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Abstract

Sequencing of transposon-mutant libraries using
next-generation sequencing (Tn-Seq) has become a
popular method for determining which genes and
non-coding regions are essential for growth under
various conditions in bacteria. For methods that rely
on comparison of read-counts at transposon insertion
sites, proper normalization of Tn-Seq datasets is
vitally important. Real Tn-Seq datasets often exhibit
a significant skew and can be dominated by high
counts at a small number of sites (often for non-
biological reasons). If two datasets that are not
appropriately normalized are compared, it might cause
the artifactual appearance of conditionally essential
genes in a statistical test, constituting type I errors
(false positives). In this paper, we propose a novel
method for normalization of Tn-Seq datasets that
corrects for the skew in read count distributions by
fitting them to a Beta-Geometric distribution. We
show that this read-count correction procedure reduces
the number of false positives when comparing replicate
datasets grown under the same conditions (for which
no genuine differences in essentiality are expected).

1 Introduction

Sequencing of transposon-mutant libraries using
next-generation sequencing has become a popular
method for determining which genes and non-coding
regions are essential for growth under various conditions
in bacteria [8, 5, 6]. Briefly, a transposon-mutant
library is made by transfecting in a vector carrying a
transposable element, such as the Himar1 transposon,
which can insert at random locations throughout the
genome (Himar1 can insert at any TA dinucleotide;
for reference, there are ∼75,000 TA sites distributed
throughout the M. tuberculosis genome, spaced ∼60
bp apart on average). Each mutant has an insertion
at a single location, but in a saturating library, nearly
all of the potential insertion sites are represented.
However, when grown under selective conditions,

mutants with transposon insertions in essential regions
will fail to survive. The abundance of the remaining
insertion sites can be determined by using PCR to
amplify the junctions between the transposon and the
surrounding genome, and the position of each insertion
can be efficiently determined using a next-generation
sequencer such as an Ilumuna HiSeq. This experiment
typically yields several million reads, and the number of
reads associated with each TA site is tabulated. While
TA sites in non-essential regions have stochastically
varying read counts, essential genes and non-coding
regions (such as tRNAs, rRNAs, and ncRNAs) can be
identified as regions where the TA sites are uniformly
devoid of insertions (i.e. read counts are 0).

Determining which genes are essential is a difficult
problem. The primary challenge is in lower-density
datasets, where the fraction of TA sites represented in
the library is in the 20-30% range. The lower the den-
sity of the dataset, the more difficult it is to determine
whether a region lacks insertion due to essentiality, or
just due to random statistical fluctuations. In addition,
not all TA sites in an essential gene must lack insertions,
as insertions can sometimes be tolerated in the N- or
C-terminus of an essential gene, or in non-essential
domains or linkers between domains.

Despite these challenges, several statistical methods
have been developed for quantifying the significance of
essential genes. One method uses a non-parametric
test to identify regions with significantly suppressed
numbers of insertions (sums of read counts within a
sliding window of fixed size) [9]. A Bayesian model
employing a likelihood function based on the extreme
value distribution has been used to quantify the statis-
tical significance of essential regions based on the length
of ‘gaps’, or consecutive TA sites lacking insertions [3].
Hidden Markov Models have also been developed for
analyzing Tn-Seq data [2]. For comparisons between
growth conditions, the Negative Binomial distribution
has been used to compare read counts in genes between
conditions, to determine a p-value for assessing signifi-
cance of conditionally essential genes [10].

For methods that rely on comparisons of read-counts,



proper scaling (or normalization) of Tn-Seq datasets
is vitally important. If two datasets are compared
that are not appropriately normalized, it might result
in erroneous detection of differentially essential genes
(false positives), even between replicate datasets grown
under the same condition.

In this paper, we propose a novel method that
corrects for the skew in read count distributions ob-
served in many Tn-Seq datasets by fitting them to
a Beta-Geometric distribution. We show that this
read-count correction procedure reduces the number
of false positives when comparing replicate datasets
grown under the same conditions (for which no genuine
differences in essentiality are expected).

2 Normalization of Tn-Seq
Datasets

The most common method for normalization is to
divide the read counts at each TA site by the overall
number of reads in a dataset, which factors out gross
differences due to the amount of data collected. A
refinement of this approach is to scale the read counts
to have the same mean over non-zero sites (which we
call ‘Non-Zero Mean’ normalization or NZMean), since
different datasets can have widely varying levels of
saturation, and distributing the same number of reads
over fewer TA sites will naturally inflate the mean read
count among them.

Despite these attempts at normalization, Tn-Seq
datasets can still display quite different statistical pro-
files. In practice, some datasets appear well-behaved,
where the distribution of read counts tends to fit
a simple geometric distribution, while other datasets
are skewed, with a few highly over-represented sites
dominating the read-count distribution. While there
is not a rigorous argument for why the distribution
of read counts must be geometric, it is clear that in
most datasets, TA sites with only a few reads (1-10) are
highly abundant, while sites with high counts (> 1000)
are much less abundant.

This trend can be observed in histograms of represen-
tative datasets shown in Figure 1. These datasets are
from a Himar1 Tn-mutant library in M. tuberculosis,
where A1 and A2 are two replicates grown in vitro, and
B1 and B2 represent in vivo datasets, where the library
has been passaged through a mouse. Each dataset
has 2 to 5 million reads distributed over 74,602 TA
sites. Datasets A1 and A2 appear to fit a geometric
distribution more closely than B1 and B2, which show
greater skew. The skew for higher counts can be better
observed on a log scale (Figure 1b). This can also
be seen on a QQ-plot (quantile-quantile plot; Figure

a)

b)

Figure 1: a) Histogram of read counts for four Tn-Seq
datasets from an M. tuberculosis Tn-mutant library.
The black line represents an ideal Geometric fit. b)
Histogram of read counts on a log scale.

2), where the distribution skews away from the 1:1
diagonal, indicating a serious lack of fit. Indeed,
datasets B1 and B2 have extremely high counts at a
few individual sites (with max read counts of 6,009 and
16,146 respectively), compared to max counts of 1,693
and 1175 in the A1 and A2 datasets.

The effect of the skew observed in datasets like B1
and B2 (which is a common phenomenon in Tn-Seq)
is that it can bias the statistical analysis of essential
regions, especially for methods that depend on the
read counts. Certainly, for genes containing TA sites
with high spikes in read counts, they will appear
highly non-essential, and this could cause those genes
to appear differentially essential in other conditions
by comparison. Conversely, the spikes in read counts
at some TA sites will suppress the apparent level of
reads at other sites, potentially making them appear



Figure 2: QQ-plot of non-zero read counts for dataset
B2 versus a geometric distribution with optimal (MLE)
parameter. The skew indicates there is still lack of fit.

relatively more essential.

We propose a novel method for correcting for this
skew in read-count distributions by fitting each dataset
to a modified distribution called a Beta-Geometric
distribution (Equation 1), and using this to adjust the
observed read counts so they more closely fit a geomet-
ric. This approach is based on the observation that
the skewed Tn-Seq datasets actually appear to fit not a
constant geometric with a single Bernoulli parameter,
p, but the weighted sum (integral) of multiple geometric
distributions with different values of p. As weights on
p, we choose the beta distribution, with parameters ρ
and κ set so that the peak is around p.

pdf(c; ρ, κ) =

∫ 1

0

Beta(p | ρ, κ)×Geometric(c | p) dp

(1)

The beta distribution has an extra degree of freedom
representing dispersion around p (see Figure 3). This
was chosen to reflect a generative model in which
individual mutants in the Tn-insertion library have
different growth rates, some growing slightly faster and
some slightly slower than wild-type cells, depending on
the location of the transposon insertion in their genome.
This variability in growth rates will broaden out the
apparent abundance of read counts after selection (i.e.
several rounds of doubling in selective conditions). In
this model, the spikes in read counts would come from
clones that had higher-than-average growth rates.

One empirical measure we can use to evaluate
whether the propsed correction method helps is to

a)

b)

Figure 3: a) Example of a beta distribution with
ρ = 0.05 and κ = 40. The mode of the peak is near
the value of ρ, indicated by the vertical line, but other
values of p (0.0-0.15) also have significant probability
density. The width of the peak is controlled by κ. b)
Histogram of counts sampled from a regular geometric
distribution with p = 0.05 (black curve), and a Beta-
Geometric distribution (red) with ρ = 0.05, κ = 40.

compare replicate datasets. In two datasets selected
from the same Tn-mutant library under the same
growth conditions, no differences are expected in
essentiality of genes. However, in practice, there
is high variability observed in Tn-Seq datasets,
even between biological replicates. Any method for
statistical analysis of Tn-Seq data must be conservative



enough not to detect many differentially essential genes
between replicates. Yet, when using a permutation test
(described below) on multiple pairs of replicates, we
observe several differentially essential genes, in some
cases beyond what would be expected from random
statistical sampling differences. We attribute many of
these false positives to the skew present in individual
datasets. Our goal in this paper is to show that, by
fitting each dataset to a Beta-Geometric distribution,
we can correct for the skew in read counts, and
thereby reduce many of these false positives. This
enhanced normalization method could be applied to
other Tn-Seq datasets to improve the detection of
statistically significant differentially essential genes
between conditions.

3 Methods

Given a set of read counts, Xi, for TA sites i ∈
1, 2, 3, ..., N , we assume a hierarchical model in which
read counts are geometrically distributed with a vari-
able parameter, p, governed by the beta distribution:

Xi ∼ Geometric(p)
p ∼ Beta(κρ, κ(1− ρ))

where the beta distribution is parameterized using ρ
and κ, such that ρ represents the mean of the parameter
p, and κ can be thought of as analogous to a “sample
size”, effectively proportional to the inverse of the
variance.

We seek to estimate the parameters ρ and κ, that
minimize the sum of squared errors (ε) between the ob-
served read-counts and the quantiles of the distribution:

ε(X; ρ, κ) =

N∑
i

(
X ′i − F−1(qi; pi)

)2
=

N∑
i

(
X ′i −

log(−qi + 1)

log(1− pi)

)2

=

N∑
i

(
X ′i −

log(−qi + 1)

log(1− κρ−1
κ−2 )

)2

(2)

Here, X ′ represents the read counts in ascending
order, F−1, represents the quantile function of the
geometric distribution, and qi ∈ [0, 1] represents the
quantiles.

To facilitate the parameter estimation, the parameter

ρ is estimated as ρ =
(∑N

i Xi

)−1
, which is the

maximum likelihood estimate of the parameter p of the
geometric distribution. The remaining parameter, κ is
found by determining the root of the gradient. The

gradient with respect to κ is defined as follows:

∂ε

∂κ
=

∑N
i 2(2ρ− 1) log(1− qi)

(
log(1− qi)−Xi log

(
−ρκ+κ−1

κ−2

))
(κ− 2)((ρ− 1)κ+ 1) log3

(
−ρκ+κ−1

κ−2

)
(3)

The root of this gradient has the following analytic
solution:

κ =
2× exp

[ ∑N
i log2(1−qi)∑N

i Xi log(1−qi)

]
− 1

exp
[ ∑N

i log2(1−qi)∑N
i Xi log(1−qi)

]
+ ρ− 1

Once parameters ρ and κ have been estimated,
capturing the skew in the dataset, the original read
counts are corrected by mapping each of them to the
equivalent quantile in an ideal geometric distribution as
follows:

c′ = F−1(Q(c; ρ, κ); p) (4)

where Q(c; ρ, κ) is the cumulative distribution function
for the Beta-Geometric (obtained by sampling), and
F−1(q; p) is the quantile function for the geometric
distribution.

NZMean normalization is applied to each dataset
after correcting the counts using this method.

3.1 Analysis of Differential Essentiality

To evaluate the differential essentiality of a gene
between two conditions, given multiple replicates of
each, we use a non-parametric permutation test on the
corrected and normalized counts at TA sites within the
gene. Briefly, the counts are summed over all sites
and averaged over replicates to estimate the mean read
count of the gene in each condition. The difference is
compared to a background (or ‘null’) distribution of
means from many random permutations of the counts
among the sites. The p-value is calculated from the
fraction of times the observed mean is greater than one
of the samples (Monte Carlo estimate).

In more detail, suppose we have m1 replicate datasets
in condition A, and m2 replicates in condition B. Let
Cij be a (m1 + m2) × n matrix of counts at each of n
TA sites i within the gene g, for each dataset j. The
difference of means is calculated as:

∆g =
1

n|A|
∑
j∈A

n∑
i

Cij −
1

n|B|
∑
j∈B

n∑
i

Cij (5)

Next, 10,000 random permutations of the counts in
matrix Cij are generated, and the differences ∆′ are
calculated for each permutation. The p-value is esti-
mated as the number of times ∆ > ∆′ (or ∆ < ∆′ for
negative differences).



4 Results

A set of 64 Tn-seq datasets was obtained from the
same M. tuberculosis Tn-mutant library grown under
different conditions. Each condition was tested in
duplicate, yielding 32 pairs of replicates. The raw read
counts were reduced to unique template counts using
sequencing barcodes [7], though we will continue to
refer to them generically as ‘read counts’ throughout
this paper. Each dataset had an average of 2.4M total
counts, with a range of 1.1-5.4M.

The Beta-Geometric correction was applied to each of
the 64 datasets, followed by NZMean normalization. As
an example, Table 1 contains statistics for the original
datasets A1, A2, B1 and B2 (corresponding to the ‘in
vitro’ and ‘Trans02c’ datasets among the 32 pairs),
as well as the values of ρ and κ estimated by the
BGC method. The dispersion parameter κ is lower for
the B1 and B2 datasets, consistent with the greater
variability that is observed in those datasets. A QQ-
plot of the corrected values for dataset B2 is shown in
Figure 4, displaying a much better fit to the geometric
distribution, with the skew removed (compare to Figure
2).

Table 1: Fitting of parameters for example datasets.

Data- Total Inser. Mean Max
set Reads Dens. Count Count ρ κ

A1 3.12M 49.3% 84.7 1,693 0.0118 911.1
A2 1.93M 52.6% 49.2 1,175 0.0203 493.9
B1 2.78M 41.1% 89.8 6,009 0.0111 422.0
B2 3.65M 38.1% 128.4 16,146 0.0078 434.7

To assess the value of the Beta-Geometric Correction
(BGC) for statistical tests of differential essentiality, we
compared pairs of replicate datasets against each other.
Because the datasets in each pair of replicates are se-
lected under the same condition, the expectation is that
there should be no differentially essential genes between
them. Replicates were compared using a permutation
test to detect significant differences in mean read counts
in a gene. The observed difference was compared to a
background distribution from resampling (permuting)
the counts between replicates to estimate a p-value, as
described above. A false positive is defined as a gene
that has p < 0.05, since no differences in essentiality
are expected between replicates in the same condition.

Table 2 presents the number of false positives ob-
tained in the permutation test with and without the
BGC. Note that due to the large number of genes in
the M. tuberculosis genome (3989), the permutation
test could be expected to incorrectly reject the null
hypothesis on ∼5% of the genes through chance alone.

Figure 4: QQ-plot of the raw read counts for dataset
B2, and the Beta-Geometric variables obtained by
sampling the parameter p from a Beta distribution with
estimated parameters ρ and κ.

However, applying BGC method reduces the Type I
error in more than two-thirds of the cases (22 out of
32 pairs), achieving an average reduction of 21 false
positives overall.

5 Discussion

Analysis of Tn-Seq data has become a valuable tool
for identifying conditionally essential genes. However,
the large amount of variability that is observed in
these datasets makes direct comparison problematic.
Common ways of normalizing the datasets have focused
primarily on equilibrating the average read counts
between datasets. While important, normalization of
the means alone is not enough to correct for the large
skew that is observed in some datasets.

The approach we propose assumes that the skew in
read counts comes from dispersion in the parameter
p underlying a geometric distribution. The skew is
captured by fitting the data to a Beta-Geometric dis-
tribution. The original read counts are then corrected
back to an ideal geometric distribution by matching
quantiles. We showed that one benefit of this correction
is that it reduces the number of false positives in the
permutation test when comparing replicates from the
same condition. This approach to normalizing Tn-Seq
datasets should also make fewer mistakes identifying
differentially essential genes between conditions.

The BGC method is similar to quantile normalization
[1, 10], except traditional quantile normalization scales
datasets together based on an empirical distribution



Table 2: Number of Type I errors (genes with
p < 0.05) obtained by comparing replicates against
each other with the permutation test. All datasets
were normalized with the Non-Zero Mean (NZMean)
method, with or without the Beta-Geometric correction
(BGC) applied first.

Type I Errors for Permutation Test

without with
Condition BGC BGC difference

BXD04 535 248 -287
BXD08 241 87 -154
Trans07 158 97 -61
GP01 74 28 -46
BXD07 78 36 -42
Trans02c 84 56 -28
BL6 74 49 -25
Trans05 142 123 -19
Trans11c 85 67 -18
DS04 49 32 -17
DS0c 42 27 -15
Trans01 32 19 -13
BXD06 91 81 -10
Trans11 22 18 -4
DS01 12 8 -4
Trans09c 78 75 -3
CAST 17 14 -3
AJ 13 10 -3
PWK 100 97 -3
BXD09 6 3 -3
Trans09 32 31 -1
DS02 22 21 -1
BXD01 2 2 0
Trans07c 70 71 1
BXD03 0 2 2
in vitro 2 4 2
Trans03 46 49 3
CCcont 2 5 3
Trans03c 52 57 5
Trans05c 30 42 12
BXD05 33 46 13
Trans01c 62 85 23

function, without making assumptions about the form
of the distribution. We choose to correct read counts
back to an ideal geometric distribution, since the profile
of abundances (i.e. vast majority of TA sites with low
counts, comparatively few with high counts) probably
reflects real biological effects, as would be expected
from sampling from a population of cells growing with
different levels of fitness (for example, see Motomura’s
model of species abundance distributions, [4]).
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