlebrook medium until late log phase (OD600 nm = 0.8−1). Human THP-1 cells were seeded at a density of 1 × 103 cells per well in 96-well flat bottom microtiter plates in a total volume of 100 μL of RPMI 1640 medium with stable glutamine supplemented with 10% fetal bovine serum and containing 50 nM phosphol-12-myristate-13-acetate (PMA). After 16 h of incubation at 37 °C in a humidified atmosphere of 5% CO2, the THP-1 cells had differentiated into adherent cells with macrophage-like characteristics. The medium was replaced with 100 μL of RPMI 1640 medium without PMA containing 3 × 105 CFU per well of a reporter strain of either M. tuberculosis H37Rv wild-type or a chloroflavon resistant mutant, resulting in fluorescence detection.
in a multiplicity of infection of 3. After 3 h of infection, macrophages were washed with PBS to remove unphagocy-
tosed bacteria, and 100 μL of RPMI 1640 medium supplemented with 10% fetal bovine serum and containing
either 10 μM chlorflorovin or different antibiotics (20 μM streptomycin as negative control; 3 μM rifampicin, 5 μM
isoniazid as positive controls) was added per well. After 5 days of incubation at 37 °C in a humidified atmosphere of 5% CO2,
macrophages were fixed with formaldehyde—glutaraldehyde solution (0.8% and 0.25% final concentration). Fluorescence
microscopy was performed using a Nikon Eclipse TS100.

Determination of Single Step Resistance Frequency. Spontaneous resistant mutants were isolated by plating
approximately 1 × 10^8 CFU on agar (1 mL per well in a 6-well microtiter plate) containing chlorflorovin at 4× or 5× MIC.
Spontaneous resistant colonies were obtained at a frequency of ca. 1 × 10^{-7} after 3 weeks of incubation at 37
°C. Five independent clones were selected, which all exhibited high-level resistance against chlorflorovin in liquid culture.

Whole Genome Sequencing. To identify the resistance mediating mutations, genomic DNA of five independent
mutants was isolated as described previously. Libraries were prepared for sequencing using the standard paired-end genomic
DNA sample prep kit from Illumina. Genomes were sequenced using an Illumina HiSeq 2500 next-generation sequencer (San
Diego, CA, USA) and compared with the parent M. tuberculosis
H37RvMA genome (GenBank accession GCA_000751615.1).
Paired-end sequence data was collected with a read length of
106 bp. Base-calling was performed using Casava software, v1.8.
The reads were assembled using a comparative genome assembly method, using M. tuberculosis H37RvMA as a
reference sequence. The mean depth of coverage ranged from 277× to 770 ×.

Homology Modeling. A homology model of IlvB1
(Uniprot sequence P9WG40) was generated by using the in-
house tool TopModel^{16,4} and the protein structure of PDB ID
1T9C of the AHAS from A. thaliana as templates. 1T9C has a sequence
identity (similarity) of 44% (84%) to IlvB1 and was resolved to
2.3 Å resolution, while 1YBH has a sequence identity (similarity)
of 45% (84%) to IlvB1 and was resolved to 2.5 Å. The overall Cα atom root-mean-square deviation (RMSD)
between the model and the template is 0.26 Å, and the RMSD
of non-hydrogen atoms of the binding pocket is 1.34 Å.

Protein Structure and Ligand Preparation for Molecular
Docking. The template and the homology model were both preprocessed with the Protein Preparation Wizard of the
Schrödinger suite. Bond orders were assigned. Hydrogen bonds were added; the H-bond network was optimized, and missing side
chains were detected and added using Prime. Finally, the systems were energy minimized using the OPLS 2005 force
field, resulting in an RMSD of 0.13 Å with respect to the starting structure. The structures of chlorflorovin and the
cocrystallized ligand sulfometuron methyl of the template PDB ID 1T9C were sketched with ChemDraw 14. 3D structures
were generated with the LigPrep module of the Schrödinger suite.

Docking with GLIDE. To validate the docking protocol, the
ligand sulfometuron methyl was first redocked into the protein
structure of PDB ID 1T9C using the GLIDE module^{50} in
standard precision (SP) mode^{51} and default values for the grid
generation. In a second step, the same settings for the grid
generation and the GLIDE docking were used with
chlorflorovin and the homology model of IlvB1. The grid
had been centered on the ligand sulfometuron methyl in the
binding pocket of the template PDB ID 1T9C. No restraints
were used during the docking; the cocrystallized flavin-adenine
dinucleotide (FAD) was kept in place. As binding mode, the
docking solution with the lowest energy was chosen.

Docking with AutoDock. Docking with GLIDE led to
three binding modes of chlorflorovin that differed by 3.7, 6.7,
and 8.2 Å (Figure S8B). In order to identify which one of these
is most likely, we docked chlorflorovin also with Auto-
Dock3^{52,53} as a docking engine, using the DrugScore^{54,55}
distance-dependent pair-potentials as an objective function as
described in ref 56. Default values were used for the docking
parameters. Docking solutions with more than 50% of all
configurations in the largest cluster were considered sufficiently
converged, and the configuration with the lowest docking
energy of that cluster was identified as the final binding mode
depicted in Figure 5.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsinfec-
dis.7b00055.

Analytical data for chlorflorovin (3) including 1H (Figure S1), 13C (Figure S2), HSQC (Figure S3), HMBC
(Figure S4), and ROESY (Figure S5) NMR spectra and key 2D NMR correlations of 3 (Figure S6); comparative
dose—response curves for chlorflorovin (3), dechloro-
chlorflorovin (2), and terphenyllin (1) (Figure S7); docking solutions of sulfometuron methyl and chlor-
florovin (Figure S8); NMR spectroscopic data of 3 (Table S1); checkerboard synergy assay (Table S2)

AUTHOR INFORMATION

Corresponding Authors

*Phone: +49 211 8114180. E-mail: rainer.kalscheuer@hhu.de (R.K.).
*Phone: +49 211 8114163. E-mail: proksch@hhu.de (P.P.).

ORCID

Georgios Daletos: 0000-0002-1636-6424
Holger Gohlke: 0000-0001-8613-1447
Rainer Kalscheuer: 0000-0002-3378-2067

Author Contributions

1N.R. and H.S.A. contributed equally. H.S.A. isolated compounds 1−3, and H.S.A. and G.D. performed structural
elicitation. N.R. conducted all experiments involving M. tuber-
culos is and other bacteria. G.E. and H.G. performed and
analyzed molecular docking studies. T.R.I. performed and
analyzed whole genome sequencing. R.K. and P.P. designed
experiments and analyzed data. N.R. and R.K. wrote the
manuscript with contributions and edits from all authors.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

R.K., H.G., and P.P. acknowledge support from the German
Research Foundation (DFG) research training group GRK
2158. R.K. further wants to thank the Federal Ministry of
Education and Research (BMBF; 16GW0109). H.S.A. ex-
presses his gratitude to the DAAD (German Academic Exchange Service) for a doctoral scholarship. R.K. thanks William R. Jacobs Jr. (Albert Einstein College of Medicine, Bronx, USA) for provision of XDR-TB strains.

REFERENCES

